1
|
Ferreira MTM, Glombik M, Perničková K, Duchoslav M, Scholten O, Karafiátová M, Techio VH, Doležel J, Lukaszewski AJ, Kopecký D. Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:254-267. [PMID: 33029645 PMCID: PMC7853598 DOI: 10.1093/jxb/eraa455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Crossing over, in addition to its strictly genetic role, also performs a critical mechanical function, by bonding homologues in meiosis. Hence, it is responsible for an orderly reduction of the chromosome number. As such, it is strictly controlled in frequency and distribution. The well-known crossover control is positive crossover interference which reduces the probability of a crossover in the vicinity of an already formed crossover. A poorly studied aspect of the control is chromatid interference. Such analyses are possible in very few organisms as they require observation of all four products of a single meiosis. Here, we provide direct evidence of chromatid interference. Using in situ probing in two interspecific plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei) during anaphase I, we demonstrate that the involvement of four chromatids in double crossovers is significantly more frequent than expected (64% versus 25%). We also provide a physical measure of the crossover interference distance, covering ~30-40% of the relative chromosome arm length, and show that the centromere acts as a barrier for crossover interference. The two arms of a chromosome appear to act as independent units in the process of crossing over. Chromatid interference has to be seriously addressed in genetic mapping approaches and further studies.
Collapse
Affiliation(s)
- Marco Tulio Mendes Ferreira
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Biology, Federal University of Lavras, Lavras-MG, Brazil
| | - Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Kateřina Perničková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Olga Scholten
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
2
|
Abstract
1. Many of the Ustilaginales, or smut fungi, appear to have the qualities necessary for the application of modern techniques of microbial genetics.Ustilago maydisis considered the most suitable species.2. Investigations of the mating system confirm reports that the production of diploid brandspores in the host is controlled by alleles at two loci.3. Genetic markers were obtained by inducing mutations in a wild-type strain with ultra-violet light. Of 100 biochemical mutants which were isolated, the growth requirements of 94 were identified. Thirty of these were used in genetic tests.4. The compact growth of colonies on artificial media allowed new techniques to be developed by means of which large samples of progeny could be isolated and identified easily. The analysis of brandspore colonies consisting of the products of single meiotic divisions is the quickest method for detecting linkage, but its accurate measurement appears to be achieved by examining the individual members of tetrads.5. Linkage was detected relatively rarely, but eight markers, including theamating-type locus, were assigned to one or other of two linkage groups. Although recombination values were not always determined accurately owing to irregular basidiospore germination, the auxotrophic markers in each group could be mapped in a linear order. Since no indication of other linkage groups was obtained, the genetic evidence is so far consistent with cytological reports that the basic haploid chromosome number is two in the smut fungi.6. Three linked markers were used to investigate chromatid interference by tetrad analysis. None was detected in a total of eighteen double exchanges.
Collapse
|