1
|
Garcillán-Barcia MP, Redondo-Salvo S, de la Cruz F. Plasmid classifications. Plasmid 2023; 126:102684. [PMID: 37116631 DOI: 10.1016/j.plasmid.2023.102684] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Plasmids are universally present in bacteria and play key roles in the dissemination of genes such as antibiotic resistance determinants. Major concepts in Plasmid Biology derive from the efforts to classify plasmids. Here, we review the main plasmid classification systems, starting by phenotype-based methods, such as fertility inhibition and incompatibility, followed by schemes based on a single gene (replicon type and MOB class), and finishing with recently developed approaches that use genetic distances between whole plasmid sequences. A comparison of the latter highlights significant differences between them. We further discuss the need for an operational definition of plasmid species that reveals their biological features, akin to plasmid taxonomic units (PTUs).
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas - Universidad de Cantabria), Cantabria, Spain.
| | - Santiago Redondo-Salvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas - Universidad de Cantabria), Cantabria, Spain; Biomar Microbial Technologies, León, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas - Universidad de Cantabria), Cantabria, Spain.
| |
Collapse
|
2
|
Abstract
SUMMARYWe calculated the rates of segregation due to plasmid incompatibility under several simple models. A common feature of all the models that we considered is that incompatibility is caused by the inability of the segregation mechanism to distinguish between two incompatible plasmids.We measured the rate of segregation due to incompatibility of a pair of ColE1 derivatives under two conditions: (1) One plasmid was introduced into cells carrying the other by conjugation. (2) Cells carrying both plasmids were maintained by selection and then selection was released.Interpretation of the results was made more difficult by effects of the Plasmids on the host cell's growth rate. These experiments gave results in agreement with the predictions of a random pool replication model. Published results were also in reasonable agreement with this model.
Collapse
|
3
|
Womble DD, Rownd RH. Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. Microbiol Rev 1988; 52:433-51. [PMID: 3070319 PMCID: PMC373158 DOI: 10.1128/mr.52.4.433-451.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Saadi S, Maas WK, Hill DF, Bergquist PL. Nucleotide sequence analysis of RepFIC, a basic replicon present in IncFI plasmids P307 and F, and its relation to the RepA replicon of IncFII plasmids. J Bacteriol 1987; 169:1836-46. [PMID: 3032897 PMCID: PMC212033 DOI: 10.1128/jb.169.5.1836-1846.1987] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RepFIC is a basic replicon of IncFI plasmid P307 which is located within a 3.09-kilobase SmaI fragment. The nucleotide sequence of this region has been determined and shown to be homologous with the RepFIIA replicon of IncFII plasmids. The two replicons share three homologous regions, HRI, HRII, and HRIII, which are flanked by two nonhomologous regions, NHRI and NHRII. A comparison of coding regions reveals that the two replicons have several features in common. RepFIC, like RepFIIA, codes for a repA2 protein with its amino-terminal codons in HRI and its carboxy-terminal codons in NHRI. Although the codons for the repA1 proteins are located in NHRII, the DNA region containing a putative promoter, ribosomal binding site, and initiation codons is located in HRII. This region also codes for an inc RNA. There are nine base-pair differences between the inc RNA of RepFIIA and that of RepFIC, and as a result, RepFIC and RepFIIA replicons are compatible. An EcoRI fragment from the F plasmid which shows homology with RepFIC of P307 has also been sequenced. This fragment contains only a portion of RepFIC, including the genes for the putative repA2 protein and inc RNA. The region coding for a putative repA1 protein is interrupted by the transposon Tn1000 and shows no homology with the repA1 region of RepFIIA and RepFIC of P307. Our comparative and structural analyses suggest that RepFIC and RepFIIA, although different, have a similar replication mechanism and thus can be assigned to the same replicon family, which we designate the RepFIIA family.
Collapse
|
5
|
Campbell IG, Bergquist PL, Mee BJ. Characterization of the maintenance functions of IncFIV plasmid R124. Plasmid 1987; 17:117-36. [PMID: 3039556 DOI: 10.1016/0147-619x(87)90018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genetic arrangement of the regions involved in R124 replication and incompatibility have been located and their homology to the IncFI basic replicons has been assessed. We show that R124 has homology with all three basic replicons, RepFIA, RepFIB, and RepFIC, and that these regions, FIVA, RepFIVB, and RepFIVC, are widely separated on the R124 genome. Cloning of autonomously replicating fragments has shown that RepFIVB and RepFIVC are functional in R124 and express incompatibility. The FIVA region was unable to form a functional replicon and when cloned into pUC8 lacked incompatibility activity. A fourth region of R124 was identified, which although not essential for replication stabilized mini-R124 plasmid replication and exhibited incompatibility with R124. This region, designated IncIV, showed no homology to RepFIA, RepFIB, or RepFIC. Incompatibility expression of IncIV required only the EcoRI fragment E13 but the strength of the reaction was modified in the presence of other fragments. The replication and incompatibility properties of an R124 deletion derivative indicated that R124 can switch its replication to either RepFIVB or RepFIVC when in the presence of an incompatible plasmid. The ambiguous incompatibility reactions reported for R124 is a result of the expression of the two functional replicons, RepFIVB and RepFIVC, and that expressed by IncIV.
Collapse
|
6
|
Yoshimoto H, Sasakawa C, Danbara H, Umemoto T, Yoshikawa M. Enhanced instability of IncFII basic replicon by the polA mutation. Biochem Biophys Res Commun 1986; 139:918-25. [PMID: 3021157 DOI: 10.1016/s0006-291x(86)80265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IncFII plasmids consisting of a basic replicon and of an additional fragment(s) unrelated to plasmid maintenance were all less stable in polA1 than in its wild type. Reversion to UV-resistance recovered stability and vice versa. UV irradiation promoted instability in polA1 cells. Larger plasmids showed a greater instability and a fewer number of copies in a same host. Surprisingly, polA1 cells with Tn3 on the plasmid showed a higher ampicillin resistance than the wild type, apparently suggesting that the polA1 mutation increases the copy number. The size-dependency of instability was less marked in polA1 than in its parent. Comparison of the generation times has suggested a detrimental effect exerted by a basic replicon in polA1 hosts.
Collapse
|
7
|
Bagdasarian M, Bailone A, Bagdasarian MM, Manning PA, Lurz R, Timmis KN, Devoret R. An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. Proc Natl Acad Sci U S A 1986; 83:5723-6. [PMID: 3526338 PMCID: PMC386361 DOI: 10.1073/pnas.83.15.5723] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plasmid R6-5 contains a locus whose product inhibits induction of sfiA and prophage lambda in a recA441 mutant at 42 degrees C and in a recA+ host after treatment with nalidixic acid. This plasmidic SOS-inhibition locus (psi) is situated on an 8.1-kilobase DNA fragment near oriT, the origin of plasmid R6-5 conjugational transfer. Loss of the Psi function, resulting from the insertion of Tn3 into psi+, greatly reduced the synthesis of two proteins, designated PsiA (Mr 24,500) and PsiB (Mr 12,500). Using host cells in which there was an inactive LexA repressor, we found that Psi function does not act by interfering with the expression of the SOS pathway. The Psi function may affect the generation of an SOS signal. We postulate that during the course of evolution, the Psi function has been selected in some conjugative plasmids so as to permit them to transfer single-stranded DNA without generating an SOS signal.
Collapse
|
8
|
Incompatibility mutants of IncFII plasmid NR1 and their effect on replication control. J Bacteriol 1985; 163:973-82. [PMID: 2411717 PMCID: PMC219228 DOI: 10.1128/jb.163.3.973-982.1985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA from the replication control region of plasmid NR1 or of the Inc- copy mutant pRR12 was cloned into a pBR322 vector plasmid. These pBR322 derivatives were mutagenized in vitro with hydroxylamine and transformed into Escherichia coli cells that harbored either NR1 or pRR12. After selection for the newly introduced pBR322 derivatives only, those cells which retained the unselected resident NR1 or pRR12 plasmids were examined further. By this process, 134 plasmids with Inc- mutations in the cloned NR1 or pRR12 DNA were obtained. These mutants fell into 11 classes. Two of the classes had plasmids with deletions or insertions in the NR1 DNA and were not examined further. Plasmids with apparent point mutations were classified by examining (i) their ability to reconstitute a functional NR1-derived replicon (Rep+ or Rep-), (ii) the copy numbers of the Rep+ reconstituted replicons, (iii) the cross-reactivity of incompatability among the various mutant classes and parental plasmids, and (iv) the trans effects of the mutants on the copy number and stable inheritance of a coresident plasmid.
Collapse
|
9
|
Rownd RH, Womble DD, Dong XN, Luckow VA, Wu RP. Incompatibility and IncFII plasmid replication control. BASIC LIFE SCIENCES 1985; 30:335-54. [PMID: 2990416 DOI: 10.1007/978-1-4613-2447-8_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The DNA coding for replication control and incompatibility of the plasmid NR1 serves as a template in vivo and in vitro for RNA transcription in both directions. In the rightward direction, RNA synthesis begins from 2 different promoters, one of which is regulated and the other constitutive. In vivo, each of these transcripts is more than 1,000 nucleotides long, terminating near the estimated site for the origin of replication. These transcripts serve as messenger RNA for several proteins. One protein (repA1) is required for replication and another (repA2) serves as the repressor for the regulated rightward promoter. RNA synthesis in the leftward direction is constitutive and produces a single transcript of 91 nucleotides which is complementary in sequence to the rightward transcripts. This small transcript is the incompatibility product which regulates the replication of the plasmid. When the intracellular concentration of the small transcript is experimentally varied, the rate of translation of the rightward transcripts and the rate of initiation of replication (plasmid copy number) vary inversely to its concentration. The mode of action of this inhibitor RNA is likely to be formation of an RNA-RNA duplex with the rightward transcripts, thereby inhibiting the translation which would produce the required replication protein. The probability that a rightward transcript will escape interaction with the small RNA molecules and thus allow replication to initiate can be predicted from the laws of mass action based on base-stacking free energies for the likely sequences of initial contact. The estimated intracellular RNA concentrations, based on quantitative hybridization experiments, are agreement with those predicted from the calculated equilibrium constants for duplex formation.
Collapse
|
10
|
Womble DD, Dong X, Wu RP, Luckow VA, Martinez AF, Rownd RH. IncFII plasmid incompatibility product and its target are both RNA transcripts. J Bacteriol 1984; 160:28-35. [PMID: 6207169 PMCID: PMC214676 DOI: 10.1128/jb.160.1.28-35.1984] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The region of DNA coding for incompatibility (inc) and copy number control (cop) of the IncFII plasmid NR1 is transcribed in both the rightward and leftward directions. The rightward transcripts serve as mRNA for the repA1 protein, which is required for replication. A small, 91-base leftward transcript is synthesized from the opposite DNA strand and is complementary to a portion of the rightward mRNA near its 5' end. A 262-base-pair Sau3A restriction fragment that encodes the small leftward transcript, but does not include the rightward transcription promoters, was cloned into the vector pBR322 or pUC8. The same fragment was cloned from an Inc- mutant of NR1 that does not make the small leftward transcript. Transcription through the cloned fragments in these derivatives was under control of the tetracycline resistance gene in pBR322 or the lac promoter-operator in pUC8. In one orientation of the inserted DNA, a hybrid transcript containing rightward NR1 RNA sequences was synthesized. In the other orientation, a hybrid transcript containing leftward NR1 RNA sequences was synthesized. These plasmids were used to vary the intracellular levels of the rightward or leftward NR1 RNA transcripts and to test their effects in trans on various coresident derivatives of NR1. An excess of rightward NR1 RNA in trans stimulated expression of the essential repA1 gene and caused an increase in the copy number of a coresident NR1 plasmid. An excess of leftward NR1 RNA in trans inhibited the expression of the repA1 gene and lowered the coresident NR1 copy number, thereby causing incompatibility. A pBR322 derivative with no transcription through the cloned NR1 DNA had no effect in trans. These results suggest that the small leftward transcript is the incompatibility inhibitor of NR1 and that its target is the complementary portion of the rightward mRNA.
Collapse
|
11
|
|
12
|
Kline BC, Trawick J. Identification and characterization of a second copy number control gene in mini-F plasmids. MOLECULAR & GENERAL GENETICS : MGG 1983; 192:408-15. [PMID: 6318037 DOI: 10.1007/bf00392183] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported the existence of a series of chemically induced trans recessive copy-number mutations (cop) for mini-F plasmids and the existence of a similar series of cop mutations induced by insertion of the ampicillin resistance transposon Tn3. In this paper we describe the experiments showing that these two series of mutations are in different genes. Briefly, the experiments show that the one mutant series can complement the other, that the mutations map in distinct but adjacent regions, that the copy numbers of double mutants are the products of the copy numbers determined by the single mutations, and that Tn3 does not elevate copy number by a polar effect on the adjacent cop gene defined by chemical mutagenesis. We term the latter gene copA and the gene mutated by Tn3, copB. We also demonstrate here that copB mutations are recessive to the wild type allele. Further, we have characterized copB by deletion and recombinational analysis as the series of five 19- to 22-base-pair directly repeated sequences that had previously been designated incC-that is, one of the incompatibility genes. The evidence for this conclusion is that plasmids lacking two, three or five direct repeats have their copy number elevated proportionately. Possible mechanisms for copB control of replication are discussed.
Collapse
|
13
|
Gardner RC, Malcolm L, Bergquist PL, Lane HE. IncD, a genetic locus in F responsible for incompatibility with several plasmids of the IncFI group. MOLECULAR & GENERAL GENETICS : MGG 1982; 188:345-52. [PMID: 6759876 DOI: 10.1007/bf00332699] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cloning of mini-F DNA segments has led to the identification and mapping of a locus, incD, involved in incompatibility reactions with many IncFI plasmids. The cloned incD locus expressed incompatibility with F, R386, and six other IncFI plasmids but not with ColV3-K30 or pHH507 which lack sequence homology with the incD region. A sequence of 360 bp (48.66-49.02 FKB) was found to be sufficient for expression of incD incompatibility. Multicopy vectors containing incD are compatible with each other, but can be displaced by mini-F plasmids deleted for incD. These results indicate that incD-mediated incompatibility reactions require the presence of replication genes to which incD is normally linked. The degree of incompatibility exercised by incD is moderate compared with that of other inc loci in F, suggesting that incD is involved in an aspect of plasmid maintenance, such as partition, different from the functions of the other inc loci.
Collapse
|
14
|
Easton AM, Rownd RH. The incompatibility product of IncFII R plasmid NR1 controls gene expression in the plasmid replication region. J Bacteriol 1982; 152:829-39. [PMID: 6290455 PMCID: PMC221537 DOI: 10.1128/jb.152.2.829-839.1982] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The incompatibility properties of IncFII R plasmid NR1 were compared with those of two of its copy number mutants, pRR12 and pRR21. pRR12 produced an altered incompatibility product and also had an altered incompatibility target site. The target site appeared to be located within the incompatibility gene, which is located more than 1,200 base pairs from the plasmid origin of replication. The incompatibility properties of pRR21 were indistinguishable from those of NR1. Lambda phages have been constructed which contain the incompatibility region of NR1 or of one of its copy mutants fused to the lacZ gene. In lysogens constructed with these phages, beta-galactosidase was produced under the control of a promoter located within the plasmid incompatibility region. Lysogens containing prophages with the incompatibility regions from pRR12 and pRR21 produced higher levels of beta-galactosidase than did lysogens containing prophages with the incompatibility region from the wild-type NR1. The introduction into these inc-lac lysogens of pBR322 plasmids carrying the incompatibility regions of the wild-type or mutant plasmids resulted in decreased levels of beta-galactosidase production. For a given lysogen, the decrease was greater when the pBR322 derivative expressed a stronger incompatibility toward the plasmid from which the fragment in the prophage was derived. This suggested that the incompatibility product acts on its target to repress gene expression in the plasmid replication region.
Collapse
|
15
|
Itoh Y, Kamio Y, Furuta Y, Terawaki Y. Cloning of the replication and incompatibility regions of a plasmid derived from Rts1. Plasmid 1982; 8:232-43. [PMID: 6294707 DOI: 10.1016/0147-619x(82)90061-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
|
17
|
Brawner ME, Jaskunas SR. Identification of polypeptides encoded by the replication of resistance factor R100. J Mol Biol 1982; 159:35-55. [PMID: 6290671 DOI: 10.1016/0022-2836(82)90030-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Lurz R, Danbara H, Rückert B, Timmis KN. Plasmid replication functions. VII. Electron microscopic localization of RNA polymerase binding sites in the replication control region of plasmid R6-5. MOLECULAR & GENERAL GENETICS : MGG 1981; 183:490-6. [PMID: 7038379 DOI: 10.1007/bf00268770] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA polymerase binding sites on the R6-5 miniplasmid derivative, plasmid pKT401, were mapped by electron microscopy of DNA:RNA polymerase complexes formed with both circular-supercoiled and restriction endonuclease-linearized plasmid DNA molecules. Of eight specific binding sites on pKT401 that were identified, three were found to be in the P-6 fragment of the plasmid replication region, three in the Tn3 element, and two in other parts of the plasmid molecule. Binding sites 1 and 3 in the P-6 fragment are most probably the promoters of the copB and copA/incA plasmid replication control genes, respectively, whereas site 2 in this fragment appears to be the promoter of the essential replication gene, repA. The location of these promoters in relation to the site of action of the plasmid replication control elements, copT, and the origin of replication, oriV, suggests that replication control may be effected by regulation of transcription events initiated at site 2, or of the activity of transcripts initiated from this site, i.e., by regulation of the expression of the repA gene or another function dependent upon these events.
Collapse
|
19
|
Light J, Molin S. Replication control functions of plasmid R1 act as inhibitors of expression of a gene required for replication. MOLECULAR & GENERAL GENETICS : MGG 1981; 184:56-61. [PMID: 7038389 DOI: 10.1007/bf00271195] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Bergquist PL, Downard RA, Caughey PA, Gardner RC, Lane HE. Analysis of mini-F plasmid replication by transposition mutagenesis. J Bacteriol 1981; 147:888-99. [PMID: 6268613 PMCID: PMC216125 DOI: 10.1128/jb.147.3.888-899.1981] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Derivatives of a mini-F plasmid in which Tn3 is inserted in F deoxyribonucleic acid were obtained, and the sites of insertion for 40 of the derivatives were mapped. Tn3 was found to insert at many sites within mini-F, but most insertions were within the 43.0- to 43.7-kilobase (kb), 44.2- to 44.7-kb, and 45.9- to 46.3-kb segments. Hence, these segments are unnecessary for mini-F replication. Most of the Tn3 derivatives were similar to their parent miniplasmid with respect to copy number, stability, and incompatibility. Insertions at 45.15 kb and near 46.0 kb caused a moderate disruption of copy number control, and insertion at 47.6 kb resulted in unstable maintenance. Deletion derivatives lacking deoxyribonucleic acid between 40.3 and 44.76 kb and between 45.92 and 49.4 kb were obtained. This observation suggests either that mini-F contains a third origin, in addition to those already reported to be at 42.6 and 44.4 kb, or that the reported position of the secondary origin, 44.4 kb, is incorrect and that this origin is between 44.76 and 45.92 kb.
Collapse
|
21
|
Ike Y, Hashimoto H, Mitsuhashi S. A mutant defective in partitioning of composite plasmid Rms201. J Bacteriol 1981; 147:578-88. [PMID: 6267015 PMCID: PMC216079 DOI: 10.1128/jb.147.2.578-588.1981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli harboring mutant plasmids defective in maintenance stability (from the conjugative plasmid Rms201) showed a wide distribution of ampicillin resistance levels, as well as increased frequency of plasmid loss from the cell. The amounts of covalently closed circular deoxyribonucleic acid of mutant plasmid Rms268 and parental plasmid Rms201 per chromosome were 5.3 and 6.1%, respectively. The beta-lactamase activities of strains W3630(Rms268) and W3630(Rms201) were 0.56 and 0.44 U/mg of protein, respectively. Frequency of plasmid loss from W3630(Rms268) was about 0.8 to 1.2% per cell generation, 100 times more than that of the wild-type strain. Ampicillin resistance levels of the colonies harboring the mutant plasmid showed a wide distribution, from low (100 micrograms/ml) to high (1,600 micrograms/ml). A miniplasmid (pMS268) with a mass of 7 X 10(6) daltons and encoding ampicillin resistance was isolated from Rms268. Frequency of pMS268 loss from W3630(pMS268) was about 0.8 to 1.9% per cell generation. W3630(pMS268) also showed a wide range of distribution in the levels of ampicillin resistance. These results indicated that the copies of Rms268 in E. coli did not segregate evenly between daughter cells at cell division and that the gene involved was located on the miniplasmid.
Collapse
|
22
|
Danbara H, Brady G, Timmis JK, Timmis KN. Regulation of DNA replication: "target" determinant of the replication control elements of plasmid R6-5 lies within a control element gene. Proc Natl Acad Sci U S A 1981; 78:4699-703. [PMID: 7029525 PMCID: PMC320230 DOI: 10.1073/pnas.78.8.4699] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The replication control system of plasmid R6-5 has been investigated by characterization of high-copy-number mutant miniplasmids, development of an in vivo assay for the site of action or "target" of the replication control elements, and sequence analysis of the replication control regions of the wild-type plasmid and two copy-number mutant derivatives. These and other experiments have shown that three plasmid determinants--copA/incA, copB, and copT--are involved in DNA replication control. The products of the copB and copA/incA genes, a 9500-dalton basic polypeptide and either a 7200-dalton basic polypeptide or a short untranslated RNA molecule, respectively, are negative-acting elements that interact with the third element, their target, the copT DNA sequence, or its product to regulate the frequency of initiation of plasmid replication. The location of copT within the copA/incA gene and 1600 base pairs upstream from the origin of replication indicates that regulation is effected at a preinitiation stage of replication, such as the production of a primer or other initiation factor.
Collapse
|
23
|
Abstract
The nucleotide sequence of the incompatibility region incC, located at 45.8--46.4 kb on the F plasmid map, was determined. This region consists of 543 bp and contains sufficient information to code for only two small polypeptides of 34 and 30 amino acids each. Deletion of the ATG start codons for these two polypeptides has no effect on expression of incC incompatibility. A prominent feature of this sequence is the presence of five 22 bp direct repeats. A 58 bp segment of the incC region that contains two of these direct repeats was inserted into plasmid pACYC184, which is compatible with the F plasmid. The pACYC184 plasmid containing the direct-repeat sequences now expresses incompatibility with the F'lac plasmid and replication-proficient derivatives of the mini-F plasmid.
Collapse
|
24
|
Burger KJ, Steinbauer J, Röllich G, Kollek R, Goebel W. Copy number control and incompatibility of plasmid R1: identification of a protein that seems to be involved in both processes. MOLECULAR & GENERAL GENETICS : MGG 1981; 182:44-52. [PMID: 7022136 DOI: 10.1007/bf00422765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Investigations into the genetic determinants for incompatibility of miniplasmids and hybrid replicons constructed from wide type and mutant R1 revealed the presence of an incompatibility function at the junction f two small PstI fragments. These two fragments were not distinguished in earlier experiments since they have the same mobility on agarose gels. This incompatibility function is distinct from other inc-determinants of R1 (Kollek and Goebel 1979; Molin and Nordström, 1980) and independent of R1-type replication. By means of specific deletions and subcloning of DNA fragments, the location of this new inc-determinant could be determined further. After deletion of this inc-determinant from inc-determinant from miniplasmids, a 5-fold increase in copy number was observed which could then be reduced to a copy number of about 1 plasmid per cell by complementation with hybrid plasmids having this function. Incompatibility of miniplasmids deleted in this determinant is not reduced, whereas analogous deletions introduced into recombinant plasmids nearly abolished their incompatibility. This determinant seems to exert strong incompatibility only when cloned on pBR322. Therefore, its main function is plasmid R1 is probably restricted to copy control. The appearance of low copy numbers of of miniplasmids carrying this determinant and of trans-acting copy control and strong incompatibility exerted by hybrid plasmids is consistently correlated with the presence of a protein of 11,000 molecular weight, synthesized in relatively large amounts in Escherichia coli minicells.
Collapse
|
25
|
Timmis KN, Danbara H, Brady G, Lurz R. Inheritance functions of group IncFII transmissible antibiotic resistance plasmids. Plasmid 1981; 5:53-75. [PMID: 7012873 DOI: 10.1016/0147-619x(81)90077-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
|
27
|
Hashimoto-Gotoh T, Timmis KN. Incompatibility properties of Col E1 and pMB1 derivative plasmids: random replication of multicopy replicons. Cell 1981; 23:229-38. [PMID: 7011568 DOI: 10.1016/0092-8674(81)90287-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The incompatibility properties of Col E1-like plasmids have been examined in Rec+ and RecA- bacteria. Two Col E1- (or two pMB1-) derivative plasmids coreplicated in the same clone for many cell doublings, irrespective of the rec genotype of host bacteria. Their kinetics of segregation were found to be consistent with models that assume a random choice of template molecule for each plasmid replication event, but with models based on a single (master) template molecule per cell. In contrast, minimal coreplication of a Col E1- and a pMB1-derivative plasmid occurred, with the latter type rapidly excluding the former. We suggest here that the pMB1 derivatives, pMB9 and pBR322, are less sensitive than Col E1 derivatives to the putative inhibitor that regulates plasmid replication, due to base sequence differences in their target for the inhibitor, and consider one mechanism whereby the duplication of Col E1-like plasmids might be regulated.
Collapse
|
28
|
|
29
|
Noegel A, Rdest U, Goebel W. Determination of the functions of hemolytic plasmid pHly152 of Escherichia coli. J Bacteriol 1981; 145:233-47. [PMID: 6257634 PMCID: PMC217265 DOI: 10.1128/jb.145.1.233-247.1981] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The alpha-hemolytic Escherichia coli strain PM152 harbors three transmissible plasmids, which have molecular weights of 65 X 10(6) (pA152), 41 X 10(6) pHly152), and 32 X 10(6) (pC152). Plasmids pHly152 and pC152 belong to incompatibility groups J2 and N, respectively. By transforming E. coli K-12 with isolated plasmids, we showed that the genetic determinant required for hemolysis was located entirely on plasmid pHly152, and a physical map of this plasmid was constructed. By transposon mutagenesis, a deoxyribonucleic acid segment of about 3.5 X 10(6) daltons was identified as being essential for hemolysis. Most of the EcoRI and HindIII fragments of the hemolytic plasmid pHly152 were cloned by using pACYC184 and RSF2124 as vectors. Two classes of Tn3-induced hemolysis-negative mutants could be complemented by recombinant plasmids carrying fragments from the hemolysis region of pHly152, whereas a third class could be restored to hemolytic activity only by recombination between the mutant plasmids and a suitable recombinant deoxyribonucleic acid. These data suggest that there are at least three clustered cistrons which are required for hemolysis. Other EcoRI and HindIII fragments of pHly152 were identified as being essential for replication, incompatibility, transfer, and restriction.
Collapse
|
30
|
Ely S, Staudenbauer WL. Regulation of plasmid DNA synthesis: isolation and characterization of copy number mutants of miniR6-5 and miniF plasmids. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:29-35. [PMID: 6261084 DOI: 10.1007/bf00339001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Copy number (Cop) mutants of miniR6-5 and miniF plasmid derivatives containing a beta-lactamase gene were isolated by selection for increased ampicillin-resistance. Mutants which exhibited an increased copy number and a reduced incompatibility response as compared to the respective parent mini-plasmid were obtained from both miniR6-5 and miniF. Characterization of these mutant plasmids has provided the first description of the replicative properties of miniF Cop mutants, and has also facilitated a comparison of plasmids representing the IncFI and IncFII incompatibility groups. Cop mutants from these groups differed in several respects: (i) MiniF Cop mutants were considerably more difficult to obtain and showed a markedly lower transforming efficiency than the corresponding miniR6-5 mutants. (ii) MiniR6-5 Cop mutants were stably maintained in a polA1 strain without selective pressure, whereas miniF Cop mutants severely reduced the viability of this host. (iii) MiniR6-5 replication stopped within a few minutes after inhibition of protein synthesis, whereas miniF replication continued at a declining rate for about one hour in the presence of chloramphenicol. (iv) In contrast to miniR6-5 replication, miniF DNA synthesis was blocked faster by rifampicin than by chloramphenicol. (v) The copy number of miniR6-5 plasmids (but not of miniF) was reduced by about 50% in an rnc strain deficient in RNAase III.
Collapse
|
31
|
Stougaard P, Molin S, Nordström K, Hansen FG. The nucleotide sequence of the replication control region of the resistance plasmid R1drd-19. MOLECULAR & GENERAL GENETICS : MGG 1981; 181:116-22. [PMID: 6261081 DOI: 10.1007/bf00339014] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The region of plasmid R 1 containing the replication control genes has been sequenced using the Maxam-Gilbert method. The nucleotide sequence of two small PstI restriction fragments (a total of about 1,000 base pairs) was determined for the wild-type R 1 plasmid as well as for two different copy mutants. It was found that one copy mutant has a single base substitution in the fragment which was recently shown to harbor an important inc/cop gene (Molin and Nordström 1980). Furthermore, the sequence indicates the presence of a structural gene that codes for a polypeptide of size 10,500 daltons. Possible gene products predicted from the nucleotide sequences and their role in replication control are discussed.
Collapse
|
32
|
Danbara H, Timmis JK, Lurz R, Timmis KN. Plasmid replication functions: two distinct segments of plasmid R1, RepA and RepD, express incompatibility and are capable of autonomous replication. J Bacteriol 1980; 144:1126-38. [PMID: 6254944 PMCID: PMC294779 DOI: 10.1128/jb.144.3.1126-1138.1980] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genetic determinants for replication and incompatibility of plasmid R1 were investigated by gene cloning methods, and three types of R1 miniplasmid derivatives were generated. The first, exemplified by plasmid pKT300, consisted of a single BglII endonuclease-generated deoxyribonucleic acid fragment derived from the R1 region that is located between the determinants for conjugal transfer and antibiotic resistance. Two types of miniplasmids could be formed from PstI endonuclease-generated fragments of pKT300. One of these, which is equivalent to miniplasmids previously generated from plasmids R1-19 and R1-19B2, consisted of two adjacent PstI fragments that encode the RepA replication system of plasmid R1. The other type contained a segment of R1, designated the RepD replication region, that is adjacent to the RepA region and that has not been identified previously as having the capacity for autonomous replication. Plasmid R1, therefore, contained two distinct deoxyribonucleic acid segments capable of autonomous replication. The RepA-RepD miniplasmid pKT300 had a copy number about eightfold higher than that of R1 and hence lacked a determinant for the regulation of plasmid copy number. Like R1, it was maintained stably in dividing bacteria. RepA miniplasmids had copy numbers which were two- to fourfold higher than that of R1 (i.e., which were lower than that of pKT300) and were maintained slightly less stably than those of pKT300 and R1. The RepD miniplasmid was not maintained stably in dividing bacteria. Previous experiments have shown that incompatibility of IncFII group plasmids is specified by a plasmid copy control gene. Despite the fact that RepA miniplasmids of R1 were defective in copy control, they nevertheless expressed incompatibility. This suggests that two genes are responsible for plasmid copy control, one that specifies incompatibility and is located on RepA miniplasmids and another that is located outside of, but adjacent to, the RepA replication region. Hybrid plasmids composed of pBR322 and one PstI fragment from the RepA region, P-8, exhibited incompatibility towards R2 and RepA miniplasmids but not the RepD miniplasmid, whereas hybrids composed of pBR322 and the PstI fragment of the RepD region, P-3, exhibited incompatibility towards R1 and the RepD miniplasmid but not RepA miniplasmids. These results indicate that the two replication systems are functionally distinct and that, although the RepA system is the principal replication system of R1, the RepD system also plays a role in the maintenance of this plasmid.
Collapse
|
33
|
Grant AJ, Bird PI, Pittard J. Naturally occurring plasmids exhibiting incompatibility with members of incompatibility groups I and P. J Bacteriol 1980; 144:758-65. [PMID: 6776095 PMCID: PMC294726 DOI: 10.1128/jb.144.2.758-765.1980] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
From a group of naturally occurring antibiotic resistance plasmids, a number of plasmids were identified which were incompatible with members of incompatibility group P and also incompatibility group I alpha or I gamma. These plasmids also exhibited strong entry exclusion with members of group P only and showed a host range which resembled that of plasmids of group I rather than those of group P. Segregants of a number of these plasmids appeared to have lost some of the incompatability and/or surface exclusion functions. Studies of nucleic acid homology indicated that these plasmids were very similar to one another. They exhibited 15 to 20% nucleic acid homology with representatives of the I alpha and I gamma groups, yet showed less than 2% homology with the group P plasmid RP4.
Collapse
|
34
|
Johnson DA, Willetts NS. Construction and characterization of multicopy plasmids containing the entire F transfer region. Plasmid 1980; 4:292-304. [PMID: 6164065 DOI: 10.1016/0147-619x(80)90068-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
|
36
|
Sasakawa C, Takamatsu N, Danbara H, Yoshikawa M. A method of plasmid classification by integrative incompatibility. Plasmid 1980; 3:116-27. [PMID: 6100891 DOI: 10.1016/0147-619x(80)90103-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Miki T, Easton AM, Rownd RH. Cloning of replication, incompatibility, and stability functions of R plasmid NR1. J Bacteriol 1980; 141:87-99. [PMID: 6243631 PMCID: PMC293536 DOI: 10.1128/jb.141.1.87-99.1980] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The region of R plasmid NR1 that is capable of mediating autonomous replication was cloned by using EcoRI, SalI, and PstI restriction endonucleases. The only EcoRI fragment capable of mediating autonomous replication in either a pol+ or a polA host was fragment B. SalI fragment E joined in native orientation with the part of SalI fragment C that overlapped with EcoRI fragment B, and also two contiguous PstI fragments of sizes 1.6 and 1.1 kilobases from EcoRI fragment B-mediated autonomous replication. When these individual SalI fragments were cloned onto plasmid pBR313 or the individual PstI fragments were cloned onto plasmid pBR322, none of these single fragments could rescue the replication of the ColE1-like vectors in a polA host, even in the presence of a compatible "helper" plasmid derived from a copy mutant of NR1. In contrast to the results reported for closely related R plasmid R6, EcoRI fragment A of NR1 could not rescue the replication of ColE1 derivative RSF2124 in a polA(Am) mutant or in a polA(Ts) mutant at the restrictive temperature. Although capable of autonomous replication, EcoRI fragment B of NR1 (or smaller replicator fragments cloned from it by using other restriction enzymes) was not stably inherited in the absence of selection for the recombinant plasmid. When EcoRI fragment B was ligated to EcoRI fragment A of NR1, the recombinant plasmid was stable. Thus, EcoRI fragment A contained a stability (stb) function. The stb function did not act in trans since EcoRI fragment B was not stably inherited when a ColE1 derivative (RSF2124) ligated to EcoRI fragment A was present in the same cell. A cointegrate plasmid consisting of EcoRI fragment B of NR1 ligated to RSF2124 was also not stably inherited, whereas only EcoRI fragment B was unstable when both RSF2124 and EcoRI fragment B coexisted as autonomous plasmids in the same cell. The incompatibility gene of NR1 was shown to be located within the region of overlap between SalI fragment E and the PstI 1.1-kilobase fragment. A copy mutant of NR1 (called pRR12) was found to have greatly reduced incompatibility with NR1; this Inc- phenotype is cis dominant.
Collapse
|
38
|
Molin S, Nordström K. Control of plasmid R1 replication: functions involved in replication, copy number control, incompatibility, and switch-off of replication. J Bacteriol 1980; 141:111-20. [PMID: 6986353 PMCID: PMC293542 DOI: 10.1128/jb.141.1.111-120.1980] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A small derivative of plasmid R1 was used to integratively suppress a chromosomal dnaA(Ts) mutation. The strain obtained grew normally at 42 degrees C. The integratively suppressed strain was used as recipient for various plasmid R1 derivatives. Plasmid R1 and miniplasmid derivatives of R1 could be established in the strain that carried an integrated R1 replicon, but they were rapidly lost during growth. However, plasmids also carrying ColE1 replication functions were almost completely stably inherited. The integratively suppressed strain therefore allows the establishment of bacteria diploid with respect to plasmid R1 and forms a useful and sensitive system for studies of interaction between plasmid R1 replication functions. Several of the chimeric plasmids caused inhibition of growth at high temperatures. All plasmids that inhibited growth carried one particular PstI fragment from plasmid R1 (the PstI F fragment), and in all cases the growth inhibition could be ascribed to repression of initiation of chromosome replication at 42 degrees C, i.e., they carry a trans-acting switch-off function. Furthermore, the analogous PstI fragments from different copy mutants of plasmid R1 were analyzed similarly, and one mutant was found to lack the switch-off function. The different chimeric plasmids were also tested for their incompatibility properties. All plasmids that carried the switch-off function (and no other plasmids) also carried R1 incompatibility gene(s). Since the PstI F fragment, which is present on all these plasmids, is very small (0.35 x 10(6)), it is suggested that the switch-off regulation of replication (by an inhibitor), incompatibility, and copy number control are governed by the same gene.
Collapse
|
39
|
Meyer RJ. Expression of incompatibility by derivatives of the broad host-range inc P-1 plasmid RK2. MOLECULAR & GENERAL GENETICS : MGG 1979; 177:155-61. [PMID: 395412 DOI: 10.1007/bf00267265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A segment of DNA encoding incompatibility on the inc P-1 plasmid pRK248 was identified by the analysis of deletions generated in vitro, and then cloned into several unrelated and mutually compatible plasmids. These derivatives were tested for expression of P-1 incompatibility. It was demonstrated by transformation experiments that P-1 plasmids were efficiently eliminated from an E. coli host following introduction of any one of the derivatives. However, all the derivatives were compatible with each other. The cloned segment of pRK248 DNA is itself capable of autonomous replication, without being cloned into any plasmid, if plasmid-specified gene products are provided in trans. This satellite plasmid is eliminated from the cell by the inc P-1 plasmid pRK286. The results argue against a partitioning mechanism as the basis for P-1 incompatibility but are consistent with incompatibility being the consequence of negative regulation of copy number. For the inc P-1 system, susceptibility of the plasmid to elimination, but not its ability to eliminate, requires that the P-1 replication system is active.
Collapse
|
40
|
de la Cruz F, Zabala JC, Ortiz JM. Incompatibility among alpha-hemolytic plasmids studied after inactivation of the alpha-hemolysin gene by transposition of Tn802. Plasmid 1979; 2:507-19. [PMID: 43546 DOI: 10.1016/0147-619x(79)90050-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Hashimoto-Gotoh T, Inselburg J. ColE1 plasmid incompatibility: localization and analysis of mutations affecting incompatibility. J Bacteriol 1979; 139:608-19. [PMID: 378980 PMCID: PMC216910 DOI: 10.1128/jb.139.2.608-619.1979] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.
Collapse
|
42
|
Meacock PA, Cohen SN. Genetic analysis of the inter-relationship between plasmid replication and incompatibility. MOLECULAR & GENERAL GENETICS : MGG 1979; 174:135-47. [PMID: 386041 DOI: 10.1007/bf00268351] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The relationship between replication control and plasmid incompatibility has been investigated using a composite replicon, pPM1, which consists of the pSC101 plasmid ligated to another small multicopy plasmid, RSF1050. Since pPM1 can utilise the replication system of either of the two functionally distinct components, propagation of the composite plasmid can occur in the presence of a mutation of one of its moieties. Such mutants are detected by their inability to rescue the composite plasmid under conditions not permissive for replication of the other moiety. Mutations in incompatibility functions can be detected by the failure of the composite replicon to exclude co-existing plasmids carrying a replication system identical to the one on pPM1. The inability of the composite plasmid to replicate at 42 degrees in a host synthesizing temperature-sensitive DNA polymerase I, which is required by the RSF1050 replication system, was used to isolate pPM1 mutants defective in replication of the pSC101 component. Mutants defective in the incompatibility functions of pSC101 were obtained by selecting derivatives that allow the stable coexistence of a second pSC101 replicon in the same cell. Analysis of these two classes of mutants indicates that plasmids selected for defective pSC101 replication ability nervertheless retain pSC101 incompatibility. In contrast, plasmid mutants that have lost incompatibility functions were found always to be defective in replication ability.
Collapse
|
43
|
Kline BC. Incompatibility between Flac, R386, and F:pSC101 recombinant plasmids: the specificity of F incompatibility genes. Plasmid 1979; 2:437-45. [PMID: 384421 DOI: 10.1016/0147-619x(79)90027-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Molin S, Stougaard P, Uhlin BE, Gustafsson P, Nordström K. Clustering of genes involved in replication, copy number control, incompatibility, and stable maintenance of the resistance plasmid R1drd-19. J Bacteriol 1979; 138:70-9. [PMID: 374378 PMCID: PMC218239 DOI: 10.1128/jb.138.1.70-79.1979] [Citation(s) in RCA: 87] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasmid R1drd-19 is present in a small number of copies per cell of Escherichia coli. The plasmid was reduced in size by in vivo as well as in vitro (cloning) techniques, resulting in a series of plasmid derivatives of different molecular weight. All plasmids isolated contain a small region (about 2 x 10(6) daltons of deoxyribonucleic acid) of the resistance transfer factor part of the plasmid located close to one of the IS1 sequences that separates the resistance transfer factor part from the resistance determinant. All these derivatives were present at the same copy number, retained the incompatibility properties of plasmid R1drd-19, and were stably maintained during cell division. Genes mutated to yield copy mutations also were found to be located in the same region.
Collapse
|
45
|
Synenki RM, Nordheim A, Timmis KN. Plasmid replication functions. III. Origin and direction of replication of a "mini" plasmid derived from R6-5. MOLECULAR & GENERAL GENETICS : MGG 1979; 168:27-36. [PMID: 372738 DOI: 10.1007/bf00267930] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replicating DNA molecules of the mini R6-5 plasmid, pKTO71, were purified by equilibrium centrifugation in two successive ethidium bromide-caesium chloride gradients, converted to linear forms by cleavage with either HindIII or BglII restriction endonuclease, and examined in the electron microscope. Determination of the replication fork positions in 65 replicating molecules demonstrated that replication is initiated at a unique location on the plasmid and that it proceeds uni-directionally from this site. The direction of replication is such that the origin-proximal BglII cleavage site is replicated late or, in the case of the parent R6-5 plasmid, is such that the R-determinant region of the molecule is replicated early. The origin of replication, located by these experiments at R6-5 coordinate 98.6 kb, is clearly distinct from that of the R6-5 incompatibility determinant which has been shown to be located on an adjacent PstI-generated DNA fragment whose termini have R6-5 coordinates 96.8 and 97.9 kb. This result indicates that the incompatibility function is not an origin DNA sequence.
Collapse
|
46
|
Andrés I, Slocombe PM, Cabello F, Timmis JK, Lurz R, Burkardt HJ, Timmis KN. Plasmid replication functions. II. Cloning analysis of the repA replication region of antibiotic resistance plasmid R6-5. MOLECULAR & GENERAL GENETICS : MGG 1979; 168:1-25. [PMID: 372736 DOI: 10.1007/bf00267929] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
R6-5 is a low copy number, conjugative, FII incompatibility group plasmid that has a molecular length of 102 kb and that specifies resistance against several antibiotics (chloramphenicol, fusidic acid, kanamycin, streptomycin and sulphonamide) and mercury salts. By means of in vitro cloning procedures, mini plasmids have been generated that contain a DNA segment from the essential region of R6-5 that is only 2.6 kb in length. This DNA segment, which consists of two PstI fragments that are adjacent in the parent plasmid, carries all genes and sequences required for the regulated replication and incompatibility properties of R6-5, including its origin of replication, OriV, an essential function that has been designated RepA, and the copy control function, Cop. Three different polypeptides, having monomer molecular weights of 23,000, 10,000 and 9,500 daltons, are synthesized in detectable quantities by minicells carrying pBR322 hybrid plasmids that contain DNA segments from the R6-5 essential region. A spontaneous deletion derivative of a pBR322 hybrid plasmid that carries the R6-5 origin of replication was isolated. Heteroduplex analysis of this derivative plasmid indicates that the deleted DNA segment carries the R6-5 replication origin and that its termini consist of short inverted repeat sequences.
Collapse
|
47
|
Taylor DP, Cohen SN. Structural and functional analysis of cloned DNA segments containing the replication and incompatibility regions of a miniplasmid derived from a copy number mutant of NR1. J Bacteriol 1979; 137:92-104. [PMID: 368043 PMCID: PMC218422 DOI: 10.1128/jb.137.1.92-104.1979] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 1.45-megadalton segment of DNA cloned from a miniplasmid derived in vivo from a copy number mutant of the R plasmid NR1 has been shown to contain all functions essential for incompatibility and autonomous plasmid replication in Escherichia coli. Specific endonuclease cleavage sites within this DNA segment that localize functions required for replication have been mapped. A 0.45-megadalton fragment that specifies the FII incompatibility of NR1 has been identified within the replication region, and DNA fragments containing this incompatibility region, but lacking other functions required for replication, have been cloned.
Collapse
|
48
|
Thompson R, Achtman M. The control region of the F sex factor DNA transfer cistrons: restriction mapping and DNA cloning. MOLECULAR & GENERAL GENETICS : MGG 1978; 165:295-304. [PMID: 368564 DOI: 10.1007/bf00332530] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A restriction endonuclease map of EcoRI fragment f6 of F sex factor DNA was constructed and aligned with pre-existing physical and genetic maps. Results of genetic complementation tests and analysis of proteins synthesized in minicells from PstI and BglII sub-fragment clones, or from a specific BglII fragment deletion, have allowed mapping of the locations of the origin of DNA transfer and many of the transfer genes known to lie on f6. The proteins detected account for 78% of the coding capacity of fragment f6.
Collapse
|
49
|
Timmis KN, Cabello F, Cohen SN. Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. MOLECULAR & GENERAL GENETICS : MGG 1978; 162:121-37. [PMID: 672900 DOI: 10.1007/bf00267869] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA fragments generated by the EcoRI of HindIII endonucleases from the low copy number antibiotic resistance plasmids R6 and R6-5 were separately cloned using the high copy number ColE1 or pML21 plasmid vectors and the insertional inactivation procedure. The hybrid plasmids that were obtained were used to determine the location of the EcoRI and HindIII cleavage sites on the parent plasmid genomes by means of electron microscope heteroduplex analysis and agarose gel electrophoresis. Ultracentrifugation of the cloned fragments in caesium chloride gradients localized the high buoyant density regions of R6-5 to fragments that carry the genes for resistance to streptomycin-spectinomycin, sulfonamide, and mercury and a low buoyant density region to fragments that carry the tetracycline resistance determinant. Functional analysis of hybrid plasmids localized a number of plasmid properties such as resistances to antibiotics and mercury and several replication functions to specific regions of the R6-5 genome. Precise localisation of the genes for resistance to chloramphenicol, kanamycin, fusidic acid and tetracycline was possible due to the presence of identified restriction endonuclease cleavage sites within these determinants. Only one region competent for autonomous replication was identified on the R6-5 plasmid genome and this was localized to EcoRI fragment 2 and HindIII fragment 1. However, two additional regions of replication activity designated RepB and RepC, themselves incapable of autonomous replication but capable supporting replication of a linked ColE1 plasmid in polA- bacteria, were also identified.
Collapse
|