1
|
Mérida-Floriano A, Rowe WPM, Casadesús J. Genome-Wide Identification and Expression Analysis of SOS Response Genes in Salmonella enterica Serovar Typhimurium. Cells 2021; 10:cells10040943. [PMID: 33921732 PMCID: PMC8072944 DOI: 10.3390/cells10040943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.
Collapse
Affiliation(s)
- Angela Mérida-Floriano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
| | - Will P. M. Rowe
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-455-7105
| |
Collapse
|
2
|
Li W, Sancar A. Methodologies for detecting environmentally induced DNA damage and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:664-679. [PMID: 32083352 PMCID: PMC7442611 DOI: 10.1002/em.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Environmental DNA damaging agents continuously challenge the integrity of the genome by introducing a variety of DNA lesions. The DNA damage caused by environmental factors will lead to mutagenesis and subsequent carcinogenesis if they are not removed efficiently by repair pathways. Methods for detection of DNA damage and repair can be applied to identify, visualize, and quantify the DNA damage formation and repair events, and they enable us to illustrate the molecular mechanisms of DNA damage formation, DNA repair pathways, mutagenesis, and carcinogenesis. Ever since the discovery of the double helical structure of DNA in 1953, a great number of methods have been developed to detect various types of DNA damage and repair. Rapid advances in sequencing technologies have facilitated the emergence of a variety of novel methods for detecting environmentally induced DNA damage and repair at the genome-wide scale during the last decade. In this review, we provide a historical overview of the development of various damage detection methods. We also highlight the current methodologies to detect DNA damage and repair, especially some next generation sequencing-based methods.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
4
|
Van Houten B. A tale of two cities: A tribute to Aziz Sancar's Nobel Prize in Chemistry for his molecular characterization of NER. DNA Repair (Amst) 2016; 37:A3-A13. [PMID: 26861185 PMCID: PMC5068483 DOI: 10.1016/j.dnarep.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
5
|
Orren DK. The Nobel Prize in Chemistry 2015: Exciting discoveries in DNA repair by Aziz Sancar. SCIENCE CHINA-LIFE SCIENCES 2015; 59:97-102. [PMID: 26712032 DOI: 10.1007/s11427-015-4994-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- David K Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0305, USA.
| |
Collapse
|
6
|
Krokan HE. A life in DNA repair—And beyond. DNA Repair (Amst) 2012; 11:224-35. [DOI: 10.1016/j.dnarep.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Skandrani I, Ben Sghaier M, Neffati A, Boubaker J, Bouhlel I, Kilani S, Mahmoud A, Ghedira K, Chekir-Ghedira L. Antigenotoxic and Free Radical Scavenging Activities of Extracts fromMoricandia arvensis. Drug Chem Toxicol 2008; 30:361-82. [DOI: 10.1080/01480540701522494] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Weiss B, Grossman L. Phosphodiesterases involved in DNA repair. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 60:1-34. [PMID: 2444076 DOI: 10.1002/9780470123065.ch1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Weiss
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | | |
Collapse
|
9
|
Arakawa H, Wu F, Costa M, Rom W, Tang MS. Sequence specificity of Cr(III)-DNA adduct formation in the p53 gene: NGG sequences are preferential adduct-forming sites. Carcinogenesis 2005; 27:639-45. [PMID: 16251206 DOI: 10.1093/carcin/bgi249] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a known etiological factor in human lung cancer. Cr(VI) exposure-related lung cancer has a high mutation incidence in the p53 gene. Upon intake in human cells Cr(VI) is reduced to Cr(III), which is able to conjugate with amino acids and consequently form either binary Cr(III)-DNA or ternary Cr(III)-amino acid-DNA adducts. Both binary and ternary Cr(III)-DNA adducts are mutagenic. We have found that the Escherichia coli nucleotide excision enzyme UvrABC nuclease is able to incise Cr(III)- and Cr(III)-histidine-modified plasmid DNA and the extent of incision is proportional to the amount of Cr(III)-DNA adducts in the plasmid. In order to determine the role of Cr(III)-DNA adducts in the mutagenesis of the p53 gene in human cancer using the UvrABC nuclease incision method, we have mapped the Cr(III)-DNA distribution in PCR DNA fragments amplified from exons 5, 7 and 8 of the p53 gene. We have found that the sequence specificities of Cr(III)-DNA and Cr(III)-histidine-DNA adducts in the p53 gene sequence are identical and that both types of adducts are preferentially formed at -NGG- sequences, including codons 245, 248 and 249, the mutational hotspots in human lung cancer. It has been found that Cr(III)-DNA adducts induce mainly G to T mutations. Therefore, these results suggest that Cr(III)-DNA adduct formation contributes to the p53 gene mutations in lung carcinogenesis.
Collapse
Affiliation(s)
- Hirohumi Arakawa
- Department of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | |
Collapse
|
10
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
11
|
Moe A, Ringvoll J, Nordstrand LM, Eide L, Bjørås M, Seeberg E, Rognes T, Klungland A. Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res 2003; 31:3893-900. [PMID: 12853604 PMCID: PMC167633 DOI: 10.1093/nar/gkg472] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3' to the lesion. We have identified and characterised a mouse cDNA with striking homology to the E.coli nfi gene, which also has significant similarities to motifs required for catalytic activity of the UvrC endonuclease. The 37-kDa mouse enzyme (mEndo V) incises the DNA strand at the second phosphodiester bond 3' to hypoxanthine- and uracil-containing nucleotides. The activity of mEndo V is elevated on single-stranded DNA substrate in vitro. Expression of the mouse protein in a DNA repair-deficient E.coli alkA nfi strain suppresses its spontaneous mutator phenotype. We suggest that mEndo V initiates an alternative excision repair pathway for hypoxanthine removal. It thus appears that mEndo V has properties overlapping the function of alkylbase DNA glycosylase (Aag) in repair of deaminated adenine, which to some extent could explain the absence of phenotypic abnormalities associated with Aag knockout in mice.
Collapse
Affiliation(s)
- Ane Moe
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hsu T, Sheu R, Lai Y. Possible involvement of a 72-kDa polypeptide in nucleotide excision repair of Chlorella pyrenoidosa identified by affinity adsorption and repair synthesis assay. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:95-102. [PMID: 10908809 DOI: 10.1016/s0168-9452(00)00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA repair synthesis assay monitoring nucleotide excision repair (NER) was established in cell-free extracts of unicellular alga Chlorella pyrenoidosa using cisplatin- or mitomycin C-damaged plasmid DNA as the repair substrate. The algal extracts promoted a damage-dependent increase in 32P-dATP incorporation after normalization against an internal control. To identify the proteins responsible for NER, a biotin-labeled duplex 27 mer (2 µg) irradiated with or without UV (27 kJ m(-2)) was immobilized on streptavidin-conjugated agarose beads and incubated with C. pyrenoidosa extracts (50 µg) to pull down repair proteins. The extracts post incubation with beads carrying unirradiated 27 mer promoted an eightfold increase in repair synthesis in plasmid DNA (1 µg) damaged by 16.8 pmol of cisplatin. The extracts obtained after affinity adsorption with UV-damaged DNA ligand, however, failed to repair plasmid DNA treated with cisplatin, reflecting that some proteins crucial to NER had been sequestered by the damaged 27 mer. A polypeptide approximately 70-72 kDa in molecular mass was found to bind much more strongly to the damaged DNA than to the control DNA after analyzing the proteins bound to the beads by SDS-PAGE, and this polypeptide is believed to play a role in NER in C. pyrenoidosa.
Collapse
Affiliation(s)
- T Hsu
- Institute of Marine Biotechnology, National Taiwan Ocean University, 20224, Keelung, Taiwan, ROC
| | | | | |
Collapse
|
13
|
|
14
|
Mu D, Sancar A. DNA excision repair assays. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:63-81. [PMID: 9187051 DOI: 10.1016/s0079-6603(08)61002-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D Mu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
15
|
Eide L, Bjørås M, Pirovano M, Alseth I, Berdal KG, Seeberg E. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:10735-40. [PMID: 8855249 PMCID: PMC38224 DOI: 10.1073/pnas.93.20.10735] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One gene locus on chromosome I in Saccharomyces cerevisiae encodes a protein (YAB5_YEAST; accession no. P31378) with local sequence similarity to the DNA repair glycosylase endonuclease III from Escherichia coli. We have analyzed the function of this gene, now assigned NTG1 (endonuclease three-like glycosylase 1), by cloning, mutant analysis, and gene expression in E. coli. Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo. Northern blot analysis and expression studies of a NTG1-lacZ gene fusion showed that NTG1 is induced by cell exposure to different DNA damaging agents, particularly menadione, and hence belongs to the DNA damage-inducible regulon in S. cerevisiae. When expressed in E. coli, the NTG1 gene product cleaves plasmid DNA damaged by osmium tetroxide, thus, indicating specificity for thymine glycols in DNA similarly as is the case for EndoIII. However, NTG1 also releases formamidopyrimidines from DNA with high efficiency and, hence, represents a glycosylase with a novel range of substrate recognition. Sequences similar to NTG1 from other eukaryotes, including Caenorhabditis elegans, Schizosaccharomyces pombe, and mammals, have recently been entered in the GenBank suggesting the universal presence of NTG1-like genes in higher organisms. S. cerevisiae NTG1 does not have the [4Fe-4S] cluster DNA binding domain characteristic of the other members of this family.
Collapse
Affiliation(s)
- L Eide
- Department of Molecular Biology, University of Oslo, National Hospital, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- K S Sweder
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| |
Collapse
|
17
|
Analysis of UvrABC endonuclease reaction intermediates on cisplatin-damaged DNA using mobility shift gel electrophoresis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50487-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Wani AA, Arezina J. Immunoanalysis of ultraviolet radiation induced DNA damage and repair within specific gene segments of plasmid DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1090:195-203. [PMID: 1657185 DOI: 10.1016/0167-4781(91)90101-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The region-specific heterogeneity of repairing DNA damage has been established in several biological systems. A flexible and sensitive approach, based upon DNA damage specific antibodies, is described to monitor the repair of specific lesions within discrete genomic segments. Membrane transblotted DNA restriction fragments are immunoanalyzed for the initial formation and repair of 254 nm radiation induced pyrimidine dimers. Sensitivity of dimer immunodetection increases proportional to fragment concentration and size. Antibody binding was detectable in a 0.5 kb fragment obtained from approx. 100 ng of restriction digested phage lambda DNA irradiated with 50 J m-2. Dimers within larger fragments (greater than 5 kb) could be detected at ultraviolet doses as low as 1 to 2 J m-2. To determine the occurrence of preferential repair in prokaryotic cells, damage was assessed in DNA sequences established in various Escherichia coli strains. In vivo repair of 8.9 kb vector and 6.4 and 3.2 kb gene inserts occurred with an approximate t1/2 of 45 min in UvrABC excision repair-proficient strains. Antibody binding sites were retained by DNA within repair-deficient strains. Compared to UvrABC, the repair of DNA fragments mediated by T4 endonuclease V was rapid and complete within 30 min of cellular irradiation. The efficient repair in DenV+ strain is attributable to a highly processive repair enzyme rather than to selective repair of actively replicating target genes. The results demonstrate the exceptional ability of antibodies specific for altered biomolecular lesions to map damage and repair in gene segments episomally established within cells.
Collapse
Affiliation(s)
- A A Wani
- Department of Radiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
19
|
Abstract
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.
Collapse
Affiliation(s)
- C P Selby
- University of North Carolina, School of Medicine, Department of Biochemistry, Chapel Hill 27599
| | | |
Collapse
|
20
|
Sicard N, Estevenon AM. Excision-repair capacity in Streptococcus pneumoniae: cloning and expression of a uvr-like gene. Mutat Res 1990; 235:195-201. [PMID: 2342506 DOI: 10.1016/0921-8777(90)90074-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although deficient in photoreactivation and some SOS-like functions, Streptococcus pneumoniae has the capacity to carry out excision repair when exposed to UV light. The repair ability and sensitivity to UV irradiation or treatment with chemical agents in the wild type and a UV-sensitive mutant strain indicate that UV-induced pyrimidine dimers might be repaired in pneumococcus by a system similar to the uvr-dependent system in Escherichia coli. A gene complementing the mutation conferring UV sensitivity of the mutant strain has been cloned. The coding region directs the synthesis of a polypeptide with a molecular weight of 78 kDa. The relationship with uvr-like protein in E. coli is discussed.
Collapse
Affiliation(s)
- N Sicard
- Centre de Recherche de Biochimie et de Génétique Cellulaires du CNRS, Toulouse, France
| | | |
Collapse
|
21
|
|
22
|
Abstract
One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| |
Collapse
|
23
|
Murphy KE, Guzder SN, Braymer HD. Evidence for unique DNA repair activity encoded by a cloned Serratia marcescens gene: suppression of Escherichia coli mutations that reduce repair of alkylated DNA. J Bacteriol 1989; 171:5179-82. [PMID: 2670906 PMCID: PMC210336 DOI: 10.1128/jb.171.9.5179-5182.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.
Collapse
Affiliation(s)
- K E Murphy
- Program in Genetics, Louisiana State University, Baton Rouge 70803-1715
| | | | | |
Collapse
|
24
|
Sibghatullah, Husain I, Carlton W, Sancar A. Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucleic Acids Res 1989; 17:4471-84. [PMID: 2748330 PMCID: PMC318007 DOI: 10.1093/nar/17.12.4471] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We searched for nucleotide excision repair in human cell-free extracts using two assays: damage-specific incision of DNA (the nicking assay) and damage-stimulated DNA synthesis (the repair synthesis assay). HeLa cell-free extract prepared by the method of Manley et al. (1980) has a weak nicking activity on UV irradiated DNA and the nicking is only slightly reduced when pyrimidine dimers are eliminated from the substrate by DNA photolyase. In contrast to the nicking assay, the extract gives a strong signal with UV irradiated substrate in the repair synthesis assay. The repair synthesis activity is ATP dependent and is reduced by about 50% by prior treatment of the substrate with DNA photolyase indicating that this fraction of repair synthesis is due to removal of pyrimidine dimers by nucleotide excision. Psoralen and cisplatin adducts which are known to be removed by nucleotide excision repair also elicited repair synthesis activity 5-10 fold above the background synthesis. When M13RF DNA containing a uniquely placed psoralen adduct was used in the reaction, complete repair was achieved in a fraction of molecules as evidenced by the restoration of psoralen inactivated KpnI restriction site. This activity is absent in xeroderma pigmentosum group A cells. We conclude that our cell-free extract contains the human nucleotide excision repair enzyme activity.
Collapse
Affiliation(s)
- Sibghatullah
- University of North Carolina School of Medicine, Department of Biochemistry, Chapel Hill 27599
| | | | | | | |
Collapse
|
25
|
Masek F, Skorvaga M, Sedliaková M. Repression of damage-inducible (din) genes by the lexA3 mutation or by plasmid carrying the lexA gene; effect on pyrimidine dimer excision in UV-irradiated Escherichia coli. Gene 1989; 78:195-9. [PMID: 2670681 DOI: 10.1016/0378-1119(89)90329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dimer excision was followed in Escherichia coli K-12 AB1157 DM49 lexA3 mutant (whose repressor is not cleavable with RecA protease), and in E. coli K-12 AB2497[pGC3] carrying the cloned lexA gene. In either case din genes could not be efficiently derepressed. In such cells ultraviolet (UV) irradiation caused an extensive DNA degradation, which was not observed in cells with derepressed din genes. Even after a high UV dose (70 J/m2) dimers were being excised efficiently. However, progressive DNA degradation interfered with the precise detection of unexcised dimers. We conclude that induction of din genes is required for filling some of the gaps and for prevention of DNA degradation, but not for excision itself.
Collapse
Affiliation(s)
- F Masek
- Department of Molecular Genetics, Slovak Academy of Sciences, Bratislava, Czechoslavakia
| | | | | |
Collapse
|
26
|
Estevenon AM, Sicard N. Excision-repair capacity of UV-irradiated strains of Escherichia coli and Streptococcus pneumoniae, estimated by plasmid recovery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1989; 3:185-92. [PMID: 2498485 DOI: 10.1016/1011-1344(89)80061-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the biological role of many bacterial repair genes is known, there is still an interest in evaluating the capacity of repair pyrimidine dimers in some strains. For this purpose, we have developed a rapid assay. Cells bearing a plasmid are UV irradiated and incubated to allow recovery. The plasmid DNA is extracted, purified and treated with UV endonuclease from Micrococcus luteus that specifically produces single strand breaks at the site of pyrimidine dimers. The amount of open circular and covalently closed circular forms of the plasmid DNA after treatment and post-incubation provides an estimate of the repair capability of the host strain. The wild type strain and the uvrA mutant of Escherichia coli were used to adjust the assay. The lexA mutant of E. coli has been tested and its repair capability is equivalent to that of wild-type strain. The assay has been extended to Streptococcus pneumoniae, which is naturally deficient in photoreactivation and SOS-like functions. This strain is efficient in the repair of pyrimidine dimers, formed after UV irradiation.
Collapse
Affiliation(s)
- A M Estevenon
- U.E.R. Sciences Pharmaceutiques, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
27
|
|
28
|
VanDongen AM, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 1988; 242:1433-7. [PMID: 3144040 DOI: 10.1126/science.3144040] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Potassium channels in neurons are linked by guanine nucleotide binding (G) proteins to numerous neurotransmitter receptors. The ability of Go, the predominant G protein in the brain, to stimulate potassium channels was tested in cell-free membrane patches of hippocampal pyramidal neurons. Four distinct types of potassium channels, which were otherwise quiescent, were activated by both isolated brain G0 and recombinant Go alpha. Hence brain Go can couple diverse brain potassium channels to neurotransmitter receptors.
Collapse
Affiliation(s)
- A M VanDongen
- Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review describes the evolution of research into the genetic basis of how different organisms use the process of excision repair to recognize and remove lesions from their cellular DNA. One particular aspect of excision repair, DNA incision, and how it is controlled at the genetic level in bacteriophage, bacteria, S. cerevisae, D. melanogaster, rodent cells and humans is examined. In phage T4, DNA is incised by a DNA glycosylase-AP endonuclease that is coded for by the denV gene. In E. coli, the products of three genes, uvrA, uvrB and uvrC, are required to form the UVRABC excinuclease that cleaves DNA and releases a fragment 12-13 nucleotides long containing the site of damage. In S. cerevisiae, genes complementing five mutants of the RAD3 epistasis group, rad1, rad2, rad3, rad4 and rad10 have been cloned and analyzed. Rodent cells sensitive to a variety of mutagenic agents and deficient in excision repair are being used in molecular studies to identify and clone human repair genes (e.g. ERCC1) capable of complementing mammalian repair defects. Most studies of the human system, however, have been done with cells isolated from patients suffering from the repair defective, cancer-prone disorder, xeroderma pigmentosum, and these cells are now beginning to be characterized at the molecular level. Studies such as these that provide a greater understanding of the genetic basis of DNA repair should also offer new insights into other cellular processes, including genetic recombination, differentiation, mutagenesis, carcinogenesis and aging.
Collapse
Affiliation(s)
- J S Rubin
- Center for Radiological Research, College of Physicians & Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
30
|
Swirski RA, Shawcross SG, Faulkner BM, Strike P. Repair of alkylation damage in the fungus Aspergillus nidulans. Mutat Res 1988; 193:255-68. [PMID: 2452348 DOI: 10.1016/0167-8817(88)90036-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The repair of alkylation damage in Aspergillus nidulans was investigated. We have assayed soluble protein fractions for enzymes known to be involved in the repair of this type of damage in DNA. The presence of a glycosylase activity that can remove 3-methyladenine from DNA was demonstrated, as well as a DNA methyltransferase activity that appears to act against O6-methylguanine. In addition to this approach, a series of mutants were isolated which display increased sensitivity to alkylating agents (sag mutants). 5 such mutants were further characterized, and at least 4 are shown to map to genes which have not previously been characterized. The behaviour of double mutant combinations demonstrates the existence of at least 2 pathways for the repair of alkylation damage. The majority of the sag mutants (sagA1, sagB2, sag4 and sagE5) exhibit an increased sensitivity to a range of alkylating agents, but not to UV light, while sagC3, when irradiated at the germling stage, also shows sensitivity to UV. None of the mutants isolated are defective in either the 3-methyladenine DNA glycosylase activity, or the DNA methyltransferase activity, and the nature of the defects in these strains remains to be determined.
Collapse
Affiliation(s)
- R A Swirski
- Department of Genetics, University of Liverpool, Great Britain
| | | | | | | |
Collapse
|
31
|
Clarke ND, Lien DC, Schimmel P. Evidence from cassette mutagenesis for a structure-function motif in a protein of unknown structure. Science 1988; 240:521-3. [PMID: 3282306 DOI: 10.1126/science.3282306] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The three-dimensional structure of most enzymes is unknown; however, many enzymes may have structural motifs similar to those in the known structures of functionally related enzymes. Evidence is presented that an enzyme of unknown structure [Ile-transfer RNA (tRNA) synthetase] may share a functionally important structural motif with an enzyme of related function (Tyr-tRNA synthetase). This approach involves (i) identifying segments of Ile-tRNA synthetase that have been unusually conserved during evolution, (ii) predicting the function of one such segment by assuming a structural relation between Ile-tRNA synthetase and Tyr-tRNA synthetase, and (iii) testing the predicted function by mutagenesis and subsequent biochemical analysis. Random mutations were introduced by cassette mutagenesis into a ten-amino-acid segment of Ile-tRNA synthetase that was predicted to be involved in the formation of the binding site for isoleucine. Few amino acid substitutions appear to be tolerated in this region. However, one substitution (independently isolated twice) increased the Michaelis constant Km for isoleucine in the adenylate synthesis reaction by greater than 6000-fold, but had little effect on the Km for adenosine triphosphate, the apparent Km for tRNA, or the rate constant kcat.
Collapse
Affiliation(s)
- N D Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
32
|
Wood RD, Robins P, Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 1988; 53:97-106. [PMID: 3349527 DOI: 10.1016/0092-8674(88)90491-6] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.
Collapse
Affiliation(s)
- R D Wood
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire, England
| | | | | |
Collapse
|
33
|
Bjelland S, Seeberg E. Purification and characterization of 3-methyladenine DNA glycosylase I from Escherichia coli. Nucleic Acids Res 1987; 15:2787-801. [PMID: 3550703 PMCID: PMC340699 DOI: 10.1093/nar/15.7.2787] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.
Collapse
|
34
|
Bichara M, Fuchs RP. uvrC gene function has no specific role in repair of N-2-aminofluorene adducts. J Bacteriol 1987; 169:423-6. [PMID: 3539925 PMCID: PMC211786 DOI: 10.1128/jb.169.1.423-426.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Escherichia coli, plasmid DNA modified with N-2-aminofluorene adducts survived equally well in wild-type, uvrA, or uvrB strains. Increased sensitivity was found in uvrC and uvrD strains. Moreover, N-2-aminofluorene-mediated toxicity in the uvrC background was reversed when an additional uvrA mutation was introduced into the strain.
Collapse
|
35
|
Kaasen I, Evensen G, Seeberg E. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance. J Bacteriol 1986; 168:642-7. [PMID: 3536857 PMCID: PMC213529 DOI: 10.1128/jb.168.2.642-647.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have constructed plasmids which overproduce the tag and alkA gene products of Escherichia coli, i.e., 3-methyladenine DNA glycosylases I and II. The tag and alkA gene products were identified radiochemically in maxi- or minicells as polypeptides of 21 and 30 kilodaltons, respectively, which are consistent with the gel filtration molecular weights of the enzyme activities, thus confirming the identity of the cloned genes. High expression of the tag+-coded glycosylase almost completely suppressed the alkylation sensitivity of alkA mutants, indicating that high levels of 3-methyladenine DNA glycosylase I will eliminate the need for 3-methyladenine DNA glycosylase II in repair of alkylated DNA. Furthermore, overproduction of the alkA+-coded glycosylase greatly sensitizes wild-type cells to alkylation, suggesting that only a limited expression of this enzyme will allow efficient DNA repair.
Collapse
|
36
|
Backendorf C, Spaink H, Barbeiro AP, van de Putte P. Structure of the uvrB gene of Escherichia coli. Homology with other DNA repair enzymes and characterization of the uvrB5 mutation. Nucleic Acids Res 1986; 14:2877-90. [PMID: 3008099 PMCID: PMC339709 DOI: 10.1093/nar/14.7.2877] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The complete nucleotide sequence of the Escherichia coli uvrB gene has been determined. The coding region of the uvrB gene consists of 2019 nucleotides which direct the synthesis of a 673 amino-acid long polypeptide with a calculated molecular weight of 76.614 daltons. Comparison of the UvrB protein sequence to other known DNA repair enzymes revealed that 2 domains of the UvrB protein (domain I = 6 amino acids, domain II = 14 amino acids) are also present in the protein sequence of the uvrC gene. We show that the structural homologies between UvrB and UvrC are as well reflected by the cross-reactivity of anti-uvrB and anti-uvrC antibodies with UvrC and UvrB protein respectively. In the N-terminal part of UvrB, domain III (17 amino acids) shows a strong homology with one part of the AlkA gene product. Adjacent to domain III, an ATP binding site consensus sequence is found in domain IV. The uvrB5 mutant gene from strain AB1885 has been cloned on plasmid pBL01. We show that the uvrB5 mutation is due to a point deletion of a CG basepair and results in the synthesis of an 18 kD protein composed of the 113 N-terminal amino acids of the wild type uvrB gene and a 43 amino acid long tail coded in the -1 frame.
Collapse
|
37
|
Abstract
The recA1 mutation was transduced into the tag-2 mutant of E. coli, thus making a strain deficient in the induction of SOS repair as well as in the constitutive repair of 3-alkylated adenines in DNA. The double mutant recA tag is more sensitive to methyl methanesulfonate exposure than either single mutant, indicating that recA and tag mutations block different pathways in repair of alkylation damage. The double mutant is more deficient in host cell reactivation of alkylated phages than the tag single mutant. However, alkylation induction of the double mutant with N-methyl-N'-nitro-N-nitrosoguanidine resulted in killing adaptation of the cells to methyl methanesulfonate and restored the host cell reactivation capacity for alkylated lambda phage to wild-type levels. These adaptive responses can be ascribed to the induction of 3-methyladenine DNA glycosylase II which is shown by enzyme analysis to proceed normally in the recA mutant background. The results imply that the induction of the alkA gene encoding 3-methyladenine DNA glycosylase II is independent of SOS induction.
Collapse
|
38
|
Abstract
The SOS Chromotest is a quantitative bacterial colorimetric assay for genotoxins. Substantial validation is now available (Quillardet et al., 1985). We describe here in detail the tester strain as well as the effects of the variation of some parameters on the assay. We report a simple spot-test procedure as well as a new standard procedure which incorporate recent technical improvements aimed at simplifying the assay further.
Collapse
|
39
|
Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89127-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Tang MS, Ross L. Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli. J Bacteriol 1985; 161:933-8. [PMID: 3882671 PMCID: PMC214987 DOI: 10.1128/jb.161.3.933-938.1985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites.
Collapse
|
41
|
Kataoka H, Sekiguchi M. Molecular cloning and characterization of the alkB gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1985; 198:263-9. [PMID: 3884973 DOI: 10.1007/bf00383004] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using methods of in vitro recombination we constructed hybrid plasmids that can suppress the increased methylmethane sulfonate sensitivity caused by alkB mutation. Since the cloned DNA fragment was mapped at 47 min on the Escherichia coli K12 genetic map, an area where the alkB gene is located, we concluded that the cloned DNA fragment contains the alkB gene itself but not other genes that suppress alkB mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkB codes for a polypeptide with a molecular weight of about 27,000. Introduction of a small deletion into the alkB region of the bacterial chromosome resulted in inactivation of both the alkB and ada genes, thereby suggesting that the two genes are adjacent on the E. coli chromosome.
Collapse
|
42
|
|
43
|
Abstract
The Escherichia coli uvrC gene has been cloned into multicopy plasmids from the transducing phage lambda uvrC+ and the structural gene assigned to a 1.9-kb BglII fragment. Deletion of upstream sequences shows the presence of an in vivo uvrC promoter close to the start of the structural gene, as confirmed by subcloning the uvrC fragment into actively transcribed or 'promoter-free' restriction sites in various plasmid vectors. The control of uvrC transcription has been investigated using hybrid uvrC-cat operons. There are at least two promoters upstream of uvrC. Only the proximal promoter, some two orders of magnitude less effective than the cat promoter, is required for in vivo expression of the uvrC gene. We can find no evidence that expression of the uvrC gene on multicopy plasmids is either autogenously controlled or controlled by the product of the lexA gene.
Collapse
|
44
|
Clarke ND, Kvaal M, Seeberg E. Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:368-72. [PMID: 6098799 DOI: 10.1007/bf00329931] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have constructed two recombinant plasmids which harbour functions involved in DNA repair of alkylation damage in Escherichia coli. One plasmid carries the tag+ gene encoding 3-methyladenine DNA glycosylase I while the other carries alkA+ encoding 3-methyladenine DNA glycosylase II. The plasmids were isolated from plasmid stocks carrying total cellular DNA by selection for their ability to complement the methylmethanesulphonate(MMS)-sensitive phenotype of an E. coli mutant (tag ada) deficient in both 3-methyladenine DNA glycosylases I and II. Both plasmids increase the plating efficiency of such a mutant on methylmethanesulphonate plates by a factor of more than 10(5). The tag gene is located on a 6 (kbp) HindIII fragment, and the presence of the tag plasmid in the cells results in 15-fold overproduction of 3-methyladenine DNA glycosylase I. The other plasmid restores 3-methyladenine DNA glycosylase II deficiency in alkA mutant cells, and results in 3-fold overproduction of this enzyme after alkylation induction. The induction is ada+-dependent and we conclude that this plasmid contains the structural gene for 3-methyladenine DNA glycosylase II, including its control region responding to alkylation induction. However, the plasmid does not complement fully the MMS-sensitive phenotype of alkA mutants which suggests that the plasmid may not include the entire alkA operon.
Collapse
|
45
|
Abstract
We have determined the sequence of a 2400 bp region of E. coli chromosomal DNA containing the uvrC gene. The coding region of uvrc is 2267 bp in length, encodes a polypeptide with a calculated molecular weight of 66,038 daltons, and is preceded by a typical E. coli ribosome binding site. By constructing deletion derivatives we have established that a uvrC promoter lies within the 113 bp region preceding the translational start of uvrC. The codon usage in uvrC is strongly biased in favor of codons used infrequently in E. coli, which may contribute to the relatively low intracellular concentration of uvrC protein.
Collapse
|
46
|
DeLuca JG, Doetsch PW, Haseltine WA. Construction of a plasmid containing functional Escherichia coli uvrA, B, and C genes in a configuration potentially suitable for mammalian expression. Plasmid 1984; 11:253-9. [PMID: 6087393 DOI: 10.1016/0147-619x(84)90032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A plasmid, pUVABC-2, was constructed that encodes functional uvrA, B, and C genes of Escherichia coli. This plasmid also contains the gpt and ampr genes for positive selection in either bacterial or mammalian systems. Each of the uvrA, B, C, and gpt genes is located between SV40 initiation and termination signals and retains the original bacterial promoters. This recombinant vector conferred a wild-type UV resistance phenotype to uvrA-, B-, and C- strains of E. coli. The results indicate that each of the uvr genes contained in pUVABC-2 function in E. coli. The plasmid is a potential biological probe for DNA repair in mammalian cells.
Collapse
|
47
|
Miller RD, Prakash S, Prakash L. Different effects of RAD genes of Saccharomyces cerevisiae on incisions of interstrand crosslinks and monoadducts in DNA induced by psoralen plus near UV light treatment. Photochem Photobiol 1984; 39:349-52. [PMID: 6371851 DOI: 10.1111/j.1751-1097.1984.tb08189.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
|
49
|
Quillardet P, Hofnung M. Induction by UV light of the SOS function sfiA in Escherichia coli strains deficient or proficient in excision repair. J Bacteriol 1984; 157:35-8. [PMID: 6361003 PMCID: PMC215125 DOI: 10.1128/jb.157.1.35-38.1984] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The influence of the nucleotide excision repair system on the induction by UV irradiation of the SOS function sfiA has been investigated. The level of sfiA expression was monitored by means of a sfiA::lacZ operon fusion in both the wild-type strain and a uvrA mutant. We found that the initial steady rate of sfiA expression was proportional to the UV dose and was identical in uvr+ and uvrA backgrounds. This suggests that the initial steady rate of sfiA expression is determined by the initial number of lesions and before any effect of excision repair. We confirmed that after 2 h of expression the net synthesis of sfiA product is, for the same UV dose, about five times lower in uvr+ than in uvrA strains. We show that this is due to earlier repression of the SOS system in uvr+ than in uvrA strains and not to different initial rates.
Collapse
|
50
|
Requirement of ATP for specific incision of ultraviolet-damaged DNA during excision repair in permeable human fibroblasts. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44169-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|