1
|
Burckard O, Teboul M, Delaunay F, Chaves M. Benchmark for quantitative characterization of circadian clock cycles. Biosystems 2025; 247:105363. [PMID: 39551427 DOI: 10.1016/j.biosystems.2024.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Understanding circadian clock mechanisms is fundamental in order to counteract the harmful effects of clock malfunctioning and associated diseases. Biochemical, genetic and systems biology approaches have provided invaluable information on the mechanisms of the circadian clock, from which many mathematical models have been developed to understand the dynamics and quantitative properties of the circadian oscillator. To better analyze and compare quantitatively all these circadian cycles, we propose a method based on a previously proposed circadian cycle segmentation into stages. We notably identify a sequence of eight stages that characterize the progress of the circadian cycle. Next, we apply our approach to an experimental dataset and to five different models, all built with ordinary differential equations. Our method permits to assess the agreement of mathematical model cycles with biological properties or to detect some inconsistencies. As another application of our method, we provide insights on how this segmentation into stages can help to analyze the effect of a clock gene loss of function on the dynamic of a genetic oscillator. The strength of our method is to provide a benchmark for characterization, comparison and improvement of new mathematical models of circadian oscillators in a wide variety of model systems.
Collapse
Affiliation(s)
- Odile Burckard
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France.
| | | | | | - Madalena Chaves
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France
| |
Collapse
|
2
|
Xie D, Zhong S, Luo M, Xu J, Zheng R, Luo J, Wang Y, Guo Y, Guo L, Wu B, Lu D. Disruption of local circadian clocks in aristolochic acid-induced nephropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156235. [PMID: 39541665 DOI: 10.1016/j.phymed.2024.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aristolochic acid I (AAI), an emerging biogenic contaminant widely present in Aristolochic plants, has been implicated in the progression of tubulointerstitial disease, known as aristolochic acid nephropathy (AAN). The circadian clock, a vital regulator of organ homeostasis, is susceptible to external chemical cues, including toxins. However, the reciprocal interactions between AAI and the circadian clock remain unexplored. METHODS We initially assessed sex- and time-dependent nephropathy and behavioral responses in C57BL/6J mice exposed to AAI. Subsequently, we evaluated changes in the expression of circadian clock genes following treatment with AAI or its bioactive metabolite, aristolactam I, using real-time quantitative PCR and immunoblotting in renal tissues and cells. Additionally, real-time reporter assays were conducted on kidney explants from PER2::Luc knock-in reporter mice and Per2-dLuc/Bmal1-dLuc reporter cell lines. To further elucidate the regulatory role of circadian clocks in AAI-induced nephropathy, mice with global or kidney-specific knockout of Bmal1, as well as mice subjected to experimental jetlag, were utilized. RESULTS Our findings revealed a sex-dependent nephrotoxicity of AAI, with males exhibiting greater vulnerability. AAI-induced nephropathy was accompanied by impaired spatial cognitive function, disruptions in free-running locomotor activity, altered renal expression of multiple core clock genes, and disturbances in the circadian rhythm of renal PER2::Luc activity. Notably, kidney-specific ablation of the core clock gene Bmal1 significantly exacerbated renal injury and inflammation, whereas disruptions to the central clock, either genetically (through conventional knockout of Bmal1) or environmentally (mimicking jetlag), had minimal effects on AAI nephrotoxicity. Furthermore, both AAI and its bioactive metabolite aristolactam I demonstrated the ability to disrupt circadian clocks in human osteosarcoma cells (U2OS) and mouse renal tubular epithelial cells (mRTEC). CONCLUSION Collectively, these findings highlight the detrimental impact of aristolochic acids on local renal circadian clocks, ultimately exacerbating kidney damage. This study provides novel insights into the molecular mechanisms underlying AAI nephrotoxicity, potentially opening avenues for therapeutic interventions aimed at modulating the renal circadian clock to treat AAN.
Collapse
Affiliation(s)
- Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyan Zheng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiading Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxing Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Ma C, Shen B, Chen L, Yang G. Impacts of circadian disruptions on behavioral rhythms in mice. FASEB J 2024; 38:e70183. [PMID: 39570004 DOI: 10.1096/fj.202401536r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Circadian rhythms are fundamental biological processes that recur approximately every 24 h, with the sleep-wake cycle or circadian behavior being a well-known example. In the field of chronobiology, mice serve as valuable model animals for studying mammalian circadian rhythms due to their genetic similarity to humans and the availability of various genetic tools for manipulation. Monitoring locomotor activity in mice provides valuable insights into the impact of various conditions or disturbances on circadian behavior. In this review, we summarized the effects of disturbance of biological rhythms on circadian behavior in mice. External factors, especially light exert a significant impact on circadian behavior. Additionally, feeding timing, food composition, ambient temperature, and physical exercise contribute to variations in the behavior of the mouse. Internal factors, including gender, age, genetic background, and clock gene mutation or deletion, are effective as well. Understanding the effects of circadian disturbances on murine behavior is essential for gaining insights into the underlying mechanisms of circadian regulation and developing potential therapeutic interventions for circadian-related disorders in humans.
Collapse
Affiliation(s)
- Changxiao Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Hamada T, Sutherland K, Ishikawa M, Saito J, Miyamoto N, Honma S, Shirato H, Honma KI. A novel method for measurements of sleep/wake states, feeding and drinking behaviors using the tracking technique of 3D positions in freely moving mice. Biochem Biophys Res Commun 2024; 732:150359. [PMID: 39032409 DOI: 10.1016/j.bbrc.2024.150359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
We have previously developed a 3D video tracking system which enables us to analyze long-term quantitative analysis of gene expression in freely moving mice. In the present study, we improved 3D video tracking and developed a system that analyzes more detailed behavioral data. We succeeded in simultaneously analyzing sleep-wake, feeding, and drinking behavior rhythms in the same individual using our tracking system. This system will make it possible to measure gene expression in each tissue in vivo in real time in relation to the various behavioral rhythms mentioned above.
Collapse
Affiliation(s)
- Toshiyuki Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan.
| | - Kenneth Sutherland
- Global Center for Biomedical Science and Engineering, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masayori Ishikawa
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Jun Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Naoki Miyamoto
- Division of Applied Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, North15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
5
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Swaminathan A, Kenzior A, McCoin C, Price A, Weaver K, Hintermann A, Morris N, Keene AC, Rohner N. A repeatedly evolved mutation in Cryptochrome-1 of subterranean animals alters behavioral and molecular circadian rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613894. [PMID: 39386508 PMCID: PMC11463651 DOI: 10.1101/2024.09.19.613894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The repeated evolution of similar phenotypes in independent lineages often occurs in response to similar environmental pressures, through similar or different molecular pathways. Recently, a repeatedly occurring mutation R263Q in a conserved domain of the protein Cryptochrome-1 (CRY1) was reported in multiple species inhabiting subterranean environments. Cryptochromes regulate circadian rhythms, and glucose and lipid metabolism. Subterranean species show changes to their circadian rhythm and metabolic pathways, making it likely that this mutation in CRY1 contributes to adaptive phenotypic changes. To identify the functional consequences of the CRY1 R263Q mutation, we generated a mouse model homozygous for this mutation. Indirect calorimetry experiments revealed delayed energy expenditure, locomotor activity and feeding patterns of mutant mice in the dark phase, but no further metabolic phenotypes - unlike a full loss of function of CRY1. Gene expression analyses showed altered expression of several canonical circadian genes in the livers of the mutant mice, fortifying the notion that CRY1 R263Q impacts metabolism. Our data provide the first characterization of a novel mutation that has repeatedly evolved in subterranean environments, supporting the idea that shared environmental constraints can drive the evolution of similar phenotypes through similar genetic changes.
Collapse
|
7
|
Steel LCE, Tam SKE, Brown LA, Foster RG, Peirson SN. Light sampling behaviour regulates circadian entrainment in mice. BMC Biol 2024; 22:208. [PMID: 39278902 PMCID: PMC11404008 DOI: 10.1186/s12915-024-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND The natural light environment is far more complex than that experienced by animals under laboratory conditions. As a burrowing species, wild mice are able to self-modulate their light exposure, a concept known as light environment sampling behaviour. By contrast, under laboratory conditions mice have little opportunity to exhibit this behaviour. To address this issue, here we introduce a simple nestbox paradigm to allow mice to self-modulate their light environment. Dark nestboxes fitted with passive infrared sensors were used to monitor locomotor activity, circadian entrainment, decision making and light environment sampling behaviour. RESULTS Under these conditions, mice significantly reduce their light exposure to an average of just 0.8 h across a 24 h period. In addition, mice show a distinct pattern of light environment sampling behaviour, with peaks at dawn and dusk under a ramped light dark cycle. Furthermore, we show that the timing of light environment sampling behaviour depends upon endogenous circadian rhythms and is abolished in mice lacking a circadian clock, indicating a feedback loop between light, the circadian clock and behaviour. CONCLUSIONS Our results highlight the important role of behaviour in modifying the light signals available for circadian entrainment under natural conditions.
Collapse
Affiliation(s)
- Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Duke Kunshan University, Kunshan, Jiangsu, China
| | | | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Gabriel CH, del Olmo M, Rizki Widini A, Roshanbin R, Woyde J, Hamza E, Gutu NN, Zehtabian A, Ewers H, Granada A, Herzel H, Kramer A. Circadian period is compensated for repressor protein turnover rates in single cells. Proc Natl Acad Sci U S A 2024; 121:e2404738121. [PMID: 39141353 PMCID: PMC11348271 DOI: 10.1073/pnas.2404738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024] Open
Abstract
Most mammalian cells have molecular circadian clocks that generate widespread rhythms in transcript and protein abundance. While circadian clocks are robust to fluctuations in the cellular environment, little is known about the mechanisms by which the circadian period compensates for fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in circadian period and a metabolic parameter-protein stability-to study their interdependence without the need for genetic manipulation. We generated cells expressing key circadian proteins (CRYPTOCHROME1/2 (CRY1/2) and PERIOD1/2 (PER1/2)) as endogenous fusions with fluorescent proteins and simultaneously monitored circadian rhythms and degradation in thousands of single cells. We found that the circadian period compensates for fluctuations in the turnover rates of circadian repressor proteins and uncovered possible mechanisms using a mathematical model. In addition, the stabilities of the repressor proteins are circadian phase dependent and correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing model.
Collapse
Affiliation(s)
- Christian H. Gabriel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Marta del Olmo
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Arunya Rizki Widini
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Rashin Roshanbin
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Jonas Woyde
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Ebrahim Hamza
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Nica-Nicoleta Gutu
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Amin Zehtabian
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Adrian Granada
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Achim Kramer
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| |
Collapse
|
10
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Kumar D, Khan B, Okcay Y, Sis ÇÖ, Abdallah A, Murray F, Sharma A, Uemura M, Taliyan R, Heinbockel T, Rahman S, Goyal R. Dynamic endocannabinoid-mediated neuromodulation of retinal circadian circuitry. Ageing Res Rev 2024; 99:102401. [PMID: 38964508 DOI: 10.1016/j.arr.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca2+, K+, and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| | - Bareera Khan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India
| | - Yagmur Okcay
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Çağıl Önal Sis
- University of Health Sciences Gulhane Faculty of Pharmacy Department of Pharmacology, Turkey.
| | - Aya Abdallah
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Fiona Murray
- Institute of Medical Science, University of Aberdeen, Aberdeen, Scotland.
| | - Ashish Sharma
- School of Medicine, Washington University, St. Louis, USA
| | - Maiko Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology Science, Pilani, Rajasthan 333301, India.
| | - Thomas Heinbockel
- Howard University College of Medicine, Department of Anatomy, Washington, DC 20059, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University, Brookings, SD, USA.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173229, India.
| |
Collapse
|
12
|
Cao D, Zhao Y, Wang Y, Wei D, Yan M, Su S, Pan H, Wang Q. Effects of sleep deprivation on anxiety-depressive-like behavior and neuroinflammation. Brain Res 2024; 1836:148916. [PMID: 38609030 DOI: 10.1016/j.brainres.2024.148916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Depression is defined by a persistent low mood and disruptions in sleep patterns, with the WHO forecasting that major depression will rank as the third most prevalent contributor to the global burden of disease by the year 2030. Sleep deprivation serves as a stressor that triggers inflammation within the central nervous system, a process known as neuroinflammation. This inflammatory response plays a crucial role in the development of depression by upregulating the expression of inflammatory mediators that contribute to symptoms such as anxiety, hopelessness, and loss of pleasure. METHODS In this study, sleep deprivation was utilized as a method to induce anxiety and depressive-like behaviors in mice. The behavioral changes in the mice were then evaluated using the EZM, EPM, TST, FST, and SPT. H&E staining and Nissl staining was used to detect morphological changes in the medial prefrontal cortical (mPFC) regions. Elisa to assess serum CORT levels. Detection of mRNA levels and protein expression of clock genes, high mobility genome box-1 (Hmgb1), silent message regulator 6 (Sirt6), and pro-inflammatory factors by RT-qPCR, Western blotting, and immunofluorescence techniques. RESULTS Sleep deprivation resulted in decreased exploration of unfamiliar territory, increased time spent in a state of despair, and lower sucrose water intake in mice. Additionally, sleep deprivation led to increased secretion of serum CORT and upregulation of clock genes, IL6, IL1β, TNFα, Cox-2, iNOS, Sirt6, and Hmgb1. Sleep. CONCLUSIONS Sleep deprivation induces anxiety-depressive-like behaviors and neuroinflammation in the brain. Transcription of clock genes and activation of the Sirt6/Hmgb1 pathway may contribute to inflammatory responses in the mPFC.
Collapse
Affiliation(s)
- Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Yi Zhao
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yuting Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Dongyun Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Minhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Huashan Pan
- Guangdong Chaozhou Health Vocational College, Guangdong, Chaozhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China.
| |
Collapse
|
13
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Kon K, Ode KL, Mano T, Fujishima H, Takahashi RR, Tone D, Shimizu C, Shiono S, Yada S, Matsuzawa K, Yoshida SY, Yoshida Garçon J, Kaneko M, Shinohara Y, Yamada RG, Shi S, Miyamichi K, Sumiyama K, Kiyonari H, Susaki EA, Ueda HR. Cortical parvalbumin neurons are responsible for homeostatic sleep rebound through CaMKII activation. Nat Commun 2024; 15:6054. [PMID: 39025867 PMCID: PMC11258272 DOI: 10.1038/s41467-024-50168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.
Collapse
Affiliation(s)
- Kazuhiro Kon
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Kennedy Krieger Institute, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Tomoyuki Mano
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Riina R Takahashi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Tone
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Chika Shimizu
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Shinnosuke Shiono
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Saori Yada
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kyoko Matsuzawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Shota Y Yoshida
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Junko Yoshida Garçon
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan
| | - Yuta Shinohara
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Hyogo, Japan
| | - Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Department of Systems Biology, Institute of Life Science, Kurume University, Kurume, Fukuoka, Japan.
| |
Collapse
|
15
|
Touitou Y, Cermakian N, Touitou C. The environment and the internal clocks: The study of their relationships from prehistoric to modern times. Chronobiol Int 2024; 41:859-887. [PMID: 38757600 DOI: 10.1080/07420528.2024.2353857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
16
|
Bonnefont X. Cell Signaling in the Circadian Pacemaker: New Insights from in vivo Imaging. Neuroendocrinology 2024:1-8. [PMID: 38754404 DOI: 10.1159/000539344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND "One for all, and all for one," the famous rallying cry of the Three Musketeers, in Alexandre Dumas's popular novel, certainly applies to the 20,000 cells composing the suprachiasmatic nuclei (SCN). These cells work together to form the central clock that coordinates body rhythms in tune with the day-night cycle. Like virtually every body cell, individual SCN cells exhibit autonomous circadian oscillations, but this rhythmicity only reaches a high level of precision and robustness when the cells are coupled with their neighbors. Therefore, understanding the functional network organization of SCN cells beyond their core rhythmicity is an important issue in circadian biology. SUMMARY The present review summarizes the main results from our recent study demonstrating the feasibility of recording SCN cells in freely moving mice and the significance of variations in intracellular calcium over several timescales. KEY MESSAGE We discuss how in vivo imaging at the cell level will be pivotal to interrogate the mammalian master clock, in an integrated context that preserves the SCN network organization, with intact inputs and outputs.
Collapse
Affiliation(s)
- Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
17
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
18
|
Hoekstra MMB, Ness N, Badia-Soteras A, Brancaccio M. Bmal1 integrates circadian function and temperature sensing in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2024; 121:e2316646121. [PMID: 38625943 PMCID: PMC11047078 DOI: 10.1073/pnas.2316646121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.
Collapse
Affiliation(s)
- Marieke M. B. Hoekstra
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Natalie Ness
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Aina Badia-Soteras
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Marco Brancaccio
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| |
Collapse
|
19
|
Meier SA, Furrer M, Nowak N, Zenobi R, Sundset MA, Huber R, Brown SA, Wagner G. Uncoupling of behavioral and metabolic 24-h rhythms in reindeer. Curr Biol 2024; 34:1596-1603.e4. [PMID: 38503287 DOI: 10.1016/j.cub.2024.02.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Reindeer in the Arctic seasonally suppress daily circadian patterns of behavior present in most animals.1 In humans and mice, even when all daily behavioral and environmental influences are artificially suppressed, robust endogenous rhythms of metabolism governed by the circadian clock persist and are essential to health.2,3 Disrupted rhythms foster metabolic disorders and weight gain.4 To understand circadian metabolic organization in reindeer, we performed behavioral measurements and untargeted metabolomics from blood plasma samples taken from Eurasian tundra reindeer (Rangifer tarandus tarandus) across 24 h at 2-h intervals in four seasons. Our study confirmed the absence of circadian rhythms of behavior under constant darkness in the Arctic winter and constant daylight in the Arctic summer, as reported by others.1 We detected and measured the intensity of 893 metabolic features in all plasma samples using untargeted ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). A core group of metabolites (66/893 metabolic features) consistently displayed 24-h rhythmicity. Most metabolites displayed a robust 24-h rhythm in winter and spring but were arrhythmic in summer and fall. Half of all measured metabolites displayed ultradian sleep-wake dependence in summer. Irrespective of the arrhythmic behavior, metabolism is rhythmic (24 h) in seasons of low food availability, potentially favoring energy efficiency. In seasons of food abundance, 24-h rhythmicity in metabolism is drastically reduced, again irrespective of behavioral rhythms, potentially fostering weight gain.
Collapse
Affiliation(s)
- Sara A Meier
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Melanie Furrer
- Child Development Center and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences, Swiss National Technical University (ETH), 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss National Technical University (ETH), 8093 Zurich, Switzerland
| | - Monica A Sundset
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Reto Huber
- Child Development Center and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Gabriela Wagner
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9019 Tromsø, Norway; Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, 9016 Tromsø, Norway.
| |
Collapse
|
20
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
21
|
Bellanda M, Damulewicz M, Zambelli B, Costanzi E, Gregoris F, Mammi S, Tosatto SCE, Costa R, Minervini G, Mazzotta GM. A PDZ scaffolding/CaM-mediated pathway in Cryptochrome signaling. Protein Sci 2024; 33:e4914. [PMID: 38358255 PMCID: PMC10868427 DOI: 10.1002/pro.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Cryptochromes are cardinal constituents of the circadian clock, which orchestrates daily physiological rhythms in living organisms. A growing body of evidence points to their participation in pathways that have not traditionally been associated with circadian clock regulation, implying that cryptochromes may be subject to modulation by multiple signaling mechanisms. In this study, we demonstrate that human CRY2 (hCRY2) forms a complex with the large, modular scaffolding protein known as Multi-PDZ Domain Protein 1 (MUPP1). This interaction is facilitated by the calcium-binding protein Calmodulin (CaM) in a calcium-dependent manner. Our findings suggest a novel cooperative mechanism for the regulation of mammalian cryptochromes, mediated by calcium ions (Ca2+ ) and CaM. We propose that this Ca2+ /CaM-mediated signaling pathway may be an evolutionarily conserved mechanism that has been maintained from Drosophila to mammals, most likely in relation to its potential role in the broader context of cryptochrome function and regulation. Further, the understanding of cryptochrome interactions with other proteins and signaling pathways could lead to a better definition of its role within the intricate network of molecular interactions that govern circadian rhythms.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and ImagingJagiellonian UniversityKrakówPoland
| | - Barbara Zambelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Elisa Costanzi
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | | | - Stefano Mammi
- Department of Chemical SciencesUniversity of PadovaPadovaItaly
| | | | - Rodolfo Costa
- Department of BiologyUniversity of PadovaPadovaItaly
- Institute of Neuroscience, National Research Council of Italy (CNR)PadovaItaly
- Chronobiology Section, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | | | | |
Collapse
|
22
|
Iiams SE, Wan G, Zhang J, Lugena AB, Zhang Y, Hayden AN, Merlin C. Loss of functional cryptochrome 1 reduces robustness of 24-hour behavioral rhythms in monarch butterflies. iScience 2024; 27:108980. [PMID: 38333697 PMCID: PMC10850777 DOI: 10.1016/j.isci.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Light is one of the strongest cues for entrainment of circadian clocks. While some insect species rely only on visual input, others like Drosophila melanogaster use both the visual system and the deep-brain blue-light photoreceptor cryptochrome for entraining circadian rhythms. Here, we used the monarch butterfly Danaus plexippus (dp), which possesses a light-sensitive cryptochrome 1 (dpCry1), to test the conservation of mechanisms of clock entrainment. We showed that loss of functional dpCry1 reduced the amplitude and altered the phase of adult eclosion rhythms, and disrupted brain molecular circadian rhythms. Robust rhythms could be restored by entrainment to temperature cycles, indicating a likely functional core circadian clock in dpCry1 mutants. We also showed that rhythmic flight activity was less robust in dpCry1 mutants, and that visual impairment in dpNinaB1 mutants impacted flight suppression at night. Our data suggest that dpCRY1 is a major photoreceptor for light-entrainment of the monarch circadian clock.
Collapse
Affiliation(s)
- Samantha E. Iiams
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| | - Guijun Wan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiwei Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ashley N. Hayden
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Chiou YY, Lee CY, Yang HW, Cheng WC, Ji KD. Circadian modulation of glucose utilization via CRY1-mediated repression of Pdk1 expression. J Biol Chem 2024; 300:105637. [PMID: 38199564 PMCID: PMC10869264 DOI: 10.1016/j.jbc.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Life adapts to daily environmental changes through circadian rhythms, exhibiting spontaneous oscillations of biological processes. These daily functional oscillations must match the metabolic requirements responding to the time of the day. We focus on the molecular mechanism of how the circadian clock regulates glucose, the primary resource for energy production and other biosynthetic pathways. The complex regulation of the circadian rhythm includes many proteins that control this process at the transcriptional and translational levels and by protein-protein interactions. We have investigated the action of one of these proteins, cryptochrome (CRY), whose elevated mRNA and protein levels repress the function of an activator in the transcription-translation feedback loop, and this activator causes elevated Cry1 mRNA. We used a genome-edited cell line model to investigate downstream genes affected explicitly by the repressor CRY. We found that CRY can repress glycolytic genes, particularly that of the gatekeeper, pyruvate dehydrogenase kinase 1 (Pdk1), decreasing lactate accumulation and glucose utilization. CRY1-mediated decrease of Pdk1 expression can also be observed in a breast cancer cell line MDA-MB-231, whose glycolysis is associated with Pdk1 expression. We also found that exogenous expression of CRY1 in the MDA-MB-231 decreases glucose usage and growth rate. Furthermore, reduced CRY1 levels and the increased phosphorylation of PDK1 substrate were observed when cells were grown in suspension compared to cells grown in adhesion. Our data supports a model that the transcription-translation feedback loop can regulate the glucose metabolic pathway through Pdk1 gene expression according to the time of the day.
Collapse
Affiliation(s)
- Yi-Ying Chiou
- Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Cing-Yun Lee
- Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hao-Wei Yang
- Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Cheng Cheng
- Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kun-Da Ji
- Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Yagita K. Emergence of the circadian clock oscillation during the developmental process in mammals. Curr Opin Genet Dev 2024; 84:102152. [PMID: 38266394 DOI: 10.1016/j.gde.2024.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
The circadian clocks are cell-autonomous intrinsic oscillators existing throughout the body to coordinate intracellular and intercellular functions of each organ or tissue. The circadian clock oscillation gradually emerges during mid-to-late gestation in the mammalian developmental process. Recently, it has been revealed that the in vitro differentiation of mouse ES cells recapitulates the circadian clock development. Moreover, reprogramming of the cells results in the redisappearance of the clock, indicating that circadian clocks are tightly coupled with cellular differentiation. Interestingly, before the circadian clock develops, the embryo is governed under ultradian rhythms driven by the segmentation clock. This short review explores these observations, discussing the significance of the emergence of circadian clock oscillation during the mammalian developmental process.
Collapse
Affiliation(s)
- Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
25
|
dos Santos A, Galiè S. The Microbiota-Gut-Brain Axis in Metabolic Syndrome and Sleep Disorders: A Systematic Review. Nutrients 2024; 16:390. [PMID: 38337675 PMCID: PMC10857497 DOI: 10.3390/nu16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Over recent decades, a growing body of evidence has emerged linking the composition of the gut microbiota to sleep regulation. Interestingly, the prevalence of sleep disorders is commonly related to cardiometabolic comorbidities such as diabetes, impaired lipid metabolism, and metabolic syndrome (MetS). In this complex scenario, the role of the gut-brain axis as the main communicating pathway between gut microbiota and sleep regulation pathways in the brain reveals some common host-microbial biomarkers in both sleep disturbances and MetS. As the biological mechanisms behind this complex interacting network of neuroendocrine, immune, and metabolic pathways are not fully understood yet, the present systematic review aims to describe common microbial features between these two unrelated chronic conditions. RESULTS This systematic review highlights a total of 36 articles associating the gut microbial signature with MetS or sleep disorders. Specific emphasis is given to studies evaluating the effect of dietary patterns, dietary supplementation, and probiotics on MetS or sleep disturbances. CONCLUSIONS Dietary choices promote microbial composition and metabolites, causing both the amelioration and impairment of MetS and sleep homeostasis.
Collapse
Affiliation(s)
- Adriano dos Santos
- Integrative Medicine Nutrition Department, ADS Vitality B.V., 2517 AS The Hague, The Netherlands
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milano, Italy;
| |
Collapse
|
26
|
Gao Y, Xu H, Jia B, Liu Y, Hassan A, Huang Q. Circadian Rhythms of Locomotor Activity Mediated by Cryptochrome 2 and Period 1 Genes in the Termites Reticulitermes chinensis and Odontotermes formosanus. INSECTS 2023; 15:1. [PMID: 38276815 PMCID: PMC10816429 DOI: 10.3390/insects15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Locomotor activity rhythms are crucial for foraging, mating and predator avoidance in insects. Although the circadian rhythms of activity have been studied in several termite species, the molecular mechanisms of circadian rhythms in termites are still unclear. In this study, we found that two termite species, R. chinensis and O. formosanus, exhibited clear circadian rhythms of locomotor activity in constant darkness along with rhythmically expressed core clock genes, Cry2 and Per1. The knockdown of Cry2 or Per1 expression in the two termite species disrupted the circadian rhythms of locomotor activity and markedly reduced locomotor activity in constant darkness, which demonstrates that Cry2 and Per1 can mediate the circadian rhythms of locomotor activity in termites in constant darkness. We suggest that locomotor activity in subterranean termites is controlled by the circadian clock.
Collapse
Affiliation(s)
- Yongyong Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, College of Life Science, Yan’an University, Yan’an 716000, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Research and Development Centre of Ecological and Sustainable Application of Microbial Industry of the Loess Plateau in Shaanxi Province, College of Life Science, Yan’an University, Yan’an 716000, China
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Jia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Yutong Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (H.X.); (B.J.); (Y.L.); (A.H.)
- Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
28
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Qian L, Gu Y, Zhai Q, Xue Z, Liu Y, Li S, Zeng Y, Sun R, Zhang Q, Cai X, Ge W, Dong Z, Gao H, Zhou Y, Zhu Y, Xu Y, Guo T. Multitissue Circadian Proteome Atlas of WT and Per1 -/-/Per2 -/- Mice. Mol Cell Proteomics 2023; 22:100675. [PMID: 37940002 PMCID: PMC10750102 DOI: 10.1016/j.mcpro.2023.100675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular basis of circadian rhythm, driven by core clock genes such as Per1/2, has been investigated on the transcriptome level, but not comprehensively on the proteome level. Here we quantified over 11,000 proteins expressed in eight types of tissues over 46 h with an interval of 2 h, using WT and Per1/Per2 double knockout mouse models. The multitissue circadian proteome landscape of WT mice shows tissue-specific patterns and reflects circadian anticipatory phenomena, which are less obvious on the transcript level. In most peripheral tissues of double knockout mice, reduced protein cyclers are identified when compared with those in WT mice. In addition, PER1/2 contributes to controlling the anticipation of the circadian rhythm, modulating tissue-specific cyclers as well as key pathways including nucleotide excision repair. Severe intertissue temporal dissonance of circadian proteome has been observed in the absence of Per1 and Per2. The γ-aminobutyric acid might modulate some of these temporally correlated cyclers in WT mice. Our study deepens our understanding of rhythmic proteins across multiple tissues and provides valuable insights into chronochemotherapy. The data are accessible at https://prot-rhythm.prottalks.com/.
Collapse
Affiliation(s)
- Liujia Qian
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiaocheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Youqi Liu
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Sainan Li
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yizhun Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Rui Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Zhen Dong
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Yamakawa GR, Patel M, Lin R, O'Brien TJ, Mychasiuk R, Casillas‐Espinosa PM. Diurnal circadian clock gene expression is altered in models of genetic and acquired epilepsy. Epilepsia Open 2023; 8:1523-1531. [PMID: 37805809 PMCID: PMC10690682 DOI: 10.1002/epi4.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVES Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy. METHODS For the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) study, we used 40 GAERS and 40 non-epileptic control (NEC) rats. For the kainic acid status epilepticus (KASE) study, we used 40 KASE and 40 sham rats. Rats were housed in a 7 am:7 pm light-dark cycle. Hypothalamus, hippocampus, liver, and small intestine samples were collected every 3 h throughout the light period. We then assessed core diurnal clock gene expression of per1, cry1, clock, and bmal1. RESULTS In the GAERS rats, all tissues exhibited significant changes in clock gene expression (P < 0.05) when compared to NEC. In the KASE rats, there were fewer effects of the epileptic condition in the hypothalamus, hippocampus, or small intestine (P > 0.05) compared with shams. SIGNIFICANCE These results indicate marked diurnal disruption to core circadian clock gene expression in rats with both generalized and focal chronic epilepsy. This could contribute to epileptic symptomology and implicate the circadian system as a viable target for future treatments.
Collapse
Affiliation(s)
- Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Meshwa Patel
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Pablo M. Casillas‐Espinosa
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| |
Collapse
|
31
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
33
|
Salerno KM, Domenico J, Le NQ, Balakrishnan K, McQuillen RJ, Stiles CD, Solov'yov IA, Martino CF. Long-Time Oxygen and Superoxide Localization in Arabidopsis thaliana Cryptochrome. J Chem Inf Model 2023; 63:6756-6767. [PMID: 37874902 DOI: 10.1021/acs.jcim.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.
Collapse
Affiliation(s)
- K Michael Salerno
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q Le
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Krithika Balakrishnan
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ryan J McQuillen
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D Stiles
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
34
|
Lin L, Huang Y, Wang J, Guo X, Yu F, He D, Wu C, Guo L, Wu B. CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. Biochem Pharmacol 2023; 217:115843. [PMID: 37797722 DOI: 10.1016/j.bcp.2023.115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Luomin Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuwei Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyi Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaocao Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di He
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
35
|
Chen AQ, Xue M, Qiu CZ, Zhang HY, Zhou R, Zhang L, Yin ZJ, Ren DL. Circadian clock1a coordinates neutrophil recruitment via nfe212a/duox-reactive oxygen species pathway in zebrafish. Cell Rep 2023; 42:113179. [PMID: 37756160 DOI: 10.1016/j.celrep.2023.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil recruitment to inflammatory sites appears to be an evolutionarily conserved strategy to fight against exogenous insults. However, the rhythmic characteristics and underlying mechanisms of neutrophil migration on a 24-h timescale are largely unknown. Using the advantage of in vivo imaging of zebrafish, this study explored how the circadian gene clock1a dynamically regulates the rhythmic recruitment of neutrophils to inflammatory challenges. We generated a clock1a mutant and found that neutrophil migration is significantly increased in caudal fin injury and lipopolysaccharide (LPS) injection. Transcriptome sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporting experiments suggest that the clock1a gene regulates neutrophil migration by coordinating the rhythmic expression of nfe212a and duox genes to control the reactive oxygen species (ROS) level. This study ultimately provides a visual model to expand the understanding of the rhythmic mechanisms of neutrophil recruitment on a circadian timescale in a diurnal organism from the perspective of ROS.
Collapse
Affiliation(s)
- An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Xue
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
36
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
37
|
Li W, Xiong X, Kiperman T, Ma K. Transcription Repression of CRY2 via PER2 Interaction Promotes Adipogenesis. Mol Cell Biol 2023; 43:500-514. [PMID: 37724597 PMCID: PMC10569361 DOI: 10.1080/10985549.2023.2253710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
The circadian clock is driven by a transcriptional-translational feedback loop, and cryptochrome 2 (CRY2) represses CLOCK/BMAL1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the CRY2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of CRY2 that mediates interaction with Period 2 (PER2). We further demonstrate that this mechanism is required for repressing circadian clock-controlled Wnt signaling to promote adipogenesis. CRY2 protein is enriched in white adipose depots and robustly induced by adipogenic differentiation. Via site-directed mutagenesis, we identified that a conserved CRY2 cysteine at 432 within the loop interfacing with PER2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted PER2 association without affecting BMAL1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas CRY2 enhanced adipocyte differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of CRY2 attenuated, while stabilization of CRY2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies CRY2 modulation of adipogenesis. Collectively, our findings elucidate a CRY2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.
Collapse
Affiliation(s)
- Weini Li
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tali Kiperman
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
38
|
Hühne-Landgraf A, Laurent K, Frisch MK, Wehr MC, Rossner MJ, Landgraf D. Rescue of Comorbid Behavioral and Metabolic Phenotypes of Arrhythmic Mice by Restoring Circadian Cry1/2 Expression in the Suprachiasmatic Nucleus. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:632-641. [PMID: 37881564 PMCID: PMC10593920 DOI: 10.1016/j.bpsgos.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 10/27/2023] Open
Abstract
Background Psychiatric and metabolic disorders occur disproportionately often comorbidly, which poses particular hurdles for patients and therapists. However, the mechanisms that promote such comorbidities are largely unknown and therefore cannot yet be therapeutically targeted for the simultaneous treatment of both conditions. Because circadian clocks regulate most physiological processes and their disruption is a risk factor for both psychiatric and metabolic disorders, they may be considered as a potential mechanism for the development of comorbidities and a therapeutic target. In the current study, we investigated the latter assumption in Cry1/2-/- mice, which exhibit substantially disrupted endogenous circadian rhythms and marked metabolic and behavioral deficits. Methods By targeted virus-induced restoration of circadian rhythms in their suprachiasmatic nucleus, we can restore behavioral as well as several metabolic processes of these animals to near-normal circadian rhythmicity. Results Importantly, by rescuing suprachiasmatic nucleus rhythms, several of their anxiety-like behavioral as well as diabetes- and energy homeostasis-related deficits were significantly improved. Interestingly, however, this did not affect all deficits typical of Cry1/2-/- mice; for example, restlessness and body weight remained unaffected. Conclusions Taken together, the results of this study demonstrate, on the one hand, that restoration of disturbed circadian rhythms can be used to simultaneously treat psychiatric and metabolic deficits. On the other hand, the results also allow us to distinguish processes that depend more on local canonical clocks from those that depend more on suprachiasmatic nucleus rhythms.
Collapse
Affiliation(s)
- Anisja Hühne-Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Laurent
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Muriel K. Frisch
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael C. Wehr
- Cell Signaling Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
39
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Ozcan O, Gul S, Kavakli IH. Dynamic regulation of the serine loop by distant mutations reveals allostery in cryptochrome1. J Biomol Struct Dyn 2023; 42:10417-10428. [PMID: 37705288 DOI: 10.1080/07391102.2023.2256882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Cryptochromes (CRYs) are essential components of the molecular clock that generates circadian rhythm. They inhibit BMAL1/CLOCK-driven transcription at the molecular level. There are two CRYs that have differential functions in the circadian clock in mammals. It is not precisely known how they achieve such differential functions. In this study, we performed molecular dynamic simulations on eight CRY mutants that have been experimentally shown to exhibit reduced repressor activities. Our results revealed that mutations in CRY1 affect the dynamic behavior of the serine loop and the availability of the secondary pocket, but not in CRY2. Further analysis of these CRY1 mutants indicated that the differential flexibility of the serine loop leads to changes in the volume of the secondary pocket. We also investigated the weak interactions between the amino acids in the serine loop and those in close proximity. Our findings highlighted the crucial roles of S44 and S45 in the dynamic behavior of the serine loop, specifically through their interactions with E382 in CRY1. Considering the clinical implications of altered CRY1 function, our study opens up new possibilities for the development of drugs that target the allosteric regulation of CRY1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Seref Gul
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
41
|
Zhang L, Malkemper EP. Cryptochromes in mammals: a magnetoreception misconception? Front Physiol 2023; 14:1250798. [PMID: 37670767 PMCID: PMC10475740 DOI: 10.3389/fphys.2023.1250798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
Cryptochromes are flavoproteins related to photolyases that are widespread throughout the plant and animal kingdom. They govern blue light-dependent growth in plants, control circadian rhythms in a light-dependent manner in invertebrates, and play a central part in the circadian clock in vertebrates. In addition, cryptochromes might function as receptors that allow animals to sense the Earth's magnetic field. As cryptochromes are also present in mammals including humans, the possibility of a magnetosensitive protein is exciting. Here we attempt to provide a concise overview of cryptochromes in mammals. We briefly review their canonical role in the circadian rhythm from the molecular level to physiology, behaviour and diseases. We then discuss their disputed light sensitivity and proposed role in the magnetic sense in mammals, providing three mechanistic hypotheses. Specifically, mammalian cryptochromes could form light-induced radical pairs in particular cellular milieus, act as magnetoreceptors in darkness, or as secondary players in a magnetoreception signalling cascade. Future research can test these hypotheses to investigate if the role of mammalian cryptochromes extends beyond the circadian clock.
Collapse
Affiliation(s)
| | - E. Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior—caesar, Bonn, Germany
| |
Collapse
|
42
|
Zhuang Y, Li Z, Xiong S, Sun C, Li B, Wu SA, Lyu J, Shi X, Yang L, Chen Y, Bao Z, Li X, Sun C, Chen Y, Deng H, Li T, Wu Q, Qi L, Huang Y, Yang X, Lin Y. Circadian clocks are modulated by compartmentalized oscillating translation. Cell 2023; 186:3245-3260.e23. [PMID: 37369203 DOI: 10.1016/j.cell.2023.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/12/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.
Collapse
Affiliation(s)
- Yanrong Zhuang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhiyuan Li
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Shiyue Xiong
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chujie Sun
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Boya Li
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangcheng Alivia Wu
- Department of Molecular & Integrative Physiology, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Jiali Lyu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University, Beijing 100191, China
| | - Yutong Chen
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhangbin Bao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Li
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuhanwen Sun
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tingting Li
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission of China, Peking University, Beijing 100191, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases and Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Phamalology Department, School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Xuerui Yang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China.
| | - Yi Lin
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Kaneko H, Kaitsuka T, Tomizawa K. Artificial induction of circadian rhythm by combining exogenous BMAL1 expression and polycomb repressive complex 2 inhibition in human induced pluripotent stem cells. Cell Mol Life Sci 2023; 80:200. [PMID: 37421441 PMCID: PMC11072008 DOI: 10.1007/s00018-023-04847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Understanding the physiology of human-induced pluripotent stem cells (iPSCs) is necessary for directed differentiation, mimicking embryonic development, and regenerative medicine applications. Pluripotent stem cells (PSCs) exhibit unique abilities such as self-renewal and pluripotency, but they lack some functions that are associated with normal somatic cells. One such function is the circadian oscillation of clock genes; however, whether or not PSCs demonstrate this capability remains unclear. In this study, the reason why circadian rhythm does not oscillate in human iPSCs was examined. This phenomenon may be due to the transcriptional repression of clock genes resulting from the hypermethylation of histone H3 at lysine 27 (H3K27), or it may be due to the low levels of brain and muscle ARNT-like 1 (BMAL1) protein. Therefore, BMAL1-overexpressing cells were generated and pre-treated with GSK126, an inhibitor of enhancer of zest homologue 2 (EZH2), which is a methyltransferase of H3K27 and a component of polycomb repressive complex 2. Consequently, a significant circadian rhythm following endogenous BMAL1, period 2 (PER2), and other clock gene expression was induced by these two factors, suggesting a candidate mechanism for the lack of rhythmicity of clock gene expression in iPSCs.
Collapse
Affiliation(s)
- Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, 831-8501, Japan.
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
44
|
Schirmer AE, Kumar V, Schook A, Song EJ, Marshall MS, Takahashi JS. Cry1 expression during postnatal development is critical for the establishment of normal circadian period. Front Neurosci 2023; 17:1166137. [PMID: 37389366 PMCID: PMC10300422 DOI: 10.3389/fnins.2023.1166137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The mammalian circadian system generates an approximate 24-h rhythm through a complex autoregulatory feedback loop. Four genes, Period1 (Per1), Period2 (Per2), Cryptochrome1 (Cry1), and Cryptochrome2 (Cry2), regulate the negative feedback within this loop. Although these proteins have distinct roles within the core circadian mechanism, their individual functions are poorly understood. Here, we used a tetracycline trans-activator system (tTA) to examine the role of transcriptional oscillations in Cry1 and Cry2 in the persistence of circadian activity rhythms. We demonstrate that rhythmic Cry1 expression is an important regulator of circadian period. We then define a critical period from birth to postnatal day 45 (PN45) where the level of Cry1 expression is critical for setting the endogenous free running period in the adult animal. Moreover, we show that, although rhythmic Cry1 expression is important, in animals with disrupted circadian rhythms overexpression of Cry1 is sufficient to restore normal behavioral periodicity. These findings provide new insights into the roles of the Cryptochrome proteins in circadian rhythmicity and further our understanding of the mammalian circadian clock.
Collapse
Affiliation(s)
- Aaron E. Schirmer
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- Department of Biology, Northeastern Illinois University, Chicago, IL, United States
| | - Vivek Kumar
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Andrew Schook
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
| | - Michael S. Marshall
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joseph S. Takahashi
- Department of Neurobiology, Northwestern University, Evanston, IL, United States
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
45
|
Ortega-Campos SM, Verdugo-Sivianes EM, Amiama-Roig A, Blanco JR, Carnero A. Interactions of circadian clock genes with the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188900. [PMID: 37105413 DOI: 10.1016/j.bbcan.2023.188900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
The molecular machinery of the circadian clock regulates the expression of many genes and processes in the organism, allowing the adaptation of cellular activities to the daily light-dark cycles. Disruption of the circadian rhythm can lead to various pathologies, including cancer. Thus, disturbance of the normal circadian clock at both genetic and environmental levels has been described as an independent risk factor for cancer. In addition, researchers have proposed that circadian genes may have a tissue-dependent and/or context-dependent role in tumorigenesis and may function both as tumor suppressors and oncogenes. Finally, circadian clock core genes may trigger or at least be involved in different hallmarks of cancer. Hence, expanding the knowledge of the molecular basis of the circadian clock would be helpful to identify new prognostic markers of tumorigenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Sara M Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Amiama-Roig
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - José R Blanco
- Hospital Universitario San Pedro, Logroño 26006, Spain; Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño 26006, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
46
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Psomas A, Chowdhury NR, Middleton B, Winsky-Sommerer R, Skene DJ, Gerkema MP, van der Veen DR. Co-expression of diurnal and ultradian rhythms in the plasma metabolome of common voles (Microtus arvalis). FASEB J 2023; 37:e22827. [PMID: 36856610 DOI: 10.1096/fj.202201585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Metabolic rhythms include rapid, ultradian (hourly) dynamics, but it remains unclear what their relationship to circadian metabolic rhythms is, and what role meal timing plays in coordinating these ultradian rhythms in metabolism. Here, we characterized widespread ultradian rhythms under ad libitum feeding conditions in the plasma metabolome of the vole, the gold standard animal model for behavioral ultradian rhythms, naturally expressing ~2-h foraging rhythms throughout the day and night. These ultradian metabolite rhythms co-expressed with diurnal 24-h rhythms in the same metabolites and did not align with food intake patterns. Specifically, under light-dark entrained conditions we showed twice daily entrainment of phase and period of ultradian behavioral rhythms associated with phase adjustment of the ultradian cycle around the light-dark and dark-light transitions. These ultradian activity patterns also drove an ultradian feeding pattern. We used a unique approach to map this behavioral activity/feeding status to high temporal resolution (every 90 min) measures of plasma metabolite profiles across the 24-h light-dark cycle. A total of 148 known metabolites were detected in vole plasma. Supervised, discriminant analysis did not group metabolite concentration by feeding status, instead, unsupervised clustering of metabolite time courses revealed clusters of metabolites that exhibited significant ultradian rhythms with periods different from the feeding cycle. Two clusters with dissimilar ultradian dynamics, one lipid-enriched (period = 3.4 h) and one amino acid-enriched (period = 4.1 h), both showed co-expression with diurnal cycles. A third cluster solely comprised of glycerophospholipids (specifically ether-linked phosphatidylcholines) expressed an 11.9 h ultradian rhythm without co-expressed diurnal rhythmicity. Our findings show coordinated co-expression of diurnal metabolic rhythms with rapid dynamics in feeding and metabolism. These findings reveal that ultradian rhythms are integral to biological timing of metabolic regulation, and will be important in interpreting the impact of circadian desynchrony and meal timing on metabolic rhythms.
Collapse
Affiliation(s)
- Andreas Psomas
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Namrata R Chowdhury
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Benita Middleton
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Raphaelle Winsky-Sommerer
- Department of Chronobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Debra J Skene
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Menno P Gerkema
- Sleep Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daan R van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
48
|
Li W, Xiong X, Kiperman T, Ma K. Transcription repression of Cry2 via Per2 interaction promotes adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532323. [PMID: 36993226 PMCID: PMC10054956 DOI: 10.1101/2023.03.12.532323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circadian clock is driven by a transcriptional-translational feedback loop, and Cryptochrome 2 (Cry2) represses CLOCK/Bmal1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the Cry2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of Cry2 that mediates interaction with Per2, and demonstrate that this mechanism is required for clock transcriptional repression that inhibits Wnt signaling to promote adipogenesis. Cry2 protein is enriched in white adipose depots and was robustly induced by adipocyte differentiation. Via site-directed mutagenesis, we identified that a conserved Cry2 Cysteine at 432 within the loop interfacing with Per2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted Per2 association without affecting Bmal1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas Cry2 enhanced adipogenic differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of Cry2 attenuated, while stabilization of Cry2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies Cry2 modulation of adipogenesis. Collectively, our findings elucidate a Cry2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.
Collapse
|
49
|
Eum SY, Schurhoff N, Teglas T, Wolff G, Toborek M. Circadian disruption alters gut barrier integrity via a ß-catenin-MMP-related pathway. Mol Cell Biochem 2023; 478:581-595. [PMID: 35976519 PMCID: PMC9938043 DOI: 10.1007/s11010-022-04536-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins. Silencing of ß-catenin resulted in disruption of barrier function in SW480 cells, with ß-catenin appearing to be an upstream regulator of the core circadian components, such as Bmal1, Clock, and Per1/2. In addition, ß-catenin silencing downregulated ZO-1 and occludin TJ proteins with only limited or no changes at their mRNA levels, suggesting post transcriptional regulation. Indeed, silencing of ß-catenin significantly upregulated expression of matrix metallopeptidase (MMP)-2 and MMP-9, and blocking MMP-2/9 activity attenuated epithelial disruption induced by ß-catenin silencing. These results indicate the regulatory role of circadian disruption on gut barrier integrity and the associations between TJ proteins and circadian rhythms, while demonstrating the regulatory role of ß-catenin in this process.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Centre Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
50
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|