1
|
Takagi K. A reduction in energy costs induces integrated states of brain dynamics. Sci Rep 2025; 15:11421. [PMID: 40181147 PMCID: PMC11968916 DOI: 10.1038/s41598-025-96120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
In the human brain, interactions between multiple regions organize stable dynamics that enable enhanced cognitive processes. However, it is unclear how collective activities in the brain network can generate stable states while preserving unity across the whole brain scale under successive environmental changes. Herein, a network model was introduced in which network connections were adjusted to reduce the energy consumption level by avoiding excess changes in the activated states of each region during successive interactions. For time series data obtained from fMRI images, a connection matrix was generated by a simulation, and the predictions made by this matrix yielded accurate results relative to the real data. In this simulation, the adjustment process was activity-dependent, in which the interregional connections between intense active regions were reinforced to prohibit free behaviours. This resulted in a reduced excess energy loss and the integration of multiple regional activities into integrated dynamic states under constraints imposed by other regions. It was suggested that the simple rule of saving excess energy costs plays an important role in the mechanism that regulates large-scale brain networks and dynamics.
Collapse
|
2
|
Lee S, Hahn C, Seong E, Choi HS. Reactive EEG Biomarkers for Diagnosis and Prognosis of Alzheimer's Disease and Mild Cognitive Impairment. Biosens Bioelectron 2025; 273:117181. [PMID: 39832406 PMCID: PMC11868995 DOI: 10.1016/j.bios.2025.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition characterized by progressive cognitive decline with currently no effective treatment available. One of the most critical areas in AD research is the identification of reliable biomarkers, which are essential for accurate diagnosis, prognostic assessment, and the development of targeted therapies. In this study, we introduce two novel reactive EEG (rEEG) biomarkers aimed at enhancing the diagnosis of AD and mild cognitive impairment (MCI). These biomarkers, previously unexplored in the literature, offer new insights into differentiating between various cognitive states. The first biomarker demonstrates a significant ability to distinguish between AD patients and normal controls (NC), while also effectively distinguishing MCI patients from NC. The second biomarker is designed to identify a subset of AD patients exhibiting hyperconductivity or hyperactivity, characterized by distinctive neural electrical patterns. A cohort of 90 elderly participants (mean age 76.63 ± 6.08 years) was recruited, including 30 AD patients, 30 individuals with MCI, and 30 NC subjects. Psychiatric diagnoses of participants were made by qualified professionals at Daejeon St. Mary's Hospital, The Catholic University of Korea, utilizing comprehensive neuropsychological assessments. Notably, the rEEG biomarkers achieved accuracies of 95%, 95%, and 98% in distinguishing between AD and NC, AD and MCI, and MCI and NC groups, respectively. These results underscore the potential of rEEG as a highly accurate and reliable diagnostic tool for cognitive impairments, including AD and MCI.
Collapse
Affiliation(s)
- Soonhyouk Lee
- Center for Integrated Smart Sensors, N1, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; Megnosis Co., Ltd., 11-3, Techno 1-ro, Yuseong-gu, Daejeon, South Korea.
| | - Changtae Hahn
- Department of Psychology, The Catholic University of Korea, Daejeon St. Mary's Hospital, Daejeon, South Korea.
| | - Eunyoung Seong
- Megnosis Co., Ltd., 11-3, Techno 1-ro, Yuseong-gu, Daejeon, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
3
|
Yuasa K, Groen IIA, Piantoni G, Montenegro S, Flinker A, Devore S, Devinsky O, Doyle W, Dugan P, Friedman D, Ramsey N, Petridou N, Winawer J. Precise Spatial Tuning of Visually Driven Alpha Oscillations in Human Visual Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.11.528137. [PMID: 36865223 PMCID: PMC9979988 DOI: 10.1101/2023.02.11.528137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field. We separated the alpha oscillatory power from broadband power changes. The variation in alpha oscillatory power with stimulus position was then fit by a population receptive field (pRF) model. We find that the alpha pRFs have similar center locations to pRFs estimated from broadband power (70-180 Hz) but are several times larger. The results demonstrate that alpha suppression in human visual cortex can be precisely tuned. Finally, we show how the pattern of alpha responses can explain several features of exogenous visual attention. Significance Statement The alpha oscillation is the largest electrical signal generated by the human brain. An important question in systems neuroscience is the degree to which this oscillation reflects system-wide states and behaviors such as arousal, alertness, and attention, versus much more specific functions in the routing and processing of information. We examined alpha oscillations at high spatial precision in human patients with intracranial electrodes implanted over visual cortex. We discovered a surprisingly high spatial specificity of visually driven alpha oscillations, which we quantified with receptive field models. We further use our discoveries about properties of the alpha response to show a link between these oscillations and the spread of visual attention.Grant support: NIH R01 MH111417 (Petridou, Winawer, Ramsey, Devinsky); JSPS Overseas Research Fellowship (Yuasa)The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
|
4
|
Keatch C, Lambert E, Woods W, Kameneva T. Phase-Amplitude Coupling in Response to Transcutaneous Vagus Nerve Stimulation: Focus on Regions Implicated in Mood and Memory. Neuromodulation 2025:S1094-7159(25)00024-8. [PMID: 39998451 DOI: 10.1016/j.neurom.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE This study aimed to investigate whether transcutaneous vagus nerve stimulation (tVNS) at different frequencies affects phase-amplitude coupling among regions of the brain linked to mood and memory disorders using simultaneous magnetoencephalography (MEG) in healthy participants. MATERIALS AND METHODS Phase-amplitude coupling was measured among brain areas in response to different stimulation frequencies of tVNS using concurrent MEG and tVNS in 17 healthy participants. The 4 protocols were: 24 Hz cymba concha, 1 Hz cymba concha, PFM cymba concha, and 24 Hz ear lobe. A driven autoregressive method was used to estimate the coupling among brain areas in different physiological frequency bands in response to these protocols. RESULTS Different tVNS stimulation protocols led to alterations in phase-amplitude coupling among multiple brain regions linked to mood and memory, notably the prefrontal cortex, hippocampus, and temporal pole. Stimulation delivered at 24 Hz was observed to decrease delta-gamma coupling within the temporal pole and cingulate cortex when contrasted with 24-Hz sham stimulation. Increased alpha-gamma coupling was observed between the hippocampus and prefrontal cortex when contrasting 24 Hz with pulse-frequency-modulated stimulation. Finally, a comparison of 24-Hz with low-frequency 1-Hz stimulation showed an increase in theta-gamma coupling within the prefrontal cortex. SIGNIFICANCE To our knowledge, this study represents the first attempt to quantify phase-amplitude coupling in response to tVNS and suggests that different stimulation frequencies can modulate coupling between different areas of the brain. Abnormal phase-amplitude coupling has been linked to multiple mood and memory disorders. Further investigations using different stimulation frequencies of tVNS to alter phase-amplitude coupling may lead to the development of tVNS as a therapeutic option for different medical conditions.
Collapse
Affiliation(s)
- Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| | - Will Woods
- School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Angulo-Sherman IN, León-Domínguez U, Martinez-Torteya A, Fragoso-González GA, Martínez-Pérez MV. Proficiency in motor imagery is linked to the lateralization of focused ERD patterns and beta PDC. J Neuroeng Rehabil 2025; 22:30. [PMID: 39980021 PMCID: PMC11844094 DOI: 10.1186/s12984-025-01571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Motor imagery based brain-computer interfaces (MI-BCIs) are systems that detect the mental rehearsal of movement from brain activity signals (EEG) for controlling devices that can potentiate motor neurorehabilitation. Considering the problem that MI proficiency requires training and it is not always achieved, EEG desirable features should be investigated to propose indicators of successful MI training. METHODS Nine healthy right-handed subjects trained with a MI-BCI for four sessions. In each session, EEG was recorded for 30 trials that consisted of a rest and a dominant-hand MI sequence, which were used for calibrating the system. Then, the subject participated in 160 trials in which a cursor was displaced on a screen by performing MI or relaxing to hit a target. The session's accuracy was calculated. For each trial from the calibration phase of the first session, the power spectral density (PSD) and the partial directed coherence (PDC) of the rest and MI EEG segments were obtained to estimate the event-related synchronization changes (ERS) and the connectivity patterns of the θ , α , β and γ bands that are associated with high BCI control (accuracy above 70% in at least one session). Finally, t-tests and rank-sum tests ( p < 0.05 , with Benjamini-Hochberg correction) were used to compare the ERS/ERD and PDC values of subjects with high and low accuracy, respectively. RESULTS Proficient users showed greater α ERD on the right-hand motor cortex (left hemisphere). Furthermore, the β PDC related to the ipsilateral motor cortex is commonly weakened during motor imagery, while the contralateral motor cortex γ PDC is enhanced. CONCLUSIONS Motor imagery proficiency is related to the focused and lateralized event-related α desynchronization patterns and the lateralization of β and γ PDC. Future analysis of these features could allow complimenting the information for assessment of subject-specific BCI control and the prediction of the effectiveness of motor-imagery training.
Collapse
Affiliation(s)
- Irma Nayeli Angulo-Sherman
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, 66238, San Pedro Garza García, México.
| | - Umberto León-Domínguez
- Laboratorio de Cognición Humana y Estudios del Cerebro, Departamento de Psicología, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, 66238, San Pedro Garza García, México
| | - Antonio Martinez-Torteya
- Escuela de Ingeniería y Tecnologías, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, 66238, San Pedro Garza García, México
| | - Gilberto Andrés Fragoso-González
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, 66238, San Pedro Garza García, México
| | - Mayté Verónica Martínez-Pérez
- Departamento de Ingeniería Biomédica, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500, 66238, San Pedro Garza García, México
| |
Collapse
|
6
|
Park Y, Yoon E, Park J, Kim JS, Han JW, Bae JB, Kim SS, Kim DW, Woo SJ, Park J, Lee W, Yoo S, Kim KW. White matter microstructural integrity as a key to effective propagation of gamma entrainment in humans. GeroScience 2025; 47:1019-1037. [PMID: 39004653 PMCID: PMC11872816 DOI: 10.1007/s11357-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Gamma entrainment through sensory stimulation has the potential to reduce the pathology of Alzheimer's disease in mouse models. However, clinical trials in Alzheimer's disease (AD) patients have yielded inconsistent results, necessitating further investigation. This single-center pre-post intervention study aims to explore the influence of white matter microstructural integrity on gamma rhythm propagation from the visual cortex to AD-affected regions in 31 cognitively normal volunteers aged ≥ 65. Gamma rhythm propagation induced by optimal FLS was measured. Diffusion tensor imaging was employed to assess the integrity of white matter tracts of interest. After excluding 5 participants with a deficit in steady-state visually evoked potentials, 26 participants were included in the final analysis. In the linear regression analyses, gamma entrainment was identified as a significant predictor of gamma propagation (p < 0.001). Furthermore, the study identified white matter microstructural integrity as a significant predictor of gamma propagation by flickering light stimulation (p < 0.05), which was specific to tracts that connect occipital and temporal or frontal regions. These findings indicate that, despite robust entrainment of gamma rhythms in the visual cortex, their propagation to other regions may be impaired if the microstructural integrity of the white matter tracts connecting the visual cortex to other areas is compromised. Consequently, our findings have expanded our understanding of the prerequisites for effective gamma entrainment and suggest that future clinical trials utilizing visual stimulation for gamma entrainment should consider white matter tract microstructural integrity for candidate selection and outcome analysis.
Collapse
Affiliation(s)
- Yeseung Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Euisuk Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jieun Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaehyeok Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wheesung Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.
- Department of Brain and Cognitive Science, College of Natural Sciences, Seoul National University, Seoul, Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Health Science and Technology, Seoul National University Graduate School of Convergence Science and Technology, Suwon, Korea.
- Department of Neuropsychiatry, College of Medicine, Seoul National University, Seoul, Korea.
- Seoul National University Bundang Hospital, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
7
|
Shibata T, Hattori N, Nishijo H, Takahashi T, Higuchi Y, Kuroda S, Takakusaki K. Evolutionary origins of synchronization for integrating information in neurons. Front Cell Neurosci 2025; 18:1525816. [PMID: 39835293 PMCID: PMC11743564 DOI: 10.3389/fncel.2024.1525816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum. Chemical synchronization involves the diffuse release of neurotransmitters like dopamine and acetylcholine, causing transmission delays of several milliseconds. Electromagnetic synchronization encompasses action potentials, electrical gap junctions, and ephaptic coupling. Electrical gap junctions enable rapid synchronization within cortical GABAergic networks, while ephaptic coupling allows structures like axon bundles to synchronize through extracellular electromagnetic fields, surpassing the speed of chemical processes. Quantum synchronization is hypothesized to involve ion coherence during ion channel passage and the entanglement of photons within the myelin sheath. Unlike the finite-time synchronization seen in chemical and electromagnetic processes, quantum entanglement provides instantaneous non-local coherence states. Neurons might have evolved from slower chemical diffusion to rapid temporal synchronization, with ion passage through gap junctions within cortical GABAergic networks potentially facilitating both fast gamma band synchronization and quantum coherence. This mini-review compiles literature on these three synchronization types, offering new insights into the physiological mechanisms that address the binding problem in neuron assemblies.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
- Department of Neurosurgery, Toyama Nishi General Hospital, Toyama, Japan
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Yamaguchi, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Toyama University Hospital, Toyama, Japan
| | - Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
8
|
Garagnani M. On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper. Cogn Neurodyn 2024; 18:3383-3400. [PMID: 39712129 PMCID: PMC11655761 DOI: 10.1007/s11571-023-10061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2024] Open
Abstract
The ability to coactivate (or "superpose") multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.
Collapse
Affiliation(s)
- Max Garagnani
- Department of Computing, Goldsmiths – University of London, London, UK
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Li H, Hu J, Zhang Y, Chen A, Lin L, Chen G, Chen Y, Chai J, He Q, Wang H, Huang S, Zhou J, Xu Y, Yu B. Boolean Computation in Single-Transistor Neuron. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409040. [PMID: 39410727 DOI: 10.1002/adma.202409040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Indexed: 12/06/2024]
Abstract
Brain neurons exhibit far more sophisticated and powerful information-processing capabilities than the simple integrators commonly modeled in neuromorphic computing. A biological neuron can in fact efficiently perform Boolean algebra, including linear nonseparable operations. Traditional logic circuits require more than a dozen transistors combined as NOT, AND, and OR gates to implement XOR. Lacking biological competency, artificial neural networks require multilayered solutions to exercise XOR operation. Here, it is shown that a single-transistor neuron, harnessing the intrinsic ambipolarity of graphene and ionic filamentary dynamics, can enable in situ reconfigurable multiple Boolean operations from linear separable to linear nonseparable in an ultra-compact design. By leveraging the spatiotemporal integration of inputs, bio-realistic spiking-dependent Boolean computation is fully realized, rivaling the efficiency of a human brain. Furthermore, a soft-XOR-based neural network via algorithm-hardware co-design, showcasing substantial performance improvement, is demonstrated. These results demonstrate how the artificial neuron, in the ultra-compact form of a single transistor, may function as a powerful platform for Boolean operations. These findings are anticipated to be a starting point for implementing more sophisticated computations at the individual transistor neuron level, leading to super-scalable neural networks for resource-efficient brain-inspired information processing.
Collapse
Affiliation(s)
- Hanxi Li
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Jiayang Hu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Anzhe Chen
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, China
| | - Ge Chen
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, China
| | - Yance Chen
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Jian Chai
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Qian He
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Hailiang Wang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Shiman Huang
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Jiachao Zhou
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| | - Yang Xu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
- Joint Institute of Zhejiang University and the University of Illinois at Urbana-Champaign, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311200, China
| |
Collapse
|
10
|
Li J, Bauer R, Rentzeperis I, van Leeuwen C. Adaptive rewiring: a general principle for neural network development. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1410092. [PMID: 39534101 PMCID: PMC11554485 DOI: 10.3389/fnetp.2024.1410092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The nervous system, especially the human brain, is characterized by its highly complex network topology. The neurodevelopment of some of its features has been described in terms of dynamic optimization rules. We discuss the principle of adaptive rewiring, i.e., the dynamic reorganization of a network according to the intensity of internal signal communication as measured by synchronization or diffusion, and its recent generalization for applications in directed networks. These have extended the principle of adaptive rewiring from highly oversimplified networks to more neurally plausible ones. Adaptive rewiring captures all the key features of the complex brain topology: it transforms initially random or regular networks into networks with a modular small-world structure and a rich-club core. This effect is specific in the sense that it can be tailored to computational needs, robust in the sense that it does not depend on a critical regime, and flexible in the sense that parametric variation generates a range of variant network configurations. Extreme variant networks can be associated at macroscopic level with disorders such as schizophrenia, autism, and dyslexia, and suggest a relationship between dyslexia and creativity. Adaptive rewiring cooperates with network growth and interacts constructively with spatial organization principles in the formation of topographically distinct modules and structures such as ganglia and chains. At the mesoscopic level, adaptive rewiring enables the development of functional architectures, such as convergent-divergent units, and sheds light on the early development of divergence and convergence in, for example, the visual system. Finally, we discuss future prospects for the principle of adaptive rewiring.
Collapse
Affiliation(s)
- Jia Li
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, United Kingdom
| | - Ilias Rentzeperis
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cees van Leeuwen
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
11
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Wang X, Li Z, Wang X, Chen J, Guo Z, Qiao B, Qin L. Effects of Phasic Activation of Locus Ceruleus on Cortical Neural Activity and Auditory Discrimination Behavior. J Neurosci 2024; 44:e1296232024. [PMID: 39134421 PMCID: PMC11391501 DOI: 10.1523/jneurosci.1296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Although the locus ceruleus (LC) is recognized as a crucial modulator for attention and perception by releasing norepinephrine into various cortical regions, the impact of LC-noradrenergic (LC-NE) modulation on auditory discrimination behavior remains elusive. In this study, we firstly recorded local field potential and single-unit activity in multiple cortical regions associated with auditory-motor processing, including the auditory cortex, posterior parietal cortex, secondary motor cortex, anterior cingulate cortex, prefrontal cortex, and orbitofrontal cortex (OFC), in response to optogenetic activation (40 Hz and 0.5 s) of the LC-NE neurons in awake mice (male). We found that phasic LC stimulation induced a persistent high gamma oscillation (50-80 Hz) in the OFC. Phasic activation of LC-NE neurons also resulted in a corresponding increase in norepinephrine levels in the OFC, accompanied by a pupillary dilation response. Furthermore, when mice were performing a go/no-go auditory discrimination task, we optogeneticaly activated the neural projections from LC to OFC and revealed a shortened latency in behavioral responses to sound stimuli and an increased false alarm rate. These impulsive behavioral responses may be associated with the gamma neural activity in the OFC. These findings have broadened our understanding of the neural mechanisms involved in the role of LC in auditory-motor processing.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Xueru Wang
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Ziyu Guo
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Bingqing Qiao
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
13
|
Costa GN, Schaum M, Duarte JV, Martins R, Duarte IC, Castelhano J, Wibral M, Castelo‐Branco M. Distinct oscillatory patterns differentiate between segregation and integration processes in perceptual grouping. Hum Brain Mapp 2024; 45:e26779. [PMID: 39185735 PMCID: PMC11345702 DOI: 10.1002/hbm.26779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
Recently, there has been a resurgence in experimental and conceptual efforts to understand how brain rhythms can serve to organize visual information. Oscillations can provide temporal structure for neuronal processing and form a basis for integrating information across brain areas. Here, we use a bistable paradigm and a data-driven approach to test the hypothesis that oscillatory modulations associate with the integration or segregation of visual elements. Spectral signatures of perception of bound and unbound configurations of visual moving stimuli were studied using magnetoencephalography (MEG) in ambiguous and unambiguous conditions. Using a 2 × 2 design, we were able to isolate correlates from visual integration, either perceptual or stimulus-driven, from attentional and ambiguity-related activity. Two frequency bands were found to be modulated by visual integration: an alpha/beta frequency and a higher frequency gamma-band. Alpha/beta power was increased in several early visual cortical and dorsal visual areas during visual integration, while gamma-band power was surprisingly increased in the extrastriate visual cortex during segregation. This points to an integrative role for alpha/beta activity, likely from top-down signals maintaining a single visual representation. On the other hand, when more representations have to be processed in parallel gamma-band activity is increased, which is at odds with the notion that gamma oscillations are related to perceptual coherence. These modulations were confirmed in intracranial EEG recordings and partially originate from distinct brain areas. Our MEG and stereo-EEG data confirms predictions of binding mechanisms depending on low-frequency activity for long-range integration and for organizing visual processing while refuting a straightforward correlation between gamma-activity and perceptual binding. PRACTITIONER POINTS: Distinct neurophysiological signals underlie competing bistable percepts. Increased alpha/beta activity correlate with visual integration while gamma correlates with segmentation. Ambiguous percepts drive alpha/beta activity in the posterior cingulate cortex.
Collapse
Affiliation(s)
- Gabriel Nascimento Costa
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
- Present address:
Trinity College DublinDublinIreland
| | - Michael Schaum
- MEG Unit, Brain Imaging CenterGoethe UniversityFrankfurt/MainGermany
| | - João Valente Duarte
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Ricardo Martins
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Isabel Catarina Duarte
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - João Castelhano
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Michael Wibral
- MEG Unit, Brain Imaging CenterGoethe UniversityFrankfurt/MainGermany
- Campus Institute for Dynamics of Biological NetworksGeorg‐August UniversityGöttingenGermany
| | - Miguel Castelo‐Branco
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| |
Collapse
|
14
|
Greenwood PE, Ward LM. Attentional selection and communication through coherence: Scope and limitations. PLoS Comput Biol 2024; 20:e1011431. [PMID: 39102437 PMCID: PMC11326628 DOI: 10.1371/journal.pcbi.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.
Collapse
Affiliation(s)
| | - Lawrence M Ward
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Falivene A, Cantiani C, Dondena C, Riboldi EM, Riva V, Piazza C. EEG Functional Connectivity Analysis for the Study of the Brain Maturation in the First Year of Life. SENSORS (BASEL, SWITZERLAND) 2024; 24:4979. [PMID: 39124026 PMCID: PMC11314780 DOI: 10.3390/s24154979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Brain networks are hypothesized to undergo significant changes over development, particularly during infancy. Thus, the aim of this study is to evaluate brain maturation in the first year of life in terms of electrophysiological (EEG) functional connectivity (FC). Whole-brain FC metrics (i.e., magnitude-squared coherence, phase lag index, and parameters derived from graph theory) were extracted, for multiple frequency bands, from baseline EEG data recorded from 146 typically developing infants at 6 (T6) and 12 (T12) months of age. Generalized linear mixed models were used to test for significant differences in the computed metrics considering time point and sex as fixed effects. Correlational analyses were performed to ascertain the potential relationship between FC and subjects' cognitive and language level, assessed with the Bayley-III scale at 24 (T24) months of age. The results obtained highlighted an increased FC, for all the analyzed frequency bands, at T12 with respect to T6. Correlational analyses yielded evidence of the relationship between FC metrics at T12 and cognition. Despite some limitations, our study represents one of the first attempts to evaluate brain network evolution during the first year of life while accounting for correspondence between functional maturation and cognitive improvement.
Collapse
Affiliation(s)
| | - Chiara Cantiani
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (A.F.); (C.D.); (E.M.R.); (V.R.); (C.P.)
| | | | | | | | | |
Collapse
|
16
|
Zhao Z, Wang Y, Xia X, Li X. Permutation conditional mutual information to quantify TMS-evoked cortical connectivity in disorders of consciousness. J Neural Eng 2024; 21:046029. [PMID: 38986463 DOI: 10.1088/1741-2552/ad618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.To improve the understanding and diagnostic accuracy of disorders of consciousness (DOC) by quantifying transcranial magnetic stimulation (TMS) evoked electroencephalography connectivity using permutation conditional mutual information (PCMI).Approach.PCMI can characterize the functional connectivity between different brain regions. This study employed PCMI to analyze TMS-evoked cortical connectivity (TEC) in 154 DOC patients and 16 normal controls, focusing on optimizing parameter selection for PCMI (Data length, Order length, Time delay). We compared short-range and long-range PCMI values across different consciousness states-unresponsive wakefulness syndrome (UWS), minimally conscious state (MCS), and normal (NOR)-and assessed various feature selection and classification techniques to distinguish these states.Main results.(1) PCMI can quantify TEC. We found optimal parameters to be Data length: 500 ms; Order: 3; Time delay: 6 ms. (2) TMS evoked potentials (TEPs) for NOR showed a rich response, while MCS patients showed only a few components, and UWS patients had almost no significant components. The values of PCMI connectivity metrics demonstrated its usefulness for measuring cortical connectivity evoked by TMS. From NOR to MCS to UWS, the number and strength of TEC decreased. Quantitative analysis revealed significant differences in the strength and number of TEC in the entire brain, local regions and inter-regions among different consciousness states. (3) A decision tree with feature selection by mutual information performed the best (balanced accuracy: 87.0% and accuracy: 83.5%). This model could accurately identify NOR (100.0%), but had lower identification accuracy for UWS (86.5%) and MCS (74.1%).Significance.The application of PCMI in measuring TMS-evoked connectivity provides a robust metric that enhances our ability to differentiate between various states of consciousness in DOC patients. This approach not only aids in clinical diagnosis but also contributes to the broader understanding of cortical connectivity and consciousness.
Collapse
Affiliation(s)
- Zhibin Zhao
- Department of Electrical Engineering, Yanshan University, Qinhuangdao, People's Republic of China
| | - Yong Wang
- Zhuhai UM Science & Technology Research Institute, Zhuhai, People's Republic of China
| | - Xiaoyu Xia
- Medical School of Chinese PLA; Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of Neurosurgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Li
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
17
|
Luis Ocampo-Espindola J, Singhal B, Li JS, Kiss IZ. Optimal phase-selective entrainment of electrochemical oscillators with different phase response curves. CHAOS (WOODBURY, N.Y.) 2024; 34:073129. [PMID: 38995992 DOI: 10.1063/5.0205480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
We investigate the entrainment of electrochemical oscillators with different phase response curves (PRCs) using a global signal: the goal is to achieve the desired phase configuration using a minimum-power waveform. Establishing the desired phase relationships in a highly nonlinear networked system exhibiting significant heterogeneities, such as different conditions or parameters for the oscillators, presents a considerable challenge because different units respond differently to the common global entraining signal. In this work, we apply an optimal phase-selective entrainment technique in both a kinetic model and experiments involving electrochemical oscillators in achieving phase synchronized states. We estimate the PRCs of the oscillators at different circuit potentials and external resistance, and entrain pairs and small sets of four oscillators in various phase configurations. We show that for small PRC variations, phase assignment can be achieved using an averaged PRC in the control design. However, when the PRCs are sufficiently different, individual PRCs are needed to entrain the system with the expected phase relationships. The results show that oscillator assemblies with heterogeneous PRCs can be effectively entrained to desired phase configurations in practical settings. These findings open new avenues to applications in biological and engineered oscillator systems where synchronization patterns are essential for system performance.
Collapse
Affiliation(s)
| | - Bharat Singhal
- Department of Electrical & Systems Engineering, Washington University in St Louis, St Louis, Missouri 63130, USA
| | - Jr-Shin Li
- Department of Electrical & Systems Engineering, Washington University in St Louis, St Louis, Missouri 63130, USA
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| |
Collapse
|
18
|
Goto H, Urakawa T, Maeda Y, Kurita Y, Araki O. Cortical theta phase synchronization involved in mismatch-driven perceptual alternation in binocular rivalry. Neurosci Lett 2024; 834:137847. [PMID: 38821200 DOI: 10.1016/j.neulet.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
When two conflicting images are presented to each eye, a phenomenon called binocular rivalry occurs in which we initially perceive one image, and then our perception switches to the other over time. An enhancement of θ-band phase coherence in visual mismatch oscillatory response (vMOR) is reported to be involved in the facilitation of perceptual alternation when the deviant stimulus is presented unconsciously. In this study, we investigated the modulation effect of θ-band transcranial alternating current stimulation (tACS) on perceptual alternation in binocular rivalry, with a focus on its relationship with the θ-band vMOR. The results showed that tACS had no significant effect on the mean proportion of perceptual alternation. Analyzing the differential effects of the modulation, however, we found a positive correlation between the increase in inter-trial phase coherence of the vMOR and the promotion of perceptual alternation under the unconscious deviant condition. Additionally, our findings indicate that the θ-band phase synchrony between frontal and occipital electrode sides, as measured by the phase lag index, is implicated in perceptual alternation, with an increase (decrease) in connection density observed in participants whose perceptual alternation was increased (decreased) by tACS. These results support the hypothesis that deviant visual stimuli evoke θ-band phase synchrony between the frontal and occipital cortices, thereby enhancing perceptual alternation in binocular rivalry.
Collapse
Affiliation(s)
- Hirotsugu Goto
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Tomokazu Urakawa
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuna Maeda
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Kurita
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Osamu Araki
- Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
19
|
Mashour GA, Lee U, Pal D, Li D. Consciousness and the Dying Brain. Anesthesiology 2024; 140:1221-1231. [PMID: 38603803 PMCID: PMC11096058 DOI: 10.1097/aln.0000000000004970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.
Collapse
Affiliation(s)
- George A. Mashour
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - UnCheol Lee
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dinesh Pal
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Duan Li
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
20
|
Tang Y, Dhar HS, Oulton RF, Nyman RA, Mintert F. Breakdown of Temporal Coherence in Photon Condensates. PHYSICAL REVIEW LETTERS 2024; 132:173601. [PMID: 38728729 DOI: 10.1103/physrevlett.132.173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
The temporal coherence of an ideal Bose gas increases as the system approaches the Bose-Einstein condensation threshold from below, with coherence time diverging at the critical point. However, counterexamples have been observed for condensates of photons formed in an externally pumped, dye-filled microcavity, wherein the coherence time decreases rapidly for increasing particle number above threshold. This Letter establishes intermode correlations as the central explanation for the experimentally observed dramatic decrease in the coherence time beyond critical pump power.
Collapse
Affiliation(s)
- Yijun Tang
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, United Kingdom
| | - Himadri S Dhar
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupert F Oulton
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, United Kingdom
| | - Robert A Nyman
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, United Kingdom
| | - Florian Mintert
- Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, United Kingdom
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
21
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
22
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. Cell Rep 2024; 43:114017. [PMID: 38578827 DOI: 10.1016/j.celrep.2024.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness, suprathreshold stimuli evoke perceptions; under anesthesia, perceptions are abolished; and during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perceptions. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia as well as during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely, in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is reliably elicited by external visual stimuli.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Luo
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Helen Chung
- The College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego Contreras
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for the Neuroscience of Unconsciousness and Reanimation Research Alliance (NEURRAL), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Romagnano V, Kubon J, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Dynamic brain communication underwriting face pareidolia. Proc Natl Acad Sci U S A 2024; 121:e2401196121. [PMID: 38588422 PMCID: PMC11032489 DOI: 10.1073/pnas.2401196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Face pareidolia is a tendency to seeing faces in nonface images that reflects high tuning to a face scheme. Yet, studies of the brain networks underwriting face pareidolia are scarce. Here, we examined the time course and dynamic topography of gamma oscillatory neuromagnetic activity while administering a task with nonface images resembling a face. Images were presented either with canonical orientation or with display inversion that heavily impedes face pareidolia. At early processing stages, the peaks in gamma activity (40 to 45 Hz) to images either triggering or not face pareidolia originate mainly from the right medioventral and lateral occipital cortices, rostral and caudal cuneus gyri, and medial superior occipital gyrus. Yet, the difference occurred at later processing stages in the high-frequency range of 80 to 85 Hz over a set of the areas constituting the social brain. The findings speak rather for a relatively late neural network playing a key role in face pareidolia. Strikingly, a cutting-edge analysis of brain connectivity unfolding over time reveals mutual feedforward and feedback intra- and interhemispheric communication not only within the social brain but also within the extended large-scale network of down- and upstream regions. In particular, the superior temporal sulcus and insula strongly engage in communication with other brain regions either as signal transmitters or recipients throughout the whole processing of face-pareidolia images.
Collapse
Affiliation(s)
- Valentina Romagnano
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Julian Kubon
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Alexander N. Sokolov
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Andreas J. Fallgatter
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Christoph Braun
- Magnetoencephalography Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| | - Marina A. Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
24
|
Abbasi A, Rangwani R, Bowen DW, Fealy AW, Danielsen NP, Gulati T. Cortico-cerebellar coordination facilitates neuroprosthetic control. SCIENCE ADVANCES 2024; 10:eadm8246. [PMID: 38608024 PMCID: PMC11014440 DOI: 10.1126/sciadv.adm8246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned a neuroprosthetic/brain-machine interface (BMI) task. In neuroprosthetic task, actuator movements are causally linked to M1 "direct" neurons that drive the decoder for successful task execution. However, it is unknown how task-related M1 activity interacts with the cerebellum. We observed a notable 3 to 6 hertz coherence that emerged between these regions' local field potentials (LFPs) with learning that also modulated task-related spiking. We identified robust task-related indirect modulation in the cerebellum, which developed a preferential relationship with M1 task-related activity. Inhibiting cerebellar cortical and deep nuclei activity through optogenetics led to performance impairments in M1-driven neuroprosthetic control. Together, these results demonstrate that cerebellar influence is necessary for M1-driven neuroprosthetic control.
Collapse
Affiliation(s)
- Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rohit Rangwani
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Bioengineering Graduate Program, Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, CA, USA
| | - Daniel W. Bowen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew W. Fealy
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nathan P. Danielsen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Bioengineering Graduate Program, Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, and Department of Bioengineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Froese T, Loh CL, Putri F. Inter-brain desynchronization in social interaction: a consequence of subjective involvement? Front Hum Neurosci 2024; 18:1359841. [PMID: 38532790 PMCID: PMC10963429 DOI: 10.3389/fnhum.2024.1359841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Hyperscanning approaches to human neuroscience aim to uncover the neural mechanisms of social interaction. They have been largely guided by the expectation that increased levels of engagement between two persons will be supported by higher levels of inter-brain synchrony (IBS). A common approach to measuring IBS is phase synchrony in the context of EEG hyperscanning. Yet the growing number of experimental findings does not yield a straightforward interpretation, which has prompted critical reflections about the field's theoretical and methodological principles. In this perspective piece, we make a conceptual contribution to this debate by considering the role of a possibly overlooked effect of inter-brain desynchronization (IBD), as for example measured by decreased phase synchrony. A principled reason to expect this role comes from the recent proposal of irruption theory, which operationalizes the efficacy of a person's subjective involvement in behavior generation in terms of increased neural entropy. Accordingly, IBD is predicted to increase with one or more participant's socially motivated subjective involvement in interaction, because of the associated increase in their neural entropy. Additionally, the relative prominence of IBD compared to IBS is expected to vary in time, as well as across frequency bands, depending on the extent that subjective involvement is elicited by the task and/or desired by the person. If irruption theory is on the right track, it could thereby help to explain the notable variability of IBS in social interaction in terms of a countertendency from another factor: IBD due to subjective involvement.
Collapse
Affiliation(s)
- Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | | | | |
Collapse
|
26
|
Juarez P, Salcedo-Arellano MJ, Dufour B, Martinez-Cerdeño V. Fragile X cortex is characterized by decreased parvalbumin-expressing interneurons. Cereb Cortex 2024; 34:bhae103. [PMID: 38521994 PMCID: PMC10960956 DOI: 10.1093/cercor/bhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Pablo Juarez
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Brett Dufour
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| |
Collapse
|
27
|
Titone S, Samogin J, Peigneux P, Swinnen SP, Mantini D, Albouy G. Frequency-dependent connectivity in large-scale resting-state brain networks during sleep. Eur J Neurosci 2024; 59:686-702. [PMID: 37381891 DOI: 10.1111/ejn.16080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Functional connectivity (FC) during sleep has been shown to break down as non-rapid eye movement (NREM) sleep deepens before returning to a state closer to wakefulness during rapid eye movement (REM) sleep. However, the specific spatial and temporal signatures of these fluctuations in connectivity patterns remain poorly understood. This study aimed to investigate how frequency-dependent network-level FC fluctuates during nocturnal sleep in healthy young adults using high-density electroencephalography (hdEEG). Specifically, we examined source-localized FC in resting-state networks during NREM2, NREM3 and REM sleep (sleep stages scored using a semi-automatic procedure) in the first three sleep cycles of 29 participants. Our results showed that FC within and between all resting-state networks decreased from NREM2 to NREM3 sleep in multiple frequency bands and all sleep cycles. The data also highlighted a complex modulation of connectivity patterns during the transition to REM sleep whereby delta and sigma bands hosted a persistence of the connectivity breakdown in all networks. In contrast, a reconnection occurred in the default mode and the attentional networks in frequency bands characterizing their organization during wake (i.e., alpha and beta bands, respectively). Finally, all network pairs (except the visual network) showed higher gamma-band FC during REM sleep in cycle three compared to earlier sleep cycles. Altogether, our results unravel the spatial and temporal characteristics of the well-known breakdown in connectivity observed as NREM sleep deepens. They also illustrate a complex pattern of connectivity during REM sleep that is consistent with network- and frequency-specific breakdown and reconnection processes.
Collapse
Affiliation(s)
- Simon Titone
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jessica Samogin
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at the Centre for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Genevieve Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Spencer KM. Gamma Oscillations as a Biomarker of Neural Circuit Function in Psychosis: Where Are We, and Where Do We Go from Here? ADVANCES IN NEUROBIOLOGY 2024; 40:321-349. [PMID: 39562450 DOI: 10.1007/978-3-031-69491-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This chapter is a selective and critical review of the literature on gamma oscillations in schizophrenia and related studies in other relevant fields that pertain to the hypothesis that abnormal gamma oscillations underlie symptoms of psychosis in individuals with schizophrenia. These gamma abnormalities result from deficient recurrent inhibition, in which parvalbumin-expressing, fast-spiking inhibitory interneurons do not receive sufficient excitation from N-methyl-D-aspartate receptors, resulting in a loss of phasic control over pyramidal cell spiking and impairment of gamma generation. The evidence for this hypothesis is critically reviewed, focusing on studies in the areas of visual feature binding, auditory steady-state response, and spontaneous gamma activity. The current state of the field is discussed, and recommendations for future directions are presented.
Collapse
Affiliation(s)
- Kevin M Spencer
- Research Service, VA Boston Healthcare System, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Arnold M, Netson R, Vyshedskiy A. Combinatorial Language parent-report Scores Differ Significantly Between Typically Developing Children and Those with Autism Spectrum Disorders. J Autism Dev Disord 2024; 54:326-338. [PMID: 36315319 DOI: 10.1007/s10803-022-05769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 12/12/2022]
Abstract
Prefrontal synthesis (PFS) is a component of constructive imagination. It is defined as the process of mentally juxtaposing objects into novel combinations. For example, to comprehend the instruction "put the cat under the dog and above the monkey," it is necessary to use PFS in order to correctly determine the spatial arrangement of the cat, dog, and monkey with relation to one another. The acquisition of PFS hinges on the use of combinatorial language during early childhood development. Accordingly, children with developmental delays exhibit a deficit in PFS, and frequent assessments are recommended for such individuals. In 2018, we developed the Mental Synthesis Evaluation Checklist (MSEC), a parent-reported evaluation designed to assess PFS and combinatorial language comprehension. In this manuscript we use MSEC to identify differences in combinatorial language acquisition between ASD (N = 29,138) and neurotypical (N = 111) children. Results emphasize the utility of the MSEC in distinguishing language deficits in ASD from typical development as early as 2 years of age (p < 0.0001).
Collapse
Affiliation(s)
| | | | - Andrey Vyshedskiy
- Boston University, Boston, MA, USA.
- ImagiRation LLC, Boston, MA, USA.
| |
Collapse
|
30
|
Villafane Barraza V, Voegtle A, de Matos Mansur B, Reichert C, Nasuto SJ, Sweeney-Reed CM. Parietal cortical alpha/beta suppression during prospective memory retrieval. Cereb Cortex 2023; 33:11235-11246. [PMID: 37804246 DOI: 10.1093/cercor/bhad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
Prospective memory (PM) impairment is among the most frequent memory complaints, yet little is known about the underlying neural mechanisms. PM for a planned intention may be achieved through strategic monitoring of the environment for cues, involving ongoing attentional processes, or through spontaneous retrieval. We hypothesized that parietal spectral power modulation accompanies prospectively encoded intention retrieval, irrespective of PM retrieval approach. A cognitively engaging arithmetic-based ongoing task (OGT) was employed to encourage spontaneous retrieval, with a focal, internally generated PM cue to eliminate OGT/PM trial differentiation based on perceptual or conceptual PM cue features. Two PM repetition frequencies were used to vary the extent of strategic monitoring. We observed a transient parietal alpha/beta spectral power reduction directly preceding the response, which was distinguishable on a single trial basis, as revealed by an OGT/PM trial classification rate exceeding 70% using linear discriminant analysis. The alpha/beta idling rhythm reflects cortical inhibition. A disengagement of task-relevant neural assemblies from this rhythm, reflected in alpha/beta power reduction, is deemed to increase information content, facilitate information integration, and enable engagement of neural assemblies in task-related cortical networks. The observed power reduction is consistent with the Dual Pathways model, where PM strategies converge at the PM retrieval stage.
Collapse
Affiliation(s)
- Viviana Villafane Barraza
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Bruno de Matos Mansur
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Slawomir J Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
31
|
Rosenblum M, Pikovsky A. Inferring connectivity of an oscillatory network via the phase dynamics reconstruction. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1298228. [PMID: 38073862 PMCID: PMC10704096 DOI: 10.3389/fnetp.2023.1298228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 06/10/2024]
Abstract
We review an approach for reconstructing oscillatory networks' undirected and directed connectivity from data. The technique relies on inferring the phase dynamics model. The central assumption is that we observe the outputs of all network nodes. We distinguish between two cases. In the first one, the observed signals represent smooth oscillations, while in the second one, the data are pulse-like and can be viewed as point processes. For the first case, we discuss estimating the true phase from a scalar signal, exploiting the protophase-to-phase transformation. With the phases at hand, pairwise and triplet synchronization indices can characterize the undirected connectivity. Next, we demonstrate how to infer the general form of the coupling functions for two or three oscillators and how to use these functions to quantify the directional links. We proceed with a different treatment of networks with more than three nodes. We discuss the difference between the structural and effective phase connectivity that emerges due to high-order terms in the coupling functions. For the second case of point-process data, we use the instants of spikes to infer the phase dynamics model in the Winfree form directly. This way, we obtain the network's coupling matrix in the first approximation in the coupling strength.
Collapse
Affiliation(s)
- Michael Rosenblum
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
32
|
Susin E, Destexhe A. A Network Model of the Modulation of γ Oscillations by NMDA Receptors in Cerebral Cortex. eNeuro 2023; 10:ENEURO.0157-23.2023. [PMID: 37940562 PMCID: PMC10668239 DOI: 10.1523/eneuro.0157-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023] Open
Abstract
Psychotic drugs such as ketamine induce symptoms close to schizophrenia and stimulate the production of γ oscillations, as also seen in patients, but the underlying mechanisms are still unclear. Here, we have used computational models of cortical networks generating γ oscillations, and have integrated the action of drugs such as ketamine to partially block NMDA receptors (NMDARs). The model can reproduce the paradoxical increase of γ oscillations by NMDA receptor antagonists, assuming that antagonists affect NMDA receptors with higher affinity on inhibitory interneurons. We next used the model to compare the responsiveness of the network to external stimuli, and found that when NMDA channels are blocked, an increase of γ power is observed altogether with an increase of network responsiveness. However, this responsiveness increase applies not only to γ states, but also to asynchronous states with no apparent γ. We conclude that NMDA antagonists induce an increased excitability state, which may or may not produce γ oscillations, but the response to external inputs is exacerbated, which may explain phenomena such as altered perception or hallucinations.
Collapse
Affiliation(s)
- Eduarda Susin
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay, France 91400
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay, France 91400
| |
Collapse
|
33
|
Uehara K, Yasuhara M, Koguchi J, Oku T, Shiotani S, Morise M, Furuya S. Brain network flexibility as a predictor of skilled musical performance. Cereb Cortex 2023; 33:10492-10503. [PMID: 37566918 DOI: 10.1093/cercor/bhad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Interactions between the body and the environment are dynamically modulated by upcoming sensory information and motor execution. To adapt to this behavioral state-shift, brain activity must also be flexible and possess a large repertoire of brain networks so as to switch them flexibly. Recently, flexible internal brain communications, i.e. brain network flexibility, have come to be recognized as playing a vital role in integrating various sensorimotor information. Therefore, brain network flexibility is one of the key factors that define sensorimotor skill. However, little is known about how flexible communications within the brain characterize the interindividual variation of sensorimotor skill and trial-by-trial variability within individuals. To address this, we recruited skilled musical performers and used a novel approach that combined multichannel-scalp electroencephalography, behavioral measurements of musical performance, and mathematical approaches to extract brain network flexibility. We found that brain network flexibility immediately before initiating the musical performance predicted interindividual differences in the precision of tone timbre when required for feedback control, but not for feedforward control. Furthermore, brain network flexibility in broad cortical regions predicted skilled musical performance. Our results provide novel evidence that brain network flexibility plays an important role in building skilled sensorimotor performance.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
| | - Masaki Yasuhara
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Neural Engineering Laboratory, Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Junya Koguchi
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
| | | | | | - Masanori Morise
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- NeuroPiano Institute, Kyoto 6008086, Japan
| |
Collapse
|
34
|
Sanfey J. Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem. Front Psychol 2023; 14:1173653. [PMID: 37842692 PMCID: PMC10568466 DOI: 10.3389/fpsyg.2023.1173653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The problem of explaining the relationship between subjective experience and physical reality remains difficult and unresolved. In most explanations, consciousness is epiphenomenal, without causal power. The most notable exception is Integrated Information Theory (IIT), which provides a causal explanation for consciousness. However, IIT relies on an identity between subjectivity and a particular type of physical structure, namely with an information structure that has intrinsic causal power greater than the sum of its parts. Any theory that relies on a psycho-phyiscal identity must eventually appeal to panpsychism, which undermines that theory's claim to be fundamental. IIT has recently pivoted towards a strong version of causal emergence, but macroscopic structures cannot be stronger causally than their microphysical parts without some new physical law or governing principle. The approach taken here is designed to uncover such a principle. The decisive argument is entirely deductive from initial premises that are phenomenologically certain. If correct, the arguments prove that conscious experience is sufficient to create additional degrees of causal freedom independently of the content of experience, and in a manner that is unpredictable and unobservable by any temporally sequential means. This provides a fundamental principle about consciousness, and a conceptual bridge between it and the physics describing what is experienced. The principle makes testable predictions about brain function, with notable differences from IIT, some of which are also empirically testable.
Collapse
|
35
|
Kim SE, Shin C, Yim J, Seo K, Ryu H, Choi H, Park J, Min BK. Resting-state electroencephalographic characteristics related to mild cognitive impairments. Front Psychiatry 2023; 14:1231861. [PMID: 37779609 PMCID: PMC10539934 DOI: 10.3389/fpsyt.2023.1231861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) causes a rapid deterioration in cognitive and physical functions, including problem-solving, memory, language, and daily activities. Mild cognitive impairment (MCI) is considered a risk factor for AD, and early diagnosis and treatment of MCI may help slow the progression of AD. Electroencephalography (EEG) analysis has become an increasingly popular tool for developing biomarkers for MCI and AD diagnosis. Compared with healthy elderly, patients with AD showed very clear differences in EEG patterns, but it is inconclusive for MCI. This study aimed to investigate the resting-state EEG features of individuals with MCI (n = 12) and cognitively healthy controls (HC) (n = 13) with their eyes closed. EEG data were analyzed using spectral power, complexity, functional connectivity, and graph analysis. The results revealed no significant difference in EEG spectral power between the HC and MCI groups. However, we observed significant changes in brain complexity and networks in individuals with MCI compared with HC. Patients with MCI exhibited lower complexity in the middle temporal lobe, lower global efficiency in theta and alpha bands, higher local efficiency in the beta band, lower nodal efficiency in the frontal theta band, and less small-world network topology compared to the HC group. These observed differences may be related to underlying neuropathological alterations associated with MCI progression. The findings highlight the potential of network analysis as a promising tool for the diagnosis of MCI.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Chanwoo Shin
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Junyeop Yim
- Department of Applied Mathematics, Kongju National University, Gongju-si, Republic of Korea
| | - Kyoungwon Seo
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Hokyoung Ryu
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Hou J, Chen C, Dong Q. Early musical training benefits to non-musical cognitive ability associated with the Gestalt principles. Front Psychol 2023; 14:1134116. [PMID: 37554141 PMCID: PMC10405822 DOI: 10.3389/fpsyg.2023.1134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Musical training has been evidenced to facilitate music perception, which refers to the consistencies, boundaries, and segmentations in pieces of music that are associated with the Gestalt principles. The current study aims to test whether musical training is beneficial to non-musical cognitive ability with Gestalt principles. Three groups of Chinese participants (with early, late, and no musical training) were compared in terms of their performances on the Motor-Free Visual Perception Test (MVPT). The results show that the participants with early musical training had significantly better performance in the Gestalt-like Visual Closure subtest than those with late and no musical training, but no significances in other Gestalt-unlike subtests was identified (Visual Memory, Visual Discrimination, Spatial Relationship, Figure Ground in MVPT). This study suggests the benefit of early musical training on non-musical cognitive ability with Gestalt principles.
Collapse
Affiliation(s)
- Jiancheng Hou
- Research Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou, Fujian, China
- State Key Lab of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- School of Public Health, Indiana University Bloomington, Bloomington, IN, United States
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, United States
| | - Qi Dong
- State Key Lab of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Aggarwal A, Luo J, Chung H, Contreras D, Kelz MB, Proekt A. Neural assemblies coordinated by cortical waves are associated with waking and hallucinatory brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540656. [PMID: 37292587 PMCID: PMC10245750 DOI: 10.1101/2023.05.22.540656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The relationship between sensory stimuli and perceptions is brain-state dependent: in wakefulness stimuli evoke perceptions; under anesthesia perceptions are abolished; during dreaming and in dissociated states, percepts are internally generated. Here, we exploit this state dependence to identify brain activity associated with internally generated or stimulus-evoked perception. In awake mice, visual stimuli phase reset spontaneous cortical waves to elicit 3-6 Hz feedback traveling waves. These stimulus-evoked waves traverse the cortex and entrain visual and parietal neurons. Under anesthesia and during ketamine-induced dissociation, visual stimuli do not disrupt spontaneous waves. Uniquely in the dissociated state, spontaneous waves traverse the cortex caudally and entrain visual and parietal neurons, akin to stimulus-evoked waves in wakefulness. Thus, coordinated neuronal assemblies orchestrated by traveling cortical waves emerge in states in which perception can manifest. The awake state is privileged in that this coordination is elicited by specifically by external visual stimuli.
Collapse
|
38
|
Shlobin NA, Aru J, Vicente R, Zemmar A. What happens in the brain when we die? Deciphering the neurophysiology of the final moments in life. Front Aging Neurosci 2023; 15:1143848. [PMID: 37228251 PMCID: PMC10203241 DOI: 10.3389/fnagi.2023.1143848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
When do we die and what happens in the brain when we die? The mystery around these questions has engaged mankind for centuries. Despite the challenges to obtain recordings of the dying brain, recent studies have contributed to better understand the processes occurring during the last moments of life. In this review, we summarize the literature on neurophysiological changes around the time of death. Perhaps the only subjective description of death stems from survivors of near-death experiences (NDEs). Hallmarks of NDEs include memory recall, out-of-body experiences, dreaming, and meditative states. We survey the evidence investigating neurophysiological changes of these experiences in healthy subjects and attempt to incorporate this knowledge into the existing literature investigating the dying brain to provide valuations for the neurophysiological footprint and timeline of death. We aim to identify reasons explaining the variations of data between studies investigating this field and provide suggestions to standardize research and reduce data variability.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University School of Medicine, Zhengzhou, China
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Raul Vicente
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University School of Medicine, Zhengzhou, China
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
39
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
41
|
Tanner J, Keefer E, Cheng J, Helms Tillery S. Dynamic peripheral nerve stimulation can produce cortical activation similar to punctate mechanical stimuli. Front Hum Neurosci 2023; 17:1083307. [PMID: 37033904 PMCID: PMC10079952 DOI: 10.3389/fnhum.2023.1083307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
During contact, phasic and tonic responses provide feedback that is used for task performance and perceptual processes. These disparate temporal dynamics are carried in peripheral nerves, and produce overlapping signals in cortex. Using longitudinal intrafascicular electrodes inserted into the median nerve of a nonhuman primate, we delivered composite stimulation consisting of onset and release bursts to capture rapidly adapting responses and sustained stochastic stimulation to capture the ongoing response of slowly adapting receptors. To measure the stimulation's effectiveness in producing natural responses, we monitored the local field potential in somatosensory cortex. We compared the cortical responses to peripheral nerve stimulation and vibrotactile/punctate stimulation of the fingertip, with particular focus on gamma band (30-65 Hz) responses. We found that vibrotactile stimulation produces consistently phase locked gamma throughout the duration of the stimulation. By contrast, punctate stimulation responses were phase locked at the onset and release of stimulation, but activity maintained through the stimulation was not phase locked. Using these responses as guideposts for assessing the response to the peripheral nerve stimulation, we found that constant frequency stimulation produced continual phase locking, whereas composite stimulation produced gamma enhancement throughout the stimulus, phase locked only at the onset and release of the stimulus. We describe this response as an "Appropriate Response in the gamma band" (ARγ), a trend seen in other sensory systems. Our demonstration is the first shown for intracortical somatosensory local field potentials. We argue that this stimulation paradigm produces a more biomimetic response in somatosensory cortex and is more likely to produce naturalistic sensations for readily usable neuroprosthetic feedback.
Collapse
Affiliation(s)
- Justin Tanner
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | | | - Jonathan Cheng
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen Helms Tillery
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
42
|
Yoshikai Y, Zheng T, Kotani K, Jimbo Y. Macroscopic Gamma Oscillation With Bursting Neuron Model Under Stochastic Fluctuation. Neural Comput 2023; 35:645-670. [PMID: 36827587 DOI: 10.1162/neco_a_01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/30/2022] [Indexed: 02/26/2023]
Abstract
Gamma oscillations are thought to play a role in information processing in the brain. Bursting neurons, which exhibit periodic clusters of spiking activity, are a type of neuron that are thought to contribute largely to gamma oscillations. However, little is known about how the properties of bursting neurons affect the emergence of gamma oscillation, its waveforms, and its synchronized characteristics, especially when subjected to stochastic fluctuations. In this study, we proposed a bursting neuron model that can analyze the bursting ratio and the phase response function. Then we theoretically analyzed the neuronal population dynamics composed of bursting excitatory neurons, mixed with inhibitory neurons. The bifurcation analysis of the equivalent Fokker-Planck equation exhibits three types of gamma oscillations of unimodal firing, bimodal firing in the inhibitory population, and bimodal firing in the excitatory population under different interaction strengths. The analyses of the macroscopic phase response function by the adjoint method of the Fokker-Planck equation revealed that the inhibitory doublet facilitates synchronization of the high-frequency oscillations. When we keep the strength of interactions constant, decreasing the bursting ratio of the individual neurons increases the relative high-gamma component of the populational phase-coupling functions. This also improves the ability of the neuronal population model to synchronize with faster oscillatory input. The analytical frameworks in this study provide insight into nontrivial dynamics of the population of bursting neurons, which further suggest that bursting neurons have an important role in rhythmic activities.
Collapse
Affiliation(s)
- Yuto Yoshikai
- Graduate School of Engineering, University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Tianyi Zheng
- Graduate School of Engineering, University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yasuhiko Jimbo
- Graduate School of Engineering, University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Gonzalez J, Torterolo P, Tort ABL. Mechanisms and functions of respiration-driven gamma oscillations in the primary olfactory cortex. eLife 2023; 12:e83044. [PMID: 36806332 PMCID: PMC10069865 DOI: 10.7554/elife.83044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gamma oscillations are believed to underlie cognitive processes by shaping the formation of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the phase of breathing cycles in several brain areas, possibly reflecting local computations driven by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and result from recurrent connections between local excitatory and inhibitory neuronal populations. Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation leading to sparse odor coding during each breathing cycle. Our results shed new light on the mechanisms of gamma oscillations, bridging computation, cognition, and physiology.
Collapse
Affiliation(s)
- Joaquin Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la RepúblicaMontevideoUruguay
| | - Adriano BL Tort
- Brain Institute, Federal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
44
|
Palmisano A, Chiarantoni G, Bossi F, Conti A, D'Elia V, Tagliente S, Nitsche MA, Rivolta D. Face pareidolia is enhanced by 40 Hz transcranial alternating current stimulation (tACS) of the face perception network. Sci Rep 2023; 13:2035. [PMID: 36739325 PMCID: PMC9899232 DOI: 10.1038/s41598-023-29124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pareidolia refers to the perception of ambiguous sensory patterns as carrying a specific meaning. In its most common form, pareidolia involves human-like facial features, where random objects or patterns are illusionary recognized as faces. The current study investigated the neurophysiological correlates of face pareidolia via transcranial alternating current stimulation (tACS). tACS was delivered at gamma (40 Hz) frequency over critical nodes of the "face perception" network (i.e., right lateral occipito-temporal and left prefrontal cortex) of 75 healthy participants while completing four face perception tasks ('Mooney test' for faces, 'Toast test', 'Noise pareidolia test', 'Pareidolia task') and an object perception task ('Mooney test' for objects). In this single-blind, sham-controlled between-subjects study, participants received 35 min of either Sham, Online, (40Hz-tACS_ON), or Offline (40Hz-tACS_PRE) stimulation. Results showed that face pareidolia was causally enhanced by 40Hz-tACS_PRE in the Mooney test for faces in which, as compared to sham, participants more often misperceived scrambled stimuli as faces. In addition, as compared to sham, participants receiving 40Hz-tACS_PRE showed similar reaction times (RTs) when perceiving illusory faces and correctly recognizing noise stimuli in the Toast test, thus not exhibiting hesitancy in identifying faces where there were none. Also, 40Hz-tACS_ON induced slower rejections of face pareidolia responses in the Noise pareidolia test. The current study indicates that 40 Hz tACS can enhance pareidolic illusions in healthy individuals and, thus, that high frequency (i.e., gamma band) oscillations are critical in forming coherent and meaningful visual perception.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Giulio Chiarantoni
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | | | - Alessio Conti
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Vitiana D'Elia
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Serena Tagliente
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors (IfADo), Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy.,School of Psychology, University of East London (UEL), London, UK
| |
Collapse
|
45
|
Qin Y, Mahdavi A, Bertschy M, Anderson PM, Kulikova S, Pinault D. The psychotomimetic ketamine disrupts the transfer of late sensory information in the corticothalamic network. Eur J Neurosci 2023; 57:440-455. [PMID: 36226598 PMCID: PMC10092610 DOI: 10.1111/ejn.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
In prodromal and early schizophrenia, disorders of attention and perception are associated with structural and chemical brain abnormalities and with dysfunctional corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the symptoms of prodromal and early schizophrenia, including disturbances in ongoing and task & sensory-related broadband beta-/gamma-frequency (17-29 Hz/30-80 Hz) oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex integration processes, like sensory perception, induce transient, large-scale synchronised beta/gamma oscillations in a time window of a few hundred ms (200-700 ms) after the presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an electrophysiological multisite network approach to investigate, in lightly anesthetised rats, the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on sensory stimulus-induced oscillations. Ketamine transiently increased the power of baseline beta/gamma oscillations and decreased sensory-induced beta/gamma oscillations. In addition, it disrupted information transferability in both the somatosensory thalamus and the related cortex and decreased the sensory-induced thalamocortical connectivity in the broadband gamma range. The present findings support the hypothesis that NMDA receptor antagonism disrupts the transfer of perceptual information in the somatosensory cortico-thalamo-cortical system.
Collapse
Affiliation(s)
- Yi Qin
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- Netherlands Institute for NeuroscienceThe Netherlands
| | - Ali Mahdavi
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
- The University of Freiburg, Bernstein Center FreiburgFreiburgGermany
| | - Marine Bertschy
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| | - Paul M. Anderson
- Dept. Cognitive Neurobiology, Center for Brain ResearchMedical University ViennaAustria
| | - Sofya Kulikova
- National Research University Higher School of EconomicsPermRussia
| | - Didier Pinault
- Université de StrasbourgStrasbourgFrance
- INSERM U1114, Neuropsychologie cognitive et physiopathologie de la schizophrénieStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecineStrasbourgFrance
- Centre de Recherche en Biomédecine de Strasbourg (CRBS)StrasbourgFrance
| |
Collapse
|
46
|
Alves CL, Cury RG, Roster K, Pineda AM, Rodrigues FA, Thielemann C, Ciba M. Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments. PLoS One 2022; 17:e0277257. [PMID: 36525422 PMCID: PMC9757568 DOI: 10.1371/journal.pone.0277257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demonstrated to be a viable therapy for a variety of neurological and mental diseases. EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most important brain connections, a significant new discovery for psychedelic literature. This connection may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer's disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and suggested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action.
Collapse
Affiliation(s)
- Caroline L. Alves
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
- * E-mail:
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, University of São Paulo (USP), São Paulo, Brazil
| | - Kirstin Roster
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aruane M. Pineda
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Francisco A. Rodrigues
- Institute of Mathematical and Computer Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| | - Manuel Ciba
- BioMEMS Lab, Aschaffenburg University of Applied Sciences (UAS), Aschaffenburg, Germany
| |
Collapse
|
47
|
Saracini C. Perceptual Awareness and Its Relationship with Consciousness: Hints from Perceptual Multistability. NEUROSCI 2022; 3:546-557. [PMID: 39483774 PMCID: PMC11523755 DOI: 10.3390/neurosci3040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/03/2024] Open
Abstract
Many interesting theories of consciousness have been proposed, but so far, there is no "unified" theory capable of encompassing all aspects of this phenomenon. We are all aware of what it feels like to be conscious and what happens if there is an absence of consciousness. We are becoming more and more skilled in measuring consciousness states; nevertheless, we still "don't get it" in its deeper essence. How does all the processed information converge from different brain areas and structures to a common unity, giving us this very private "feeling of being conscious", despite the constantly changing flow of information between internal and external states? "Multistability" refers to a class of perceptual phenomena where subjective awareness spontaneously and continuously alternates between different percepts, although the objective stimuli do not change, supporting the idea that the brain "interprets" sensorial input in a "constructive" way. In this perspective paper, multistability and perceptual awareness are discussed as a methodological window for understanding the "local" states of consciousness, a privileged position from which it is possible to observe the brain dynamics and mechanisms producing the subjective phenomena of perceptual awareness in the very moment they are happening.
Collapse
Affiliation(s)
- Chiara Saracini
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile;
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca 3480094, Chile
| |
Collapse
|
48
|
Li H, Hu J, Chen A, Wang C, Chen L, Tian F, Zhou J, Zhao Y, Chen J, Tong Y, Loh KP, Xu Y, Zhang Y, Hasan T, Yu B. Single-Transistor Neuron with Excitatory-Inhibitory Spatiotemporal Dynamics Applied for Neuronal Oscillations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207371. [PMID: 36217845 DOI: 10.1002/adma.202207371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Brain-inspired neuromorphic computing systems with the potential to drive the next wave of artificial intelligence demand a spectrum of critical components beyond simple characteristics. An emerging research trend is to achieve advanced functions with ultracompact neuromorphic devices. In this work, a single-transistor neuron is demonstrated that implements excitatory-inhibitory (E-I) spatiotemporal integration and a series of essential neuron behaviors. Neuronal oscillations, the fundamental mode of neuronal communication, that construct high-dimensional population code to achieve efficient computing in the brain, can also be demonstrated by the neuron transistors. The highly scalable E-I neuron can be the basic building block for implementing core neuronal circuit motifs and large-scale architectural plans to replicate energy-efficient neural computations, forming the foundation of future integrated neuromorphic systems.
Collapse
Affiliation(s)
- Hanxi Li
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Jiayang Hu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Anzhe Chen
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Chenhao Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li Chen
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Feng Tian
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
- Joint Institute of Zhejiang University and University of Illinois at Urbana-Champaign, Zhejiang University, Haining, 314400, China
| | - Jiachao Zhou
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Yuda Zhao
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Jinrui Chen
- Cambridge Graphene Centre, Cambridge University Engineering Department, Cambridge, CB3 0FA, UK
| | - Yi Tong
- Technology Development Department, Gusu Laboratory of Materials, Suzhou, 215000, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, 119077, Singapore
| | - Yang Xu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
- Joint Institute of Zhejiang University and University of Illinois at Urbana-Champaign, Zhejiang University, Haining, 314400, China
| | - Yishu Zhang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| | - Tawfique Hasan
- Cambridge Graphene Centre, Cambridge University Engineering Department, Cambridge, CB3 0FA, UK
| | - Bin Yu
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, China
| |
Collapse
|
49
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
50
|
Hayashibe M, Shimoda S. Synergetic synchronized oscillation by distributed neural integrators to induce dynamic equilibrium in energy dissipation systems. Sci Rep 2022; 12:17163. [PMID: 36229493 PMCID: PMC9563046 DOI: 10.1038/s41598-022-21261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
The synchronization phenomenon is common to many natural mechanical systems. Joint friction and damping in humans and animals are associated with energy dissipation. A coupled oscillator model is conventionally used to manage multiple joint torque generations to form a limit cycle in an energy dissipation system. The coupling term design and the frequency and phase settings become issues when selecting the oscillator model. The relative coupling relationship between oscillators needs to be predefined for unknown dynamics systems, which is quite challenging problem. We present a simple distributed neural integrators method to induce the limit cycle in unknown energy dissipation systems without using a coupled oscillator. The results demonstrate that synergetic synchronized oscillation could be produced that adapts to different physical environments. Finding the balanced energy injection by neural inputs to form dynamic equilibrium is not a trivial problem, when the dynamics information is not priorly known. The proposed method realized self-organized pattern generation to induce the dynamic equilibrium for different mechanical systems. The oscillation was managed without using the explicit phase or frequency knowledge. However, phase, frequency, and amplitude modulation emerged to form an efficient synchronized limit cycle. This type of distributed neural integrator can be used as a source for regulating multi-joint coordination to induce synergetic oscillations in natural mechanical systems.
Collapse
Affiliation(s)
- Mitsuhiro Hayashibe
- grid.69566.3a0000 0001 2248 6943Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shingo Shimoda
- grid.474690.8RIKEN Center for Brain Science, TOYOTA Collaboration Center, RIKEN, Nagoya, Japan
| |
Collapse
|