1
|
Zhao G, Liu Y, Li L, Che R, Douglass M, Benza K, Angove M, Luo K, Hu Q, Chen X, Henry C, Li Z, Ning G, Luo H. Gene pyramiding for boosted plant growth and broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:678-697. [PMID: 37902192 PMCID: PMC10893947 DOI: 10.1111/pbi.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.
Collapse
Affiliation(s)
- Guiqin Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Grassland ScienceGansu Agricultural UniversityLanzhouGansuChina
| | - Yu Liu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Landscape ArchitectureNortheast Forestry UniversityHarbinHeilongjiangChina
| | - Lei Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Rui Che
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Megan Douglass
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Katherine Benza
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Mitchell Angove
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Kristopher Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Xiaotong Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Charles Henry
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
2
|
Hermosilla J, Pastene-Navarrete E, Acevedo F. Electrospun Fibers Loaded with Natural Bioactive Compounds as a Biomedical System for Skin Burn Treatment. A Review. Pharmaceutics 2021; 13:2054. [PMID: 34959336 PMCID: PMC8707873 DOI: 10.3390/pharmaceutics13122054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Burns are a major threat to public health and the economy due to their costly and laborious treatment and high susceptibility to infection. Efforts have been made recently to investigate natural bioactive compounds with potential use in wound healing. The importance lies in the capacities that these compounds could possess both in infection control by common and resistant microorganisms, as well as in the regeneration of the affected tissues, having in both cases low adverse effects. However, some bioactive molecules are chemically unstable, poorly soluble, and susceptible to oxidative degradation or have low bioavailability. Therefore, developing new technologies for an efficient treatment of wound healing poses a real challenge. In this context, electrospun nanofibers have gained increasing research interest because bioactive molecules can be easily loaded within the nanofiber, resulting in optimal burst control and enhanced drug stability. Additionally, the nanofibers can mimic the extracellular collagen matrix, providing a suitable highly porous structural support for growing cells that facilitate and accelerate skin burns healing. This review gives an overview of the current state of electrospun fibers loaded with natural bioactive compounds as a biomedical system for skin burn treatment.
Collapse
Affiliation(s)
- Jeyson Hermosilla
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile;
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
- Center of Excellence in Traslational Medicine (CEMT), Faculty of Medicine, and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
3
|
Cabaña-Brunod M, Herrera PA, Márquez-Miranda V, Llancalahuen FM, Duarte Y, González-Nilo D, Fuentes JA, Vilos C, Velásquez L, Otero C. Development of a PHBV nanoparticle as a peptide vehicle for NOD1 activation. Drug Deliv 2021; 28:1020-1030. [PMID: 34060399 PMCID: PMC8174487 DOI: 10.1080/10717544.2021.1923862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.
Collapse
Affiliation(s)
- Mauricio Cabaña-Brunod
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Pablo A Herrera
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Applied Nanotechnology, Faculty of Sciences, Universidad Mayor, Huechuraba, Santiago, Chile
| | - Felipe M Llancalahuen
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yorley Duarte
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Danilo González-Nilo
- Laboratorio de Fisiopatología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristián Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Luis Velásquez
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Lu H, Yuan G, Strauss SH, Tschaplinski TJ, Tuskan GA, Chen JG, Yang X. Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BIODESIGN RESEARCH 2020; 2020:9078303. [PMID: 37849903 PMCID: PMC10530661 DOI: 10.34133/2020/9078303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/11/2020] [Indexed: 10/19/2023] Open
Abstract
For decades, plants have been the subject of genetic engineering to synthesize novel, value-added compounds. Polyhydroxyalkanoates (PHAs), a large class of biodegradable biopolymers naturally synthesized in eubacteria, are among the novel products that have been introduced to make use of plant acetyl-CoA metabolic pathways. It was hoped that renewable PHA production would help address environmental issues associated with the accumulation of nondegradable plastic wastes. However, after three decades of effort synthesizing PHAs, and in particular the simplest form polyhydroxybutyrate (PHB), and seeking to improve their production in plants, it has proven very difficult to reach a commercially profitable rate in a normally growing plant. This seems to be due to the growth defects associated with PHA production and accumulation in plant cells. Here, we review major breakthroughs that have been made in plant-based PHA synthesis using traditional genetic engineering approaches and discuss challenges that have been encountered. Then, from the point of view of plant synthetic biology, we provide perspectives on reprograming plant acetyl-CoA pathways for PHA production, with the goal of maximizing PHA yield while minimizing growth inhibition. Specifically, we suggest genetic elements that can be considered in genetic circuit design, approaches for nuclear genome and plastome modification, and the use of multiomics and mathematical modeling in understanding and restructuring plant metabolic pathways.
Collapse
Affiliation(s)
- Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Thagun C, Chuah J, Numata K. Targeted Gene Delivery into Various Plastids Mediated by Clustered Cell-Penetrating and Chloroplast-Targeting Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902064. [PMID: 31832328 PMCID: PMC6891901 DOI: 10.1002/advs.201902064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Indexed: 05/05/2023]
Abstract
The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparation of plant material, require expensive experimental instruments, and are time consuming for obtaining a transplastomic plant line that produces significant levels of the biomolecule of interest. Herein, a transient plastid transformation technique is presented using a peptide-based gene carrier. By formulating peptide/plasmid DNA complexes that combine the functions of both a cell-penetrating peptide and a chloroplast-targeting peptide, DNA molecules are translocated across the plant cell membrane and delivered to the plastid efficiently via vesicle formation and intracellular vesicle trafficking. A simple infiltration method enables the introduction of a complex solution into intact plants, and plastid-localized transgene expression is expeditiously observed in various types of plastids in differentiated cell types of several plants. The gene delivery technology thus provides a useful tool to rapidly engineer plastids in crop species.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Jo‐Ann Chuah
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| |
Collapse
|
6
|
Shanab SM, Hafez RM, Fouad AS. A review on algae and plants as potential source of arachidonic acid. J Adv Res 2018; 11:3-13. [PMID: 30034871 PMCID: PMC6052662 DOI: 10.1016/j.jare.2018.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/22/2023] Open
Abstract
Some of the essential polyunsaturated fatty acids (PUFAs) as ARA (arachidonic acid, n-6), EPA (eicosapentaenoic acid, n-3) and DHA (Docosahexaenoic acid, n-3) cannot be synthesized by mammals and it must be provided as food supplement. ARA and DHA are the major PUFAs that constitute the brain membrane phospholipid. n-3 PUFAs are contained in fish oil and animal sources, while the n-6 PUFAs are mostly provided by vegetable oils. Inappropriate fatty acids consumption from the n-6 and n-3 families is the major cause of chronic diseases as cancer, cardiovascular diseases and diabetes. The n-6: n-3 ratio (lower than 10) recommended by the WHO can be achieved by consuming certain edible sources rich in n-3 and n-6 in daily food meal. Many researches have been screened for alternative sources of n-3 and n-6 PUFAs of plant origin, microbes, algae, lower and higher plants, which biosynthesize these valuable PUFAs needed for our body health. Biosynthesis of C18 PUFAs, in entire plant kingdom, takes place through certain pathways using elongases and desaturases to synthesize their needs of ARA (C20-PUFAs). This review is an attempt to highlight the importance and function of PUFAs mainly ARA, its occurrence throughout the plant kingdom (and others), its biosynthetic pathways and the enzymes involved. The methods used to enhance ARA productions through environmental factors and metabolic engineering are also presented. It also deals with advising people that healthy life is affected by their dietary intake of both n-3 and n-6 FAs. The review also addresses the scientist to carry on their work to enrich organisms with ARA.
Collapse
Affiliation(s)
| | - Rehab M. Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
7
|
Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: Optimization, pharmacokinetic, cytotoxicity and in vivo assessments. Int J Biol Macromol 2017; 103:791-801. [DOI: 10.1016/j.ijbiomac.2017.05.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022]
|
8
|
Wang WZ, Yang BP, Feng XY, Cao ZY, Feng CL, Wang JG, Xiong GR, Shen LB, Zeng J, Zhao TT, Zhang SZ. Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1535. [PMID: 29033953 PMCID: PMC5627015 DOI: 10.3389/fpls.2017.01535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2017] [Indexed: 05/23/2023]
Abstract
Genetically modified crops which had been commercial applied extensively majorly are the insect resistance and herbicide tolerance events. In this study, the Bt insecticidal gene Cry1Ab, the glyphosate-tolerant gene EPSPS, and the selection marker gene PMI were combined into a single transferred DNA fragment and introduced into sugarcane by Agrobacterium-mediated transformation. Thirty-three resistant plantlets were obtained after selection using a PMI/mannose selection system. Thirty of these resistant plantlets were PCR positive for the three target genes. Southern blot assay revealed that the copy number of the integrated fragment in the transformed plantlets varied from 1 to 7. ELISA analysis showed that 23 of the 33 resistant plantlets expressed Cry1Ab and EPSPS protein. Five single-copy and ELISA-positive transgenic lines were tested under laboratory and field conditions to determine their resistance to insects and herbicides, and also evaluated their agronomic characteristics and industrial traits. Results showed that larvae fed with fodder mixture containing stem tissues from single-copy transgenic lines were weak and small, moreover, pupation and eclosion were delayed significantly during voluntary feeding bioassays. None of transgenic sugarcane was destroyed by cane borer while more than 30% of wild type sugarcane was destroyed by cane borer. For herbicide resistance, the transgenic plantlets grew healthy even when treated with up to 0.5% roundup while wild type plantlets would die off when treated with 0.1% roundup. Thus demonstrate that these transgenic lines showed strong insect resistance and glyphosate tolerance under both laboratory and field conditions. But in the field most of the transgenic plants were shorter and more slender than non-transformed control plants. So they presented poor agronomic characteristics and industrial traits than non-transformed control plants. Thus, a considerable number of embryogenic calli should be infected to obtain transgenic lines with potential for commercial use.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shu Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
9
|
Taepucharoen K, Tarawat S, Puangcharoen M, Incharoensakdi A, Monshupanee T. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N 2-fixing cyanobacterium. BIORESOURCE TECHNOLOGY 2017; 239:523-527. [PMID: 28533067 DOI: 10.1016/j.biortech.2017.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
The photoautotrophically grown cyanobacterium Oscillatoria okeni TISTR 8549 was found to produce bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This PHBV production occurred under nitrogen deprivation (-N) that yielded PHBV accumulation of 14±4% (w/w DW) in which 3-hydroxyvalerate accounted for 5.5mol%. The heterotrophically grown (-N condition with acetate supplementation) cells under light showed no increase of PHBV storage, but under dark condition these cells increased PHBV accumulation to 42±8% (w/w DW) with 6.5mol% of 3-hydroxyvalerate. Compared to poly-3-hydroxybutyrate (PHB), the PHBV from O. okeni had a lower melting temperature by 5-7°C, a higher % elongation at break by 4-7times and a greater Young's elastic modulus by 2.3-2.5times.
Collapse
Affiliation(s)
- Keerati Taepucharoen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somchai Tarawat
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monthira Puangcharoen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Vardhan H, Mittal P, Adena SKR, Mishra B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. Eur J Pharm Sci 2017; 99:85-94. [DOI: 10.1016/j.ejps.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
|
11
|
O’Neill EC, Kelly S. Engineering biosynthesis of high-value compounds in photosynthetic organisms. Crit Rev Biotechnol 2016; 37:779-802. [DOI: 10.1080/07388551.2016.1237467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Biological System as Reactor for the Production of Biodegradable Thermoplastics, Polyhydroxyalkanoates. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
13
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Shockey J, Mason C, Gilbert M, Cao H, Li X, Cahoon E, Dyer J. Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. PLANT MOLECULAR BIOLOGY 2015; 89:113-26. [PMID: 26254605 DOI: 10.1007/s11103-015-0355-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/29/2015] [Indexed: 05/22/2023]
Abstract
Production of novel value-added compounds in transgenic crops has become an increasingly viable approach in recent years. However, in many cases, product yield still falls short of the levels necessary for optimal profitability. Determination of the limiting factors is thus of supreme importance for the long-term viability of this approach. A significant challenge to most metabolic engineering projects is the need for strong coordinated co-expression of multiple transgenes. Strong constitutive promoters have been well-characterized during the >30 years since plant transformation techniques were developed. However, organ- or tissue-specific promoters are poorly characterized in many cases. Oilseeds are one such example. Reports spanning at least 20 years have described the use of certain seed-specific promoters to drive expression of individual transgenes. Multi-gene engineering strategies are often hampered by sub-optimal expression levels or improper tissue-specificity of particular promoters, or rely on the use of multiple copies of the same promoter, which can result in DNA instability or transgene silencing. We describe here a flexible system of plasmids that allows for expression of 1-7 genes per binary plasmid, and up to 18 genes altogether after multiple rounds of transformation or sexual crosses. This vector system includes six seed-specific promoters and two constitutive promoters. Effective constitutive and seed-specific RNA interference gene-suppression cloning vectors were also constructed for silencing of endogenous genes. Taken together, this molecular toolkit allows combinatorial cloning for multiple transgene expression in seeds, vegetative organs, or both simultaneously, while also providing the means to coordinately overexpress some genes while silencing others.
Collapse
Affiliation(s)
- Jay Shockey
- Commodity Utilization Research Unit, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA.
| | - Catherine Mason
- Commodity Utilization Research Unit, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
| | - Matthew Gilbert
- Cotton Fiber Bioscience Research Unit, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
- Food and Feed Safety Research Unit, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
| | - Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, USDA-ARS, 1100 Robert E. Lee Blvd., New Orleans, LA, 70124, USA
| | - Xiangjun Li
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Edgar Cahoon
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John Dyer
- U.S. Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA
| |
Collapse
|
15
|
Snell KD, Singh V, Brumbley SM. Production of novel biopolymers in plants: recent technological advances and future prospects. Curr Opin Biotechnol 2015; 32:68-75. [DOI: 10.1016/j.copbio.2014.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022]
|
16
|
Xiao Z, Zhang Y, Xi L, Huo F, Zhao JY, Li J. Thermophilic production of polyhydroxyalkanoates by a novel Aneurinibacillus strain isolated from Gudao oilfield, China. J Basic Microbiol 2015; 55:1125-33. [PMID: 25832555 DOI: 10.1002/jobm.201400843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/13/2015] [Indexed: 11/06/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are usually biosynthesized using mesophilic strains, but the fermentation processes often suffer from bacterial contamination. This work reports the screening of thermophilic bacteria capable of producing PHAs under elevated temperatures to reduce the contamination risk. Strain XH2 was isolated from an oilfield and identified as Aneurinibacillus sp. by morphology, physiological-biochemical characterization, and 16S rDNA phylogenetic analysis. This strain can produce PHA granules, which was detected by Nile red staining and transmission electron microscopic imaging. At 55 °C, 111.6 mg l(-1) of PHA was produced in a fermentation medium containing glucose, peptone, and yeast extract. If peptone was removed from the medium, the yield of PHA would be enhanced by 2.4 times. The main monomers of the PHA product were identified to be 3-hydroxybutyrate and 3-hydroxyvalerate with a molar ratio of 17.2:1 by gas chromatography-mass spectroscopy (GC-MS) and nuclear magnetic resonance analyses. Two minor homologues, 3-hydroxyoctanoate, and 3-hydroxy-4-phenylbutanoate, were tentatively identified by GC-MS as well. This is the first report of thermophilic PHA bacterial producer from the Firmicutes phylum.
Collapse
Affiliation(s)
- Zijun Xiao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Yu Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Lijun Xi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Fangfang Huo
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Jing-yi Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| | - Jing Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering & Biotechnology, China University of Petroleum, Qingdao, China
| |
Collapse
|
17
|
Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ, Xu J, Yao QH. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12824-12832. [PMID: 25299803 DOI: 10.1021/es5015357] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genes from microbes for degrading polycyclic aromatic hydrocarbons (PAHs) are seldom used to improve the ability of plants to remediate the pollution because the initiation of the microbial degradation of PAHs is catalyzed by a multienzyme system. In this study, for the first time, we have successfully transferred the complex naphthalene dioxygenase system of Pseudomonas into Arabidopsis and rice, the model dicot and monocot plant. As in bacteria, all four genes of the naphthalene dioxygenase system can be simultaneously expressed and assembled to an active enzyme in transgenic plants. The naphthalene dioxygenase system can develop the capacity of plants to tolerate a high concentration of phenanthrene and metabolize phenanthrene in vivo. As a result, transgenic plants showed improved uptake of phenanthrene from the environment over wild-type plants. In addition, phenanthrene concentrations in shoots and roots of transgenic plants were generally lower than that of wild type plants. Transgenic plants with a naphthalene dioxygenase system bring the promise of an efficient and environmental-friendly technology for cleaning up PAHs contaminated soil and water.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences , 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, Wang B, Wang L, Yao Q. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 2014; 26:100-110. [PMID: 25305469 DOI: 10.1016/j.ymben.2014.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and their potential harm to various organisms has generated interest in efficiently eliminating these compounds from the environment. Phytoremediation is an efficient technology for cleaning up pollutants. However, unlike microorganisms, plants lack the catabolic pathway for complete degradation of these dangerous groups of compounds. One way to enhance the potential of plants for remediation of these compounds is by transferring genes involved in xenobiotic degradation from microbes to plants. In this paper, four genes, namely nidA and nidB (encoding the large and small subunits of naphthalene dioxygenase of Mycobacterium vanbaalenii PYR-1) as well as NahAa and NahAb (encoding flavoprotein reductase and ferredoxin of the electron-transport chain of the Pseudomonas putida G7 naphthalene dioxygenase system), were transferred and ectopically expressed in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing the heterozygous naphthalene dioxygenase system exhibited enhanced tolerance toward 2-4 rings PAHs. Transgenic plants assimilated PAHs from the culture media faster and accumulated less in vivo than wild-type plants. Furthermore, examination of metabolic intermediates by gas chromatography-mass spectrometry revealed that the naphthalene metabolic pathway in transgenic plants mainly involves the dioxygenase pathway. Taken together, our findings suggest that grafting the naphthalene dioxygenase complex into plants is a possible strategy to breed PAH-tolerant plants to efficiently degrade PAHs in the environment.
Collapse
Affiliation(s)
- Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China.
| |
Collapse
|
19
|
Agnew DE, Pfleger BF. Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem Eng Sci 2013; 103:58-67. [DOI: 10.1016/j.ces.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Vilos C, Morales FA, Solar PA, Herrera NS, Gonzalez-Nilo FD, Aguayo DA, Mendoza HL, Comer J, Bravo ML, Gonzalez PA, Kato S, Cuello MA, Alonso C, Bravo EJ, Bustamante EI, Owen GI, Velasquez LA. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials 2013; 34:4098-4108. [PMID: 23465827 DOI: 10.1016/j.biomaterials.2013.02.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
This report is an integrated study to include the molecular simulation, physicochemical characterization and biological analysis of a paclitaxel-loaded PHBV nanoparticle that demonstrates uptake, release and cytotoxicity in cancer cell lines. Taking this nanoparticle one step closer to its use in a clinical setting, we demonstrate that it causes significant cell death in primary cultures of stage IIIc serous ovarian cancer cells isolated from six patients. Molecular simulations revealed a high affinity of paclitaxel for the water-polymer interface, thus the drug is delivered only when the polymer near it is degraded. The Fourier transform infrared spectroscopy suggests the formation of a short-lived crystalline phase, also observed in the CG simulations, and transmission electron microscopy revealed branched structures on the surface of particles, which disappeared after 4 days. Biological analyses indicated that these particles have a 48-h window of toxicity protection, allowing for the endocytosis of the particle by the cells; this finding was corroborated by confocal microscopy and flow cytometry. The low cost to synthesize PHBV using microorganisms and the potential chemical modifications of the polymer make it attractive for inexpensive, large-scale pharmaceutical production.
Collapse
Affiliation(s)
- Cristian Vilos
- Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Ecuador 3493, Santiago, Chile
| | - Francisco A Morales
- Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Paula A Solar
- Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Natalia S Herrera
- Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Fernando D Gonzalez-Nilo
- Universidad Andres Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Republica 239, Santiago, Chile
| | - Daniel A Aguayo
- Universidad Andres Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Republica 239, Santiago, Chile
| | - Hegaly L Mendoza
- Universidad Andres Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Republica 239, Santiago, Chile
| | - Jeffrey Comer
- Universidad Andres Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Republica 239, Santiago, Chile; Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile
| | - Maria L Bravo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Pamela A Gonzalez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Sumie Kato
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Mauricio A Cuello
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | - Erasmo J Bravo
- Hospital Gustavo Fricke, Alvarez 1532, Viña del Mar, Chile
| | | | - Gareth I Owen
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Luis A Velasquez
- Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Ecuador 3493, Santiago, Chile.
| |
Collapse
|
21
|
Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol 2013; 79:2922-31. [PMID: 23435886 DOI: 10.1128/aem.03915-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO2 assimilation with PHBV biosynthesis was further confirmed by analysis of (13)C positional enrichment in 3HV. Notably, (13)C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the ΔphaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction.
Collapse
|
22
|
Somleva MN, Peoples OP, Snell KD. PHA bioplastics, biochemicals, and energy from crops. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:233-52. [PMID: 23294864 DOI: 10.1111/pbi.12039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 05/09/2023]
Abstract
Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail.
Collapse
|
23
|
|
24
|
Bar-Even A, Salah Tawfik D. Engineering specialized metabolic pathways--is there a room for enzyme improvements? Curr Opin Biotechnol 2012; 24:310-9. [PMID: 23102865 DOI: 10.1016/j.copbio.2012.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Recent advances in enzyme engineering enable dramatic improvements in catalytic efficiency and/or selectivity, as well as de novo engineering of enzymes to catalyze reactions where natural enzymes are not available. Can these capabilities be utilized to transform biosynthesis pathways? Metabolic engineering is traditionally based on combining existing enzymes to give new, or modified, pathways, within a new context and/or organism. How efficient, however, are the individual enzyme components? Is there room to improve pathway performance by enzyme engineering? We discuss the differences between enzymes in central versus specialized, or secondary metabolism and highlight unique features of specialized metabolism enzymes participating in the synthesis of natural products. We argue that, for the purpose of metabolic engineering, the catalytic efficiency and selectivity of many enzymes can be improved with the aim of achieving higher rates, yields and product purities. We also note the relative abundance of spontaneous reactions in specialized metabolism, and the potential advantage of engineering enzymes that will catalyze these steps. Specialized metabolism therefore offers new opportunities to integrate enzyme and pathway engineering, thereby achieving higher metabolic efficiencies, enhanced production rates and improved product purities.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
25
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
26
|
Tilbrook K, Gebbie L, Schenk PM, Poirier Y, Brumbley SM. Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:958-969. [PMID: 21447054 DOI: 10.1111/j.1467-7652.2011.00600.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.
Collapse
Affiliation(s)
- Kimberley Tilbrook
- The University of Queensland, School of Biological Science, Brisbane, Qld, Australia
| | | | | | | | | |
Collapse
|
27
|
Peterhansel C. Best practice procedures for the establishment of a C(4) cycle in transgenic C(3) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3011-3019. [PMID: 21335437 DOI: 10.1093/jxb/err027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) plants established a mechanism for the concentration of CO(2) in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase in order to saturate the enzyme with substrate and substantially to reduce the alternative fixation of O(2) that results in energy losses. Transfer of the C(4) mechanism to C(3) plants has been repeatedly tested, but none of the approaches so far resulted in transgenic plants with enhanced photosynthesis or growth. Instead, often deleterious effects were observed. A true C(4) cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. This review summarizes our current knowledge about the most appropriate regulatory elements and coding sequences for the establishment of C(4) protein activities in C(3) plants. In addition, technological breakthroughs for the efficient transfer of the numerous genes probably required to transform a C(3) plant into a C(4) plant will be discussed.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Straße 2, D-30419 Hannover, Germany.
| |
Collapse
|
28
|
MATSUMOTO K. Production of Polyhydroxyalkanoate Copolymers in Transgenic Plants Expressing Engineered Enzymes. KOBUNSHI RONBUNSHU 2011. [DOI: 10.1295/koron.68.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Abstract
Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be "mixed-and-matched" to create a designer organism.
Collapse
Affiliation(s)
- Michael Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, MC 2530, Room 308C, 1700 4 Street, (415) 514-9435
| | - Christopher A. Voigt
- Department of Pharmaceutical Chemistry, University of California – San Francisco, MC 2540, Room 408C, 1700 4 Street, San Francisco, CA 94158, (415) 502-7050
| |
Collapse
|
30
|
Fan Z, Yuan L. Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:308-15. [PMID: 20070871 DOI: 10.1111/j.1467-7652.2009.00484.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multifunctional chimaeric hydrolases can be created by covalently linking heterologous catalytic and functional domains in a single polypeptide. Previously, we have generated a number of chimaeric lignocellulosic hydrolases that contain two to five modules [Biotechnol Bioeng (2009) 102: 1045; Appl Environ Microbiol (2009) 75: 1754]. These chimaeras closely resemble the parental enzymes in kinetics and other enzymatic properties, and some exhibit improved synergy in degrading natural substrates when compared to mixtures of parental enzymes. In addition to the applications in fermentative enzyme production, the chimaeric genes can be used in the construction of a single plant transformation binary vector carrying several genes that encode a complete set of lignocellulosic hydrolase activities. The advantages of this approach include ease in vector construction and transformation, as well as downstream plant analysis and breeding. The hydrolases sequestered in biomass feedstock can potentially assist enzymatic pretreatment and sugar conversion. Here, we report the gene expression and functional characterization of a chimaeric hemicellulase in transgenic tobacco plants. T1 transgenic plants produced up to 19-mg active enzymes per gram of total-soluble leaf proteins. The results demonstrate the feasibility of producing multifunctional lignocellulosic hydrolases in plants. Key considerations in the design, construction and plant expression of the chimaeric genes are discussed.
Collapse
Affiliation(s)
- Zhanmin Fan
- The Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
31
|
|
32
|
|
33
|
Poirier Y, Brumbley SM. Metabolic Engineering of Plants for the Synthesis of Polyhydroxyalkanaotes. MICROBIOLOGY MONOGRAPHS 2010. [DOI: 10.1007/978-3-642-03287-5_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
35
|
Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 2009; 5:271. [PMID: 19455135 PMCID: PMC2694679 DOI: 10.1038/msb.2009.29] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 04/16/2009] [Indexed: 11/12/2022] Open
Abstract
The aspartate-derived amino-acid pathway from plants is well suited for analysing the function of the allosteric network of interactions in branched pathways. For this purpose, a detailed kinetic model of the system in the plant model Arabidopsis was constructed on the basis of in vitro kinetic measurements. The data, assembled into a mathematical model, reproduce in vivo measurements and also provide non-intuitive predictions. A crucial result is the identification of allosteric interactions whose function is not to couple demand and supply but to maintain a high independence between fluxes in competing pathways. In addition, the model shows that enzyme isoforms are not functionally redundant, because they contribute unequally to the flux and its regulation. Another result is the identification of the threonine concentration as the most sensitive variable in the system, suggesting a regulatory role for threonine at a higher level of integration.
Collapse
|
36
|
Fukui T, Suzuki M, Tsuge T, Nakamura S. Microbial Synthesis of Poly((R)-3-hydroxybutyrate-co- 3-hydroxypropionate) from Unrelated Carbon Sources by Engineered Cupriavidus necator. Biomacromolecules 2009; 10:700-6. [DOI: 10.1021/bm801391j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiaki Fukui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Mamie Suzuki
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takeharu Tsuge
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
37
|
Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y, Takase K, Nakashita H, Taguchi S, Shimada H. Production of Short-Chain-Length/Medium-Chain-Length Polyhydroxyalkanoate (PHA) Copolymer in the Plastid of Arabidopsis thaliana Using an Engineered 3-Ketoacyl-acyl Carrier Protein Synthase III. Biomacromolecules 2009; 10:686-90. [DOI: 10.1021/bm8013878] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ken’ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Takaaki Murata
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Rina Nagao
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Christopher T. Nomura
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Satoshi Arai
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Yuko Arai
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Kazuma Takase
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Hideo Nakashita
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| | - Hiroaki Shimada
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan, Department of Biological Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510, Japan, Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, New York 13210, National Institute for Basic Biology, 38 Azanishigohnaka, Myoudaiji, Okazaki 444-8585, Japan, RIKEN Institute, 2-1
| |
Collapse
|
38
|
Abstract
Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants – so-called ‘white biotechnology’ – have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.
Collapse
|
39
|
Dutta B, Kanani H, Quackenbush J, Klapa MI. Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures. Biotechnol Bioeng 2008; 102:264-279. [PMID: 18958862 DOI: 10.1002/bit.22036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The research that aims at furthering our understanding of plant primary metabolism has intensified during the last decade. The presented study validated a systems biology methodological framework for the analysis of stress-induced molecular interaction networks in the context of plant primary metabolism, as these are expressed during the first hours of the stress treatment. The framework involves the application of time-series integrated full-genome transcriptomic and polar metabolomic analyses on plant liquid cultures. The latter were selected as the model system for this type of analysis, because they provide a well-controlled growth environment, ensuring that the observed plant response is due only to the applied perturbation. An enhanced gas chromatography-mass spectrometry (GC-MS) metabolomic data correction strategy and a new algorithm for the significance analysis of time-series "omic" data are used to extract information about the plant's transcriptional and metabolic response to the applied stress from the acquired datasets; in this article, it is the first time that these are applied for the analysis of a large biological dataset from a complex eukaryotic system. The case-study involved Arabidopsis thaliana liquid cultures subjected for 30 h to elevated (1%) CO2 stress. The advantages and validity of the methodological framework are discussed in the context of the known A. thaliana or plant, in general, physiology under the particular stress. Of note, the ability of the methodology to capture dynamic aspects of the observed molecular response allowed for 9 and 24 h of treatment to be indicated as corresponding to shifts in both the transcriptional and metabolic activity; analysis of the pathways through which these activity changes are manifested provides insight to regulatory processes.
Collapse
Affiliation(s)
- Bhaskar Dutta
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
| | - Harin Kanani
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
| | - John Quackenbush
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742.,The Institute for Genomic Research (TIGR), Rockville, Maryland 20850
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742.,Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), GR-265 04 Patras, Greece
| |
Collapse
|
40
|
Sundar IK, Sakthivel N. Advances in selectable marker genes for plant transformation. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1698-716. [PMID: 18789557 DOI: 10.1016/j.jplph.2008.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 08/04/2008] [Indexed: 05/22/2023]
Abstract
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.
Collapse
|
41
|
Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA. A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. PLANT CELL REPORTS 2008; 27:1451-1459. [PMID: 18563415 DOI: 10.1007/s00299-008-0565-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 05/26/2023]
Abstract
The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms.
Collapse
MESH Headings
- Arecaceae/cytology
- Arecaceae/genetics
- Arecaceae/metabolism
- Biolistics
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Genetic Engineering/methods
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hydroxybutyrates/metabolism
- Plants, Genetically Modified/cytology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmids
- Promoter Regions, Genetic
- RNA, Plant/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transformation, Genetic
Collapse
Affiliation(s)
- V Omidvar
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
42
|
Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:663-78. [PMID: 18498309 DOI: 10.1111/j.1467-7652.2008.00350.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Polyhydroxyalkanoate bio-based plastics made from renewable resources can reduce petroleum consumption and decrease plastic waste disposal issues as they are inherently biodegradable in soil, compost and marine environments. In this paper, the successful engineering of the biomass crop switchgrass (Panicum virgatum L.) for the synthesis of polyhydroxybutyrate (PHB) is reported. Polymer production was monitored in more than 400 primary transformants grown under in vitro and glasshouse conditions. Plants containing up to 3.72% dry weight of PHB in leaf tissues and 1.23% dry weight of PHB in whole tillers were obtained. Results from the analysis of the polymer distribution at the cellular and whole plant levels are presented, and target areas for the improvement of PHB production are highlighted. Polymer accumulation was also analysed in the T(1) generation obtained from controlled crosses of transgenic plants. This study presents the first successful expression of a functional multigene pathway in switchgrass, and demonstrates that this high-yielding biomass crop is amenable to the complex metabolic engineering strategies necessary to produce high-value biomaterials with lignocellulose-derived biofuels.
Collapse
|
43
|
van Beilen JB, Poirier Y. Production of renewable polymers from crop plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:684-701. [PMID: 18476872 DOI: 10.1111/j.1365-313x.2008.03431.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants produce a range of biopolymers for purposes such as maintenance of structural integrity, carbon storage, and defense against pathogens and desiccation. Several of these natural polymers are used by humans as food and materials, and increasingly as an energy carrier. In this review, we focus on plant biopolymers that are used as materials in bulk applications, such as plastics and elastomers, in the context of depleting resources and climate change, and consider technical and scientific bottlenecks in the production of novel or improved materials in transgenic or alternative crop plants. The biopolymers discussed are natural rubber and several polymers that are not naturally produced in plants, such as polyhydroxyalkanoates, fibrous proteins and poly-amino acids. In addition, monomers or precursors for the chemical synthesis of biopolymers, such as 4-hydroxybenzoate, itaconic acid, fructose and sorbitol, are discussed briefly.
Collapse
Affiliation(s)
- Jan B van Beilen
- Département de Biologie Moléculaire Végétale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
44
|
Wang W, Zhang Y, Zhu M, Chen Y. Effect of graft modification with poly(N-vinylpyrrolidone) on thermal and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci 2008. [DOI: 10.1002/app.27983] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Pathways for the Synthesis of Polyesters in Plants: Cutin, Suberin, and Polyhydroxyalkanoates. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
46
|
Dafny-Yelin M, Tzfira T. Delivery of multiple transgenes to plant cells. PLANT PHYSIOLOGY 2007; 145:1118-28. [PMID: 18056862 PMCID: PMC2151730 DOI: 10.1104/pp.107.106104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/23/2007] [Indexed: 05/20/2023]
Affiliation(s)
- Mery Dafny-Yelin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
47
|
Ahmann D, Dorgan JR. Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Ind Biotechnol (New Rochelle N Y) 2007. [DOI: 10.1089/ind.2007.3.218] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Rios-Estepa R, Lange BM. Experimental and mathematical approaches to modeling plant metabolic networks. PHYTOCHEMISTRY 2007; 68:2351-74. [PMID: 17561179 DOI: 10.1016/j.phytochem.2007.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
To support their sessile and autotrophic lifestyle higher plants have evolved elaborate networks of metabolic pathways. Dynamic changes in these metabolic networks are among the developmental forces underlying the functional differentiation of organs, tissues and specialized cell types. They are also important in the various interactions of a plant with its environment. Further complexity is added by the extensive compartmentation of the various interconnected metabolic pathways in plants. Thus, although being used widely for assessing the control of metabolic flux in microbes, mathematical modeling approaches that require steady-state approximations are of limited utility for understanding complex plant metabolic networks. However, considerable progress has been made when manageable metabolic subsystems were studied. In this article, we will explain in general terms and using simple examples the concepts underlying stoichiometric modeling (metabolic flux analysis and metabolic pathway analysis) and kinetic approaches to modeling (including metabolic control analysis as a special case). Selected studies demonstrating the prospects of these approaches, or combinations of them, for understanding the control of flux through particular plant pathways are discussed. We argue that iterative cycles of (dry) mathematical modeling and (wet) laboratory testing will become increasingly important for simulating the distribution of flux in plant metabolic networks and deriving rational experimental designs for metabolic engineering efforts.
Collapse
Affiliation(s)
- Rigoberto Rios-Estepa
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Center for Integrated Biotechnology, Washington State University, PO Box 646340, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
49
|
Murphy DJ. Future prospects for oil palm in the 21st century: Biological and related challenges. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200600229] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Kourtz L, Dillon K, Daughtry S, Peoples OP, Snell KD. Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 2007; 16:759-69. [PMID: 17279436 DOI: 10.1007/s11248-007-9067-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Arabidopsis plants were transformed with a multi-gene construct for expression of the polyhydroxybutyrate (PHB) biosynthetic pathway containing a gene switch that can be activated by commercially available non-steroidal ecdysone analogs approved for use on some crops as pesticides. T(1) progeny of transgenic Arabidopsis plants were isolated and screened for PHB production in the presence of ecdysone analogs. T(2) progeny derived from selected T(1) lines were subjected to further analysis by comparing PHB production levels prior to treatment with inducing agent and 21 days after initiation of induction. Significant PHB production was delayed in many of the engineered plants until after induction. PHB levels of up to 14.3% PHB per unit dry weight were observed in young leaves harvested from engineered T(2) plants after applications of the commercial ecdysone analog Mimic. PHB in older leaves reached levels of up to 7% PHB per unit dry weight. This study represents a first step towards engineering a chemically inducible gene switch for PHB production in plants using inducing agents that are approved for field use.
Collapse
|