1
|
Novikov NM, Gao J, Fokin AI, Rocques N, Chiappetta G, Rysenkova KD, Zea DJ, Polesskaya A, Vinh J, Guerois R, Gautreau AM. NHSL3 controls single and collective cell migration through two distinct mechanisms. Nat Commun 2025; 16:205. [PMID: 39747206 PMCID: PMC11696792 DOI: 10.1038/s41467-024-55647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms. We identify the partner repertoire of each isoform using proteomics and predict direct partners and their binding sites using an AlphaFold2-based pipeline. Rescue with specific isoforms, and lack of rescue when relevant binding sites are mutated, establish that the interaction of a long isoform with MENA/VASP proteins is critical at cell-cell junctions for collective migration, while the interaction of a short one with 14-3-3θ in lamellipodia is critical for single cell migration. Taken together, these results demonstrate that NHSL3 regulates single and collective cell migration through distinct mechanisms.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Artem I Fokin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Rocques
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, Paris, France
| | - Karina D Rysenkova
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Diego Javier Zea
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, Paris, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
2
|
Scholz J, Stephan T, Pérez AG, Csiszár A, Hersch N, Fischer LS, Brühmann S, Körber S, Litschko C, Mijanovic L, Kaufmann T, Lange F, Springer R, Pich A, Jakobs S, Peckham M, Tarantola M, Grashoff C, Merkel R, Faix J. Decisive role of mDia-family formins in cell cortex function of highly adherent cells. SCIENCE ADVANCES 2024; 10:eadp5929. [PMID: 39475610 PMCID: PMC11524191 DOI: 10.1126/sciadv.adp5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.
Collapse
Affiliation(s)
- Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Aina Gallemí Pérez
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Agnes Csiszár
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisa S. Fischer
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lucija Mijanovic
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Wang C, Choi HJ, Woodbury L, Lee K. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403547. [PMID: 39239705 PMCID: PMC11538677 DOI: 10.1002/advs.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Hee June Choi
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lucy Woodbury
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Kwonmoo Lee
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
4
|
Lambert C, Karger M, Steffen A, Tang Y, Döring H, Stradal TEB, Lappalainen P, Faix J, Bieling P, Rottner K. Differential interference with actin-binding protein function by acute Cytochalasin B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.611976. [PMID: 39372773 PMCID: PMC11451763 DOI: 10.1101/2024.09.11.611976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking or tissue development. Cytochalasin B and -D are fungal secondary metabolites frequently used for interference with such processes. Although generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, our molecular understanding of their precise effects in dynamic actin structures is scarce. Here we combine live cell imaging and analysis of fluorescent actin-binding protein dynamics with acute treatment of lamellipodia in migrating cells with cytochalasin B. Our results show that in spite of an abrupt halt of lamellipodium protrusion, cytochalasin B affects various actin filament barbed end-binding proteins in a differential fashion. Cytochalasin B enhances instead of diminishes the accumulation of prominent barbed end-binding factors such as Ena/VASP family proteins and heterodimeric capping protein (CP) in the lamellipodium. Similar results were obtained with cytochalasin D. All these effects are highly specific, as cytochalasin-induced VASP accumulation requires the presence of CP, but not vice versa , and coincides with abrogation of both actin and VASP turnover. Cytochalasin B can also increase apparent barbed end interactions with the actin-binding β-tentacle of CP and partially mimic its Arp2/3 complex-promoting activity in the lamellipodium. In conclusion, our results reveal a new spectrum of cytochalasin activities on barbed end-binding factors, with important implications for the interpretation of their effects on dynamic actin structures.
Collapse
|
5
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
6
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 Recognition Landscape Reveals Incomplete Divergence of Paralogous EVH1 Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576863. [PMID: 38645240 PMCID: PMC11030225 DOI: 10.1101/2024.01.23.576863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- MIT Department of Biology, Cambridge, Massachusetts, USA
| | | | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitylation controls VASP-mediated actin dynamics. J Cell Sci 2024; 137:jcs261527. [PMID: 38277158 PMCID: PMC10917064 DOI: 10.1242/jcs.261527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin S. Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Moldenhawer T, Schindler D, Holschneider M, Huisinga W, Beta C. A Hands-on Guide to AmoePy - a Python-Based Software Package to Analyze Cell Migration Data. Methods Mol Biol 2024; 2828:159-184. [PMID: 39147977 DOI: 10.1007/978-1-0716-4023-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines. To characterize such differences, methods are required to quantify the contour dynamics of migrating cells. AmoePy is a Python-based software package that provides tools for cell segmentation, contour detection as well as analyzing and simulating contour dynamics. First, a digital representation of the cell contour as a chain of nodes is extracted from each frame of a time-lapse microscopy recording of a moving cell. Then, the dynamics of these nodes-referred to as virtual markers-are tracked as the cell contour evolves over time. From these data, various quantities can be calculated that characterize the contour dynamics, such as the displacement of the virtual markers or the local stretching rate of the marker chain. Their dynamics is typically visualized in space-time plots, the so-called kymographs, where the temporal evolution is displayed for the different locations along the cell contour. Using AmoePy, you can straightforwardly create kymograph plots and videos from stacks of experimental bright-field or fluorescent images of motile cells. A hands-on guide on how to install and use AmoePy is provided in this chapter.
Collapse
Affiliation(s)
- Ted Moldenhawer
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Daniel Schindler
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | | | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
9
|
Suarez C, Winkelman JD, Harker AJ, Ye HJ, McCall PM, Morganthaler AN, Gardel ML, Kovar DR. Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins. Eur J Cell Biol 2023; 102:151367. [PMID: 37890285 DOI: 10.1016/j.ejcb.2023.151367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.
Collapse
Affiliation(s)
- Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alyssa J Harker
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J Ye
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Patrick M McCall
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Mukherjee D, Previs RA, Haines C, Al Abo M, Juras PK, Strickland KC, Chakraborty B, Artham S, Whitaker RS, Hebert K, Fontenot J, Patierno SR, Freedman JA, Lau FH, Burow ME, Chang CY, McDonnell DP. Targeting CaMKK2 Inhibits Actin Cytoskeletal Assembly to Suppress Cancer Metastasis. Cancer Res 2023; 83:2889-2907. [PMID: 37335130 PMCID: PMC10472110 DOI: 10.1158/0008-5472.can-22-1622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Triple-negative breast cancers (TNBC) tend to become invasive and metastatic at early stages in their development. Despite some treatment successes in early-stage localized TNBC, the rate of distant recurrence remains high, and long-term survival outcomes remain poor. In a search for new therapeutic targets for this disease, we observed that elevated expression of the serine/threonine kinase calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) is highly correlated with tumor invasiveness. In validation studies, genetic disruption of CaMKK2 expression or inhibition of its activity with small molecule inhibitors disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor prognosis ovarian cancer subtype, shares many features with TNBC, and CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Mechanistically, CaMKK2 increased the expression of the phosphodiesterase PDE1A, which hydrolyzed cyclic guanosine monophosphate (cGMP) to decrease the cGMP-dependent activity of protein kinase G1 (PKG1). Inhibition of PKG1 resulted in decreased phosphorylation of vasodilator-stimulated phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate cell movement. Together, these findings establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis by impacting the actin cytoskeleton. Furthermore, it identifies CaMKK2 as a potential therapeutic target that can be exploited to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC. SIGNIFICANCE CaMKK2 regulates actin cytoskeletal dynamics to promote tumor invasiveness and can be inhibited to suppress metastasis of breast and ovarian cancer, indicating CaMKK2 inhibition as a therapeutic strategy to arrest disease progression.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rebecca A. Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Corinne Haines
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Muthana Al Abo
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Patrick K. Juras
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Kyle C. Strickland
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Regina S. Whitaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Katherine Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jake Fontenot
- Department of Surgery, Section of Plastic & Reconstructive Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Steven R. Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Jennifer A. Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Frank H. Lau
- Department of Surgery, Section of Plastic & Reconstructive Surgery, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthew E. Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
11
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitination controls VASP-mediated actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549237. [PMID: 37503134 PMCID: PMC10370145 DOI: 10.1101/2023.07.16.549237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitination regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitination impacts VASP activity was unknown. Here we show that mimicking multi-monoubiquitination of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitinated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitinated VASP maintained the ability to bind and protect barbed ends from capping protein. Lastly, we demonstrate the introduction of recombinant multi-monoubiquitinated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitination controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Fang HY, Forghani R, Clarke A, McQueen PG, Chandrasekaran A, O’Neill KM, Losert W, Papoian GA, Giniger E. Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila. Mol Biol Cell 2023; 34:ar83. [PMID: 37223966 PMCID: PMC10398877 DOI: 10.1091/mbc.e23-01-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.
Collapse
Affiliation(s)
- Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Rameen Forghani
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip G. McQueen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Aravind Chandrasekaran
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Kate M. O’Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Wolfgang Losert
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
13
|
Mukherjee D, Previs RA, Haines CN, Abo MA, Juras PK, Strickland KC, Chakraborty B, Artham S, Whitaker R, Hebert KL, Fontenot J, Patierno SR, Freedman JA, Lau FH, Burow M, Chang CY, McDonnell DP. Ca 2+ /Calmodulin Dependent Protein Kinase Kinase-2 (CaMKK2) promotes Protein Kinase G (PKG)-dependent actin cytoskeletal assembly to increase tumor metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.536051. [PMID: 37131673 PMCID: PMC10153149 DOI: 10.1101/2023.04.17.536051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Triple-negative breast cancers (TNBCs) tend to become highly invasive early during cancer development. Despite some successes in the initial treatment of patients diagnosed with early-stage localized TNBC, the rate of metastatic recurrence remains high with poor long-term survival outcomes. Here we show that elevated expression of the serine/threonine-kinase, Calcium/Calmodulin (CaM)-dependent protein kinase kinase-2 (CaMKK2), is highly correlated with tumor invasiveness. We determined that genetic disruption of CaMKK2 expression, or inhibition of its activity, disrupted spontaneous metastatic outgrowth from primary tumors in murine xenograft models of TNBC. High-grade serous ovarian cancer (HGSOC), a high-risk, poor-prognosis ovarian cancer subtype, shares many genetic features with TNBC, and importantly, CaMKK2 inhibition effectively blocked metastatic progression in a validated xenograft model of this disease. Probing the mechanistic links between CaMKK2 and metastasis we defined the elements of a new signaling pathway that impacts actin cytoskeletal dynamics in a manner which increases cell migration/invasion and metastasis. Notably, CaMKK2 increases the expression of the phosphodiesterase PDE1A which decreases the cGMP-dependent activity of protein kinase G1 (PKG1). This inhibition of PKG1 results in decreased phosphorylation of Vasodilator-Stimulated Phosphoprotein (VASP), which in its hypophosphorylated state binds to and regulates F-actin assembly to facilitate contraction/cell movement. Together, these data establish a targetable CaMKK2-PDE1A-PKG1-VASP signaling pathway that controls cancer cell motility and metastasis. Further, it credentials CaMKK2 as a therapeutic target that can be exploited in the discovery of agents for use in the neoadjuvant/adjuvant setting to restrict tumor invasiveness in patients diagnosed with early-stage TNBC or localized HGSOC.
Collapse
|
14
|
Senju Y, Mushtaq T, Vihinen H, Manninen A, Saarikangas J, Ven K, Engel U, Varjosalo M, Jokitalo E, Lappalainen P. Actin-rich lamellipodia-like protrusions contribute to the integrity of epithelial cell-cell junctions. J Biol Chem 2023; 299:104571. [PMID: 36871754 PMCID: PMC10173786 DOI: 10.1016/j.jbc.2023.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain, and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells, and contributes to their integrity and maintenance have remained elusive. By carrying out electron microscopy and live-cell imaging on cultured Madin-Darby canine kidney (MDCK) cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.
Collapse
Affiliation(s)
- Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Japan.
| | - Toiba Mushtaq
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Aki Manninen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Neuroscience Center, University of Helsinki, Finland
| | - Katharina Ven
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Ulrike Engel
- Nikon Imaging Center and Centre for Organismal Studies, Heidelberg University, Germany
| | - Markku Varjosalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Pekka Lappalainen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
15
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 PMCID: PMC9565809 DOI: 10.1126/sciadv.abp8677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - J. Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| |
Collapse
|
16
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 DOI: 10.1101/2022.03.04.483020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - J Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| |
Collapse
|
17
|
Kage F, Döring H, Mietkowska M, Schaks M, Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB, Rottner K. Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J Cell Sci 2022; 135:276259. [PMID: 35971979 PMCID: PMC9511706 DOI: 10.1242/jcs.260364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022] Open
Abstract
Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP. Summary: Rac-dependent actin remodeling can occur in the absence of WAVE regulatory complex, triggered by active Cdc42. WAVE regulatory complex-independent actin structures harbor Arp2/3 complex but not VASP.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Franziska Grüner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Waldman MM, Rahkola JT, Sigler AL, Chung JW, Willett BAS, Kedl RM, Friedman RS, Jacobelli J. Ena/VASP Protein-Mediated Actin Polymerization Contributes to Naïve CD8 + T Cell Activation and Expansion by Promoting T Cell-APC Interactions In Vivo. Front Immunol 2022; 13:856977. [PMID: 35757762 PMCID: PMC9222560 DOI: 10.3389/fimmu.2022.856977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Naïve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types, but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell–APC interactions, T cell activation, and T cell expansion in vivo. Our results showed that naïve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect, we analyzed T cell–APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient naïve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell–APC synapse, and that these conjugates were less stable than their WT counterparts. Finally, we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell–APC synapse. Thus, we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell–APC interactions, which promotes the initiation of stable T cell conjugates during APC scanning. Therefore, Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo.
Collapse
Affiliation(s)
- Monique M Waldman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeremy T Rahkola
- Rocky Mountain Regional Veterans Affairs (VA) Medical Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashton L Sigler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey W Chung
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
19
|
Altered CXCR4 dynamics at the cell membrane impairs directed cell migration in WHIM syndrome patients. Proc Natl Acad Sci U S A 2022; 119:e2119483119. [PMID: 35588454 PMCID: PMC9173760 DOI: 10.1073/pnas.2119483119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SignificanceNew imaging-based approaches are incorporating new concepts to our knowledge of biological processes. The analysis of receptor dynamics involved in cell movement using single-particle tracking demonstrates that cells require chemokine-mediated receptor clustering to sense appropriately chemoattractant gradients. Here, we report that this process does not occur in T cells expressing CXCR4R334X, a mutant form of CXCR4 linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis). The underlaying molecular mechanism involves inappropriate actin cytoskeleton remodeling due to the inadequate β-arrestin1 activation by CXCR4R334X, which alters its lateral mobility and spatial organization. These defects, associated to CXCR4R334X expression, contribute to the retention of hematopoietic precursors in bone marrow niches and explain the severe immunological symptoms associated with WHIM syndrome.
Collapse
|
20
|
Faix J, Rottner K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J Cell Sci 2022; 135:274697. [DOI: 10.1242/jcs.259226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The tightly coordinated, spatiotemporal control of actin filament remodeling provides the basis of fundamental cellular processes, such as cell migration and adhesion. Specific protein assemblies, composed of various actin-binding proteins, are thought to operate in these processes to nucleate and elongate new filaments, arrange them into complex three-dimensional (3D) arrays and recycle them to replenish the actin monomer pool. Actin filament assembly is not only necessary to generate pushing forces against the leading edge membrane or to propel pathogens through the cytoplasm, but also coincides with the generation of stress fibers (SFs) and focal adhesions (FAs) that generate, transmit and sense mechanical tension. The only protein families known to date that directly enhance the elongation of actin filaments are formins and the family of Ena/VASP proteins. Their mechanisms of action, however, in enhancing processive filament elongation are distinct. The aim of this Review is to summarize our current knowledge on the molecular mechanisms of Ena/VASP-mediated actin filament assembly, and to discuss recent insights into the cell biological functions of Ena/VASP proteins in cell edge protrusion, migration and adhesion.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
21
|
aVASP boosts protrusive activity of macroendocytic cups and drives phagosome rocketing after internalization. Eur J Cell Biol 2022; 101:151200. [DOI: 10.1016/j.ejcb.2022.151200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
|
22
|
Bischoff MC, Bogdan S. Collective cell migration driven by filopodia-New insights from the social behavior of myotubes. Bioessays 2021; 43:e2100124. [PMID: 34480489 DOI: 10.1002/bies.202100124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023]
Abstract
Collective migration is a key process that is critical during development, as well as in physiological and pathophysiological processes including tissue repair, wound healing and cancer. Studies in genetic model organisms have made important contributions to our current understanding of the mechanisms that shape cells into different tissues during morphogenesis. Recent advances in high-resolution and live-cell-imaging techniques provided new insights into the social behavior of cells based on careful visual observations within the context of a living tissue. In this review, we will compare Drosophila testis nascent myotube migration with established in vivo model systems, elucidate similarities, new features and principles in collective cell migration.
Collapse
Affiliation(s)
- Maik C Bischoff
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
23
|
Schindler D, Moldenhawer T, Stange M, Lepro V, Beta C, Holschneider M, Huisinga W. Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows. PLoS Comput Biol 2021; 17:e1009268. [PMID: 34424898 PMCID: PMC8412247 DOI: 10.1371/journal.pcbi.1009268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 09/02/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach. Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Daniel Schindler
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Ted Moldenhawer
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Maike Stange
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Valentino Lepro
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
24
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
25
|
Rachubik P, Szrejder M, Audzeyenka I, Rogacka D, Rychłowski M, Angielski S, Piwkowska A. The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. J Biochem 2021; 168:575-588. [PMID: 32484874 PMCID: PMC7763511 DOI: 10.1093/jb/mvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Podocytes, the principal component of the glomerular filtration barrier, regulate glomerular permeability to albumin via their contractile properties. Both insulin- and high glucose (HG)-dependent activation of protein kinase G type Iα (PKGIα) cause reorganization of the actin cytoskeleton and podocyte disruption. Vasodilator-stimulated phosphoprotein (VASP) is a substrate for PKGIα and involved in the regulation of actin cytoskeleton dynamics. We investigated the role of the PKGIα/VASP pathway in the regulation of podocyte permeability to albumin. We evaluated changes in high insulin- and/or HG-induced transepithelial albumin flux in cultured rat podocyte monolayers. Expression of PKGIα and downstream proteins was confirmed by western blot and immunofluorescence. We demonstrate that insulin and HG induce changes in the podocyte contractile apparatus via PKGIα-dependent regulation of the VASP phosphorylation state, increase VASP colocalization with PKGIα, and alter the subcellular localization of these proteins in podocytes. Moreover, VASP was implicated in the insulin- and HG-dependent dynamic remodelling of the actin cytoskeleton and, consequently, increased podocyte permeability to albumin under hyperinsulinaemic and hyperglycaemic conditions. These results indicate that insulin- and HG-dependent regulation of albumin permeability is mediated by the PKGIα/VASP pathway in cultured rat podocytes. This molecular mechanism may explain podocytopathy and albuminuria in diabetes.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
26
|
Herbst F, Lang TJL, Eckert ESP, Wünsche P, Wurm AA, Kindinger T, Laaber K, Hemmati S, Hotz-Wagenblatt A, Zavidij O, Paruzynski A, Lu J, von Kalle C, Zenz T, Klein C, Schmidt M, Ball CR, Glimm H. The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision. Leukemia 2021; 35:2948-2963. [PMID: 34021250 PMCID: PMC8478659 DOI: 10.1038/s41375-021-01267-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.
Collapse
Affiliation(s)
- Friederike Herbst
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tonio J. L. Lang
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elias S. P. Eckert
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Peer Wünsche
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander A. Wurm
- grid.4488.00000 0001 2111 7257Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany ,grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany
| | - Tim Kindinger
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Laaber
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Shayda Hemmati
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- grid.7497.d0000 0004 0492 0584Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oksana Zavidij
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Junyan Lu
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Christof von Kalle
- grid.461742.2Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,GeneWerk GmbH, 69120 Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thorsten Zenz
- grid.412004.30000 0004 0478 9977Department of Medical Oncology and Haematology, University Hospital Zurich & University of Zurich, 8091 Zurich, Switzerland
| | - Christoph Klein
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Manfred Schmidt
- grid.461742.2Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,GeneWerk GmbH, 69120 Heidelberg, Germany
| | - Claudia R. Ball
- grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Hanno Glimm
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 01307 Dresden, Germany
| |
Collapse
|
27
|
Abou-Ghali M, Kusters R, Körber S, Manzi J, Faix J, Sykes C, Plastino J. Capping protein is dispensable for polarized actin network growth and actin-based motility. J Biol Chem 2020; 295:15366-15375. [PMID: 32868296 DOI: 10.1074/jbc.ra120.015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.
Collapse
Affiliation(s)
- Majdouline Abou-Ghali
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Remy Kusters
- Centre de Recherche Interdisciplinaire, Université de Paris, INSERM U1284, Paris, France
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - John Manzi
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Cécile Sykes
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Paris, France.
| |
Collapse
|
28
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
29
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
30
|
Cheng KW, Mullins RD. Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin. Mol Biol Cell 2020; 31:2021-2034. [PMID: 32579429 PMCID: PMC7543071 DOI: 10.1091/mbc.e20-04-0270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The shapes of many eukaryotic cells depends on the actin cytoskeleton, and changes in actin assembly dynamics underlie many changes in cell shape. Ena/VASP-family actin polymerases, for example, modulate cell shape by accelerating actin filament assembly locally and slowing filament capping. When concentrated into discrete foci at the leading edge, VASP promotes filopodia assembly and forms part of a poorly understood molecular complex that remains associated with growing filopodia tips. Here we identify precursors of this filopodia tip complex in migrating B16F1 cells: small leading-edge clusters of the adaptor protein lamellipodin (Lpd) that subsequently recruit VASP and initiate filopodia formation. Dimerization, membrane association, and VASP binding are all required for lamellipodin to incorporate into filopodia tip complexes, and overexpression of monomeric, membrane-targeted lamellipodin mutants disrupts tip complex assembly. Once formed, tip complexes containing VASP and lamellipodin grow by fusing with each other, but their growth is limited by a size-dependent dynamic instability. Our results demonstrate that assembly and disassembly dynamics of filopodia tip complexes are determined, in part, by a network of multivalent interactions between Ena/VASP proteins, EVH1 ligands, and actin filaments.
Collapse
Affiliation(s)
- Karen W Cheng
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| |
Collapse
|
31
|
Damiano-Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M, Nemethova M, Pokrant T, Brühmann S, Linkner J, Blanchoin L, Sixt M, Rottner K, Faix J. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. eLife 2020; 9:55351. [PMID: 32391788 PMCID: PMC7239657 DOI: 10.7554/elife.55351] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/21/2023] Open
Abstract
Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration.
Collapse
Affiliation(s)
| | - Laëtitia Kurzawa
- CytoMorphoLab, Laboratoire de Physiologie cellulaire et Végétale, Interdisciplinary ResearchInstitute of Grenoble, CEA, CNRS, INRA, Grenoble-Alpes University, Grenoble, France.,CytomorphoLab, Hôpital Saint-Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/AP-HP/UniversitéParis Diderot, Paris, France
| | - Jan Mueller
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Nemethova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Joern Linkner
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Laurent Blanchoin
- CytoMorphoLab, Laboratoire de Physiologie cellulaire et Végétale, Interdisciplinary ResearchInstitute of Grenoble, CEA, CNRS, INRA, Grenoble-Alpes University, Grenoble, France.,CytomorphoLab, Hôpital Saint-Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/AP-HP/UniversitéParis Diderot, Paris, France
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Dimchev G, Amiri B, Humphries AC, Schaks M, Dimchev V, Stradal TEB, Faix J, Krause M, Way M, Falcke M, Rottner K. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. J Cell Sci 2020; 133:jcs239020. [PMID: 32094266 PMCID: PMC7157940 DOI: 10.1242/jcs.239020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin-binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex, an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell-edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Ashley C Humphries
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Vanessa Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Matthias Krause
- Randall Centre of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
34
|
Koseki K, Taniguchi D, Yamashiro S, Mizuno H, Vavylonis D, Watanabe N. Lamellipodium tip actin barbed ends serve as a force sensor. Genes Cells 2019; 24:705-718. [PMID: 31514256 DOI: 10.1111/gtc.12720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 01/31/2023]
Abstract
Cells change direction of migration by sensing rigidity of environment and traction force, yet its underlying mechanism is unclear. Here, we show that tip actin barbed ends serve as an active "force sensor" at the leading edge. We established a method to visualize intracellular single-molecule fluorescent actin through an elastic culture substrate. We found that immediately after cell edge stretch, actin assembly increased specifically at the lamellipodium tip. The rate of actin assembly increased with increasing stretch speed. Furthermore, tip actin polymerization remained elevated at the subsequent hold step, which was accompanied by a decrease in the load on the tip barbed ends. Stretch-induced tip actin polymerization was still observed without either the WAVE complex or Ena/VASP proteins. The observed relationships between forces and tip actin polymerization are consistent with a force-velocity relationship as predicted by the Brownian ratchet mechanism. Stretch caused extra membrane protrusion with respect to the stretched substrate and increased local tip polymerization by >5% of total cellular actin in 30 s. Our data reveal that augmentation of lamellipodium tip actin assembly is directly coupled to the load decrease, which may serve as a force sensor for directed cell protrusion.
Collapse
Affiliation(s)
- Kazuma Koseki
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | | | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| |
Collapse
|
35
|
Mehidi A, Rossier O, Schaks M, Chazeau A, Binamé F, Remorino A, Coppey M, Karatas Z, Sibarita JB, Rottner K, Moreau V, Giannone G. Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Curr Biol 2019; 29:2852-2866.e5. [DOI: 10.1016/j.cub.2019.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023]
|
36
|
Abstract
Coordinated changes of cell shape are often the result of the excitable, wave-like dynamics of the actin cytoskeleton. New work shows that, in migrating cells, protrusion waves arise from mechanochemical crosstalk between adhesion sites, membrane tension and the actin protrusive machinery.
Collapse
Affiliation(s)
- Jan Müller
- Institute of Science and Technology Austria (IST Austria), am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
37
|
Gau D, Veon W, Shroff SG, Roy P. The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem 2019; 294:6972-6985. [PMID: 30814249 DOI: 10.1074/jbc.ra118.005255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.
Collapse
Affiliation(s)
- David Gau
- From the Department of Bioengineering, University of Pittsburgh and
| | - William Veon
- From the Department of Bioengineering, University of Pittsburgh and
| | - Sanjeev G Shroff
- From the Department of Bioengineering, University of Pittsburgh and
| | - Partha Roy
- From the Department of Bioengineering, University of Pittsburgh and .,the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
38
|
Davidson AJ, Millard TH, Evans IR, Wood W. Ena orchestrates remodelling within the actin cytoskeleton to drive robust Drosophila macrophage chemotaxis. J Cell Sci 2019; 132:jcs.224618. [PMID: 30718364 PMCID: PMC6432709 DOI: 10.1242/jcs.224618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton is the engine that powers the inflammatory chemotaxis of immune cells to sites of tissue damage or infection. Here, we combine genetics with live in vivo imaging to investigate how cytoskeletal rearrangements drive macrophage recruitment to wounds in Drosophila. We find that the actin-regulatory protein Ena is a master regulator of lamellipodial dynamics in migrating macrophages, where it remodels the cytoskeleton to form linear filaments that can then be bundled together by the cross-linker Fascin (also known as Singed in flies). In contrast, the formin Dia generates rare, probing filopods for specialised functions that are not required for migration. The role of Ena in lamellipodial bundling is so fundamental that its overexpression increases bundling even in the absence of Fascin by marshalling the remaining cross-linking proteins to compensate. This reorganisation of the lamellipod generates cytoskeletal struts that push against the membrane to drive leading edge advancement and boost cell speed. Thus, Ena-mediated remodelling extracts the most from the cytoskeleton to power robust macrophage chemotaxis during their inflammatory recruitment to wounds. Summary: Macrophages must migrate to a variety of stimuli, including inflammatory wounds. We identify the actin-regulatory protein Ena as a master remodeller of the cytoskeleton within migrating macrophages in vivo.
Collapse
Affiliation(s)
- Andrew J Davidson
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Tom H Millard
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Iwan R Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.,The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
39
|
Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E, Hamidi H, Ivaska J. Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability. Curr Biol 2019; 29:202-216.e7. [PMID: 30639111 PMCID: PMC6345628 DOI: 10.1016/j.cub.2018.11.053] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Filopodia are adhesive cellular protrusions specialized in the detection of extracellular matrix (ECM)-derived cues. Although ECM engagement at focal adhesions is known to trigger the recruitment of hundreds of proteins ("adhesome") to fine-tune cellular behavior, the components of the filopodia adhesions remain undefined. Here, we performed a structured-illumination-microscopy-based screen to map the localization of 80 target proteins, linked to cell adhesion and migration, within myosin-X-induced filopodia. We demonstrate preferential enrichment of several adhesion proteins to either filopodia tips, filopodia shafts, or shaft subdomains, suggesting divergent, spatially restricted functions for these proteins. Moreover, proteins with phosphoinositide (PI) binding sites are particularly enriched in filopodia. This, together with the strong localization of PI(3,4)P2 in filopodia tips, predicts critical roles for PIs in regulating filopodia ultra-structure and function. Our mapping further reveals that filopodia adhesions consist of a unique set of proteins, the filopodome, that are distinct from classical nascent adhesions, focal adhesions, and fibrillar adhesions. Using live imaging, we observe that filopodia adhesions can give rise to nascent adhesions, which, in turn, form focal adhesions. We demonstrate that p130Cas (BCAR1) is recruited to filopodia tips via its C-terminal Cas family homology domain (CCHD) and acts as a mechanosensitive regulator of filopodia stability. Finally, we demonstrate that our map based on myosin-X-induced filopodia can be translated to endogenous filopodia and fascin- and IRSp53-mediated filopodia.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Aki Stubb
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael Saup
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
40
|
Young LE, Latario CJ, Higgs HN. Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly. J Cell Sci 2018; 131:131/21/jcs220814. [PMID: 30373894 DOI: 10.1242/jcs.220814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Filopodia are actin-dependent finger-like structures that protrude from the plasma membrane. Actin filament barbed-end-binding proteins localized to filopodial tips are key to filopodial assembly. Two classes of barbed-end-binding proteins are formins and Ena/VASP proteins, and both classes have been localized to filopodial tips in specific cellular contexts. Here, we examine the filopodial roles of the FMNL formins and Ena/VASP proteins in U2OS cells. FMNL3 suppression reduces filopodial assembly by 90%, and FMNL3 is enriched at >95% of filopodial tips. Suppression of VASP or Mena (also known as ENAH) reduces filopodial assembly by >75%. However, VASP and Mena do not display consistent filopodial tip localization, but are enriched in focal adhesions (FAs). Interestingly, >85% of FMNL3-containing filopodia are associated with FAs. Two situations increase Ena/VASP filopodial localization: (1) expression of myosin-X, and (2) actively spreading cells. In spreading cells, filopodia often mark sites of nascent adhesions. Interestingly, VASP suppression in spreading cells causes a significant increase in adhesion assembly at filopodial tips. This work demonstrates that, in U2OS cells, Ena/VASP proteins play roles in filopodia beyond those at filopodial tips.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lorna E Young
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Casey J Latario
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| |
Collapse
|
41
|
Assembling actin filaments for protrusion. Curr Opin Cell Biol 2018; 56:53-63. [PMID: 30278304 DOI: 10.1016/j.ceb.2018.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Cell migration entails a plethora of activities combining the productive exertion of protrusive and contractile forces to allow cells to push and squeeze themselves through cell clumps, interstitial tissues or tissue borders. All these activities require the generation and turnover of actin filaments that arrange into specific, subcellular structures. The most prominent structures mediating the protrusion at the leading edges of cells include lamellipodia and filopodia as well as plasma membrane blebs. Moreover, in cells migrating on planar substratum, mechanical support is being provided by an additional, more proximally located structure termed the lamella. Here, we systematically dissect the literature concerning the mechanisms driving actin filament nucleation and elongation in the best-studied protrusive structure, the lamellipodium. Recent work has shed light on open questions in lamellipodium protrusion, including the relative contributions of nucleation versus elongation to the assembly of both individual filaments and the lamellipodial network as a whole. However, much remains to be learned concerning the specificity and relevance of individual factors, their cooperation and their site-specific functions relative to the importance of global actin monomer and filament homeostasis.
Collapse
|
42
|
Dimchev G, Rottner K. Micromanipulation Techniques Allowing Analysis of Morphogenetic Dynamics and Turnover of Cytoskeletal Regulators. J Vis Exp 2018. [PMID: 29806847 PMCID: PMC6101179 DOI: 10.3791/57643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Examining the spatiotemporal dynamics of proteins can reveal their functional importance in various contexts. In this article, it is discussed how fluorescent recovery after photobleaching (FRAP) and photoactivation techniques can be used to study the spatiotemporal dynamics of proteins in subcellular locations. We also show how these techniques enable straightforward determination of various parameters linked to actin cytoskeletal regulation and cell motility. Moreover, the microinjection of cells is additionally described as an alternative treatment (potentially preceding or complementing the aforementioned photomanipulation techniques) to trigger instantaneous effects of translocated proteins on cell morphology and function. Micromanipulation such as protein injection or local application of plasma membrane-permeable drugs or cytoskeletal inhibitors can serve as powerful tool to record immediate consequences of a given treatment on cell behavior at the single cell and subcellular level. This is exemplified here by immediate induction of lamellipodial cell edge protrusion by the injection of recombinant Rac1 protein, as established a quarter-century ago. In addition, we provide a protocol for determining the turnover of enhanced green fluorescent protein (EGFP)-VASP, an actin filament polymerase prominently accumulating at lamellipodial tips of B16-F1 cells, employing FRAP and including associated data analysis and curve fitting. We also present guidelines for estimating the rates of lamellipodial actin network polymerization, as exemplified by cells expressing EGFP-tagged β-actin. Finally, instructions are given for how to investigate the rates of actin monomer mobility within the cell cytoplasm, followed by actin incorporation at sites of rapid filament assembly, such as the tips of protruding lamellipodia, using photoactivation approaches. None of these protocols is restricted to components or regulators of the actin cytoskeleton, but can easily be extended to explore in analogous fashion the spatiotemporal dynamics and function of proteins in various different subcellular structures or functional contexts.
Collapse
Affiliation(s)
- Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research;
| |
Collapse
|
43
|
Wang C, Choi HJ, Kim SJ, Desai A, Lee N, Kim D, Bae Y, Lee K. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging. Nat Commun 2018; 9:1688. [PMID: 29703977 PMCID: PMC5923236 DOI: 10.1038/s41467-018-04030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/29/2018] [Indexed: 12/25/2022] Open
Abstract
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Hee June Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sung-Jin Kim
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Aesha Desai
- Department of Pathology and Anatomical Sciences, Computational Cell Biology, Anatomy and Pathology Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Namgyu Lee
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Dohoon Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Computational Cell Biology, Anatomy and Pathology Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
44
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
45
|
Efimova N, Svitkina TM. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion. J Cell Biol 2018; 217:1827-1845. [PMID: 29507127 PMCID: PMC5940301 DOI: 10.1083/jcb.201708103] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
46
|
Abstract
Animal cell migration constitutes a complex process involving a multitude of forces generated and maintained by the actin cytoskeleton. Dynamic changes of the cell surface, for instance to effect cell edge protrusion, are at the core of initiating migratory processes, both in tissue culture models and whole animals. Here we sketch different aspects of imaging representative molecular constituents in such actin-driven processes, which power and regulate the polymerisation of actin filaments into bundles and networks, constituting the building blocks of such protrusions. The examples presented illustrate both the diversity of subcellular distributions of distinct molecular components, according to their function, and the complexity of dynamic changes in protrusion size, shape, and/or orientation in 3D. Considering these dynamics helps mechanistically connecting subcellular distributions of molecular machines driving protrusion and migration with their biochemical function.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
47
|
Urbančič V, Butler R, Richier B, Peter M, Mason J, Livesey FJ, Holt CE, Gallop JL. Filopodyan: An open-source pipeline for the analysis of filopodia. J Cell Biol 2017; 216:3405-3422. [PMID: 28760769 PMCID: PMC5626553 DOI: 10.1083/jcb.201705113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.
Collapse
Affiliation(s)
- Vasja Urbančič
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Benjamin Richier
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Manuel Peter
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Julia Mason
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Frederick J Livesey
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| | - Christine E Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
- Department of Biochemistry, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
48
|
Wu CY, Tsai YY, Chen SY, Lin YP, Shin JW, Wu CC, Yang BC. Interaction of Zap70 and CXCR4 receptor at lamellipodia that determines the directionality during Jurkat T cells chemotaxis. Mol Immunol 2017; 90:245-254. [DOI: 10.1016/j.molimm.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
|
49
|
Marcovecchio PM, Thomas GD, Mikulski Z, Ehinger E, Mueller KAL, Blatchley A, Wu R, Miller YI, Nguyen AT, Taylor AM, McNamara CA, Ley K, Hedrick CC. Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arterioscler Thromb Vasc Biol 2017; 37:2043-2052. [PMID: 28935758 DOI: 10.1161/atvbaha.117.309123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. APPROACH AND RESULTS To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE-/- (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet-fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36-/- mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. CONCLUSIONS Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.
Collapse
Affiliation(s)
- Paola M Marcovecchio
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Graham D Thomas
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Zbigniew Mikulski
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Erik Ehinger
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Karin A L Mueller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Amy Blatchley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Runpei Wu
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Yury I Miller
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Anh Tram Nguyen
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Angela M Taylor
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Coleen A McNamara
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Klaus Ley
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.)
| | - Catherine C Hedrick
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla (P.M.M., Y.I.M.); Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (P.M.M., G.D.T., Z.M., E.E., K.A.L.M., A.B., R.W., K.L., C.C.H.); Department of Cardiology and Circulatory Diseases, Internal Medicine Clinic III, Eberhard Karls University Tübingen, Germany (K.A.L.M.); and Robert M. Berne Cardiovascular Research Center, Division of Cardiology, University of Virginia, Charlottesville (A.T.N., A.M.T., C.A.M.).
| |
Collapse
|
50
|
Acevedo LA, Greenwood AI, Nicholson LK. A Noncanonical Binding Site in the EVH1 Domain of Vasodilator-Stimulated Phosphoprotein Regulates Its Interactions with the Proline Rich Region of Zyxin. Biochemistry 2017; 56:4626-4636. [PMID: 28783324 DOI: 10.1021/acs.biochem.7b00618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a processive actin polymerase with roles in the control of cell shape and cell migration. Through interaction with the cytoskeletal adaptor protein Zyxin, VASP can localize to damaged stress fibers where it serves to repair and reinforce these structures. VASP localization is mediated by its N-terminal Ena/VASP homology (EVH1) domain, which binds to the (W/F)PxφP motif (most commonly occurring as FPPPP) found in cytoskeletal proteins such as vinculin, lamellipodin, and Zyxin. Sequentially close clusters of four or five of these motifs frequently occur, as in the proline rich region of Zyxin with four such motifs. This suggests that tetrameric VASP might bind very tightly to Zyxin through avidity, with all four EVH1 domains binding to a single Zyxin molecule. Here, quantitative nuclear magnetic resonance titration analysis reveals a dominant bivalent 1:1 (Zyxin:EVH1) interaction between the Zyxin proline rich region and the VASP EVH1 domain that utilizes the EVH1 canonical binding site and a novel secondary binding site on the opposite face of the EVH1 domain. We further show that binding to the secondary binding site is specifically inhibited by mutation of VASP EVH1 domain residue Y39 to E, which mimics Abl-induced phosphorylation of Y39. On the basis of these findings, we propose a model in which phosphorylation of Y39 acts as a stoichiometry switch that governs binding partner selection by the constitutive VASP tetramer. These results have broader implications for other multivalent VASP EVH1 domain binding partners and for furthering our understanding of the role of Y39 phosphorylation in regulating VASP localization and cellular function.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary , Williamsburg, Virginia 23185, United States
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|