1
|
Hood MR, Marqusee S. Exploring the sequence and structural determinants of the energy landscape from thermodynamically stable and kinetically trapped subtilisins: ISP1 and SbtE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611919. [PMID: 39314365 PMCID: PMC11419036 DOI: 10.1101/2024.09.08.611919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A protein's energy landscape, all the accessible conformations, their populations, and their dynamics of interconversion, is encoded in its primary sequence. While we have a good understanding of how a protein's primary sequence encodes its native state, we have a much weaker understanding of how sequence encodes the kinetic barriers such as unfolding and refolding. Here we have looked at two subtiliase homologs from the Bacillus subtilis, Intracellular Subtilisin Protease 1 (ISP1) and Subtilisin E (SbtE) that are expected to have very different dynamics. As an intracellular protein, ISP1 has a small pro-domain thought to act simply as a zymogen, whereas the extracellular SbtE has a large pro-domain required for folding. We examined the global and local energetics of the mature proteases and how each pro-domain impacts their landscapes. We find that ISP1's pro-domain has limited impact on the energy landscape while the mature SbtE is thermodynamically unstable and kinetically trapped. The impact of the pro-domain has opposite effects on the flexibility of the core of the protein. ISP1's core becomes more flexible while SbtE's core becomes more rigid. ISP1 contains a conserved amino-acid insertion not present in extracellular subtilisin proteases, which points to a potential source for these differences. These homologs are an extreme example of how changes in the primary sequence can dramatically alter a proteins energy landscape, both stability and dynamics, and highlight the need for large scale, high throughput studies on the relationship between primary sequence and conformational dynamics.
Collapse
Affiliation(s)
- Miriam R Hood
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), Berkeley, Berkeley CA 94720
| |
Collapse
|
2
|
Suzuki K, Nojiri R, Matsusaki M, Mabuchi T, Kanemura S, Ishii K, Kumeta H, Okumura M, Saio T, Muraoka T. Redox-active chemical chaperones exhibiting promiscuous binding promote oxidative protein folding under condensed sub-millimolar conditions. Chem Sci 2024; 15:12676-12685. [PMID: 39148798 PMCID: PMC11323320 DOI: 10.1039/d4sc02123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Proteins form native structures through folding processes, many of which proceed through intramolecular hydrophobic effect, hydrogen bond and disulfide-bond formation. In vivo, protein aggregation is prevented even in the highly condensed milieu of a cell through folding mediated by molecular chaperones and oxidative enzymes. Chemical approaches to date have not replicated such exquisite mediation. Oxidoreductases efficiently promote folding by the cooperative effects of oxidative reactivity for disulfide-bond formation in the client unfolded protein and chaperone activity to mitigate aggregation. Conventional synthetic folding promotors mimic the redox-reactivity of thiol/disulfide units but do not address client-recognition units for inhibiting aggregation. Herein, we report thiol/disulfide compounds containing client-recognition units, which act as synthetic oxidoreductase-mimics. For example, compound βCDWSH/SS bears a thiol/disulfide unit at the wide rim of β-cyclodextrin as a client recognition unit. βCDWSH/SS shows promiscuous binding to client proteins, mitigates protein aggregation, and accelerates disulfide-bond formation. In contrast, positioning a thiol/disulfide unit at the narrow rim of β-cyclodextrin promotes folding less effectively through preferential interactions at specific residues, resulting in aggregation. The combination of promiscuous client-binding and redox reactivity is effective for the design of synthetic folding promoters. βCDWSH/SS accelerates oxidative protein folding at highly condensed sub-millimolar protein concentrations.
Collapse
Affiliation(s)
- Koki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Ryoya Nojiri
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Motonori Matsusaki
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
- Institute of Fluid Science, Tohoku University Sendai Miyagi 980-8577 Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Kotone Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| |
Collapse
|
3
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
4
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Co-translational formation of disulfides guides folding of the SARS-CoV-2 receptor binding domain. Biophys J 2023; 122:3238-3253. [PMID: 37422697 PMCID: PMC10465708 DOI: 10.1016/j.bpj.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Many secreted proteins, including viral proteins, contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that the RBD can only refold reversibly if its native disulfides are present before folding. But in their absence, the RBD spontaneously misfolds into a nonnative, molten-globule-like state that is structurally incompatible with complete disulfide formation and that is highly prone to aggregation. Thus, the RBD native structure represents a metastable state on the protein's energy landscape with reduced disulfides, indicating that nonequilibrium mechanisms are needed to ensure native disulfides form before folding. Our atomistic simulations suggest that this may be achieved via co-translational folding during RBD secretion into the endoplasmic reticulum. Namely, at intermediate translation lengths, native disulfide pairs are predicted to come together with high probability, and thus, under suitable kinetic conditions, this process may lock the protein into its native state and circumvent highly aggregation-prone nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; PhD Program in Biophysics, Harvard University, Cambridge, Massachusetts.
| | - Kibum Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
5
|
Sakuma M, Honda S, Ueno H, Tabata KV, Miyazaki K, Tokuriki N, Noji H. Genetic Perturbation Alters Functional Substates in Alkaline Phosphatase. J Am Chem Soc 2023; 145:2806-2814. [PMID: 36706363 PMCID: PMC9912328 DOI: 10.1021/jacs.2c06693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enzymes inherently exhibit molecule-to-molecule heterogeneity in their conformational and functional states, which is considered to be a key to the evolution of new functions. Single-molecule enzyme assays enable us to directly observe such multiple functional states or functional substates. Here, we quantitatively analyzed functional substates in the wild-type and 69 single-point mutants of Escherichia coli alkaline phosphatase by employing a high-throughput single-molecule assay with a femtoliter reactor array device. Interestingly, many mutant enzymes exhibited significantly heterogeneous functional substates with various types, while the wild-type enzyme showed a highly homogeneous substate. We identified a correlation between the degree of functional substates and the level of improvement in promiscuous activities. Our work provides much comprehensive evidence that the functional substates can be easily altered by mutations, and the evolution toward a new catalytic activity may involve the modulation of the functional substates.
Collapse
Affiliation(s)
- Morito Sakuma
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan,Michael
Smith Laboratories, The University of British
Columbia, British
ColumbiaV6T1Z4, Canada
| | - Shingo Honda
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Hiroshi Ueno
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Kazuhito V. Tabata
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan
| | - Kentaro Miyazaki
- International
Center for Biotechnology, Osaka University, Suita565-0871, Japan
| | - Nobuhiko Tokuriki
- Michael
Smith Laboratories, The University of British
Columbia, British
ColumbiaV6T1Z4, Canada,
| | - Hiroyuki Noji
- Department
of Applied Chemistry, The University of
Tokyo, Tokyo113-8656, Japan,
| |
Collapse
|
6
|
Degradation-Suppressed Cocoonase for Investigating the Propeptide-Mediated Activation Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228063. [PMID: 36432163 PMCID: PMC9693254 DOI: 10.3390/molecules27228063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
Cocoonase is folded in the form of a zymogen precursor protein (prococoonase) with the assistance of the propeptide region. To investigate the role of the propeptide sequence on the disulfide-coupled folding of cocoonase and prococoonase, the amino acid residues at the degradation sites during the refolding and auto-processing reactions were determined by mass spectrometric analyses and were mutated to suppress the numerous degradation reactions that occur during the reactions. In addition, the Lys8 residue at the propeptide region was also mutated to estimate whether the entire sequence is absolutely required for the activation of cocoonase. Finally, a degradation-suppressed [K8D,K63G,K131G,K133A]-proCCN protein was prepared and was found to refold readily without significant degradation. The results of an enzyme assay using casein or Bz-Arg-OEt suggested that the mutations had no significant effect on either the enzyme activity or the protein conformation. Thus, we, herein, provide the non-degradative cocoonase protein to investigate the propeptide-mediated protein folding of the molecule. We also examined the catalytic residues using the degradation-suppressed cocoonase. The point mutations at the putative catalytic residues in cocoonase resulted in the loss of catalytic activity without any secondary structural changes, indicating that the mutated residues play a role in the catalytic activity of this enzyme.
Collapse
|
7
|
Bitran A, Park K, Serebryany E, Shakhnovich EI. Cotranslational formation of disulfides guides folding of the SARS COV-2 receptor binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.10.516025. [PMID: 36380756 PMCID: PMC9665344 DOI: 10.1101/2022.11.10.516025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many secreted proteins contain multiple disulfide bonds. How disulfide formation is coupled to protein folding in the cell remains poorly understood at the molecular level. Here, we combine experiment and simulation to address this question as it pertains to the SARS-CoV-2 receptor binding domain (RBD). We show that, whereas RBD can refold reversibly when its disulfides are intact, their disruption causes misfolding into a nonnative molten-globule state that is highly prone to aggregation and disulfide scrambling. Thus, non-equilibrium mechanisms are needed to ensure disulfides form prior to folding in vivo. Our simulations suggest that co-translational folding may accomplish this, as native disulfide pairs are predicted to form with high probability at intermediate lengths, ultimately committing the RBD to its metastable native state and circumventing nonnative intermediates. This detailed molecular picture of the RBD folding landscape may shed light on SARS-CoV-2 pathology and molecular constraints governing SARS-CoV-2 evolution.
Collapse
|
8
|
León-González JA, Flatet P, Juárez-Ramírez MS, Farías-Rico JA. Folding and Evolution of a Repeat Protein on the Ribosome. Front Mol Biosci 2022; 9:851038. [PMID: 35707224 PMCID: PMC9189291 DOI: 10.3389/fmolb.2022.851038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Life on earth is the result of the work of proteins, the cellular nanomachines that fold into elaborated 3D structures to perform their functions. The ribosome synthesizes all the proteins of the biosphere, and many of them begin to fold during translation in a process known as cotranslational folding. In this work we discuss current advances of this field and provide computational and experimental data that highlight the role of ribosome in the evolution of protein structures. First, we used the sequence of the Ankyrin domain from the Drosophila Notch receptor to launch a deep sequence-based search. With this strategy, we found a conserved 33-residue motif shared by different protein folds. Then, to see how the vectorial addition of the motif would generate a full structure we measured the folding on the ribosome of the Ankyrin repeat protein. Not only the on-ribosome folding data is in full agreement with classical in vitro biophysical measurements but also it provides experimental evidence on how folded proteins could have evolved by duplication and fusion of smaller fragments in the RNA world. Overall, we discuss how the ribosomal exit tunnel could be conceptualized as an active site that is under evolutionary pressure to influence protein folding.
Collapse
Affiliation(s)
- José Alberto León-González
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Perline Flatet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - María Soledad Juárez-Ramírez
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - José Arcadio Farías-Rico
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
- *Correspondence: José Arcadio Farías-Rico,
| |
Collapse
|
9
|
Jaswal SS. Lessons from a quarter century of being human in protein science. Protein Sci 2022; 31:768-783. [PMID: 35048424 PMCID: PMC8927861 DOI: 10.1002/pro.4278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Over the past quarter century, my engagement with the protein society has allowed me to witness first-hand the evolution of our deepening understanding of the complexity of protein folding landscapes. During my own evolution as a protein scientist, my passion for protein folding has deepened into an obsession with mapping and decoding the thermodynamic and kinetic secrets of protein landscapes - especially those of rebel proteins, whose "non-traditional" behavior has challenged our paradigms and inspired the expansion of our models and methods. It is perhaps not surprising that I see parallels in the evolution of the landscape framework and in the development of our own trajectories as humans in STEM. Just as with proteins however, we need to recognize that our individual human landscapes are not isolated from our local departmental and institutional communities, and are integrated into the larger networks of our STEM disciplines, academia, industry and/or government, not to mention society. My experience with hundreds of participants in the Being Human in STEM initiative that Amherst College undergraduates and I co-founded in 2016 has helped me find hope for STEM and humanity. If we commit to reconciling our identities as scientists with our responsibilities as human beings, together we can accelerate the evolution of individual, community and societal landscapes to contribute to addressing the dire challenges facing our planet. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheila S Jaswal
- Department of Chemistry, and Program in Biochemistry & Biophysics Amherst College
| |
Collapse
|
10
|
Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E, Longwell SA, Sabatti C, Herschlag D, Fordyce PM. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 2021; 373:373/6553/eabf8761. [PMID: 34437092 DOI: 10.1126/science.abf8761] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Systematic and extensive investigation of enzymes is needed to understand their extraordinary efficiency and meet current challenges in medicine and engineering. We present HT-MEK (High-Throughput Microfluidic Enzyme Kinetics), a microfluidic platform for high-throughput expression, purification, and characterization of more than 1500 enzyme variants per experiment. For 1036 mutants of the alkaline phosphatase PafA (phosphate-irrepressible alkaline phosphatase of Flavobacterium), we performed more than 670,000 reactions and determined more than 5000 kinetic and physical constants for multiple substrates and inhibitors. We uncovered extensive kinetic partitioning to a misfolded state and isolated catalytic effects, revealing spatially contiguous regions of residues linked to particular aspects of function. Regions included active-site proximal residues but extended to the enzyme surface, providing a map of underlying architecture not possible to derive from existing approaches. HT-MEK has applications that range from understanding molecular mechanisms to medicine, engineering, and design.
Collapse
Affiliation(s)
- C J Markin
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - D A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - F Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - M J Appel
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - E Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - S A Longwell
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - C Sabatti
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.,Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - D Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - P M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. .,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub; San Francisco, CA 94110, USA
| |
Collapse
|
11
|
Nixon CF, Lim SA, Sailer ZR, Zheludev IN, Gee CL, Kelch BA, Harms MJ, Marqusee S. Exploring the Evolutionary History of Kinetic Stability in the α-Lytic Protease Family. Biochemistry 2021; 60:170-181. [PMID: 33433210 DOI: 10.1021/acs.biochem.0c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to encoding the tertiary fold and stability, the primary sequence of a protein encodes the folding trajectory and kinetic barriers that determine the speed of folding. How these kinetic barriers are encoded is not well understood. Here, we use evolutionary sequence variation in the α-lytic protease (αLP) protein family to probe the relationship between sequence and energy landscape. αLP has an unusual energy landscape: the native state of αLP is not the most thermodynamically favored conformation and, instead, remains folded due to a large kinetic barrier preventing unfolding. To fold, αLP utilizes an N-terminal pro region similar in size to the protease itself that functions as a folding catalyst. Once folded, the pro region is removed, and the native state does not unfold on a biologically relevant time scale. Without the pro region, αLP folds on the order of millennia. A phylogenetic search uncovers αLP homologs with a wide range of pro region sizes, including some with no pro region at all. In the resulting phylogenetic tree, these homologs cluster by pro region size. By studying homologs naturally lacking a pro region, we demonstrate they can be thermodynamically stable, fold much faster than αLP, yet retain the same fold as αLP. Key amino acids thought to contribute to αLP's extreme kinetic stability are lost in these homologs, supporting their role in kinetic stability. This study highlights how the entire energy landscape plays an important role in determining the evolutionary pressures on the protein sequence.
Collapse
Affiliation(s)
- Charlotte F Nixon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shion A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zachary R Sailer
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States.,Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Ivan N Zheludev
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States.,Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci Rep 2020; 10:1045. [PMID: 31974391 PMCID: PMC6978356 DOI: 10.1038/s41598-020-57873-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022] Open
Abstract
Protein stability is a widely studied topic, there are still aspects however that need addressing. In this paper we examined the effects of multiple proline substitutions into loop regions of the kinetically stable proteinase K-like serine protease VPR, using the thermostable structural homologue AQUI as a template. Four locations for proline substitutions were chosen to imitate the structure of AQUI. Variants were produced and characterized using differential scanning calorimetry (DSC), circular dichroism (CD), steady state fluorescence, acrylamide fluorescence quenching and thermal inactivation experiments. The final product VPRΔC_N3P/I5P/N238P/T265P was greatly stabilized which was achieved without any noticeable detrimental effects to the catalytic efficiency of the enzyme. This stabilization seems to be derived from the conformation restrictive properties of the proline residue in its ability to act as an anchor point and strengthen pre-existing interactions within the protein and allowing for these interactions to prevail when thermal energy is applied to the system. In addition, the results underline the importance of the synergy between distant local protein motions needed to result in stabilizing effects and thus giving an insight into the nature of the stability of VPR, its unfolding landscape and how proline residues can infer kinetic stability onto protein structures.
Collapse
|
14
|
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc Natl Acad Sci U S A 2020; 117:1485-1495. [PMID: 31911473 DOI: 10.1073/pnas.1913207117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.
Collapse
|
15
|
Abstract
Abstract
While according to the thermodynamic hypothesis, protein folding reproducibility is ensured by the assumption that the native state corresponds to the minimum of the free energy in normal cellular conditions, here, the VES kinetic mechanism for folding in vivo is described according to which the nascent chain of all proteins is helical and the first and structure defining step in the folding pathway is the bending of that initial helix around a particular amino acid site. Molecular dynamics simulations are presented which indicate both the viability of this mechanism for folding and its limitations in the presence of a Markovian thermal bath. An analysis of a set of protein structures formed only of helices and loops suggests that bending sites are correlated with regions bounded, on the N-side, by positively charged amino acids like Lysine and Histidine and on the C-side by negatively charged amino acids like Aspartic acid.
Collapse
|
16
|
Verma N, Dollinger P, Kovacic F, Jaeger KE, Gohlke H. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem 2019; 41:500-512. [PMID: 31618459 DOI: 10.1002/jcc.26085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a β-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neha Verma
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Peter Dollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| |
Collapse
|
17
|
Enzymatic activity and thermoresistance of improved microbial transglutaminase variants. Amino Acids 2019; 52:313-326. [DOI: 10.1007/s00726-019-02764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
|
18
|
Abstract
A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS This article was reviewed by Eugene Koonin and Frank Eisenhaber.
Collapse
|
19
|
Martins A, Pfirrmann T, Heessen S, Sundqvist G, Bulone V, Andréasson C, Ljungdahl PO. Ssy5 is a signaling serine protease that exhibits atypical biogenesis and marked S1 specificity. J Biol Chem 2018; 293:8362-8378. [PMID: 29661936 DOI: 10.1074/jbc.ra118.002457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ssy5 is a signaling endoprotease that plays a key role in regulating central metabolism, cellular aging, and morphological transitions important for growth and survival of yeast (Saccharomyces cerevisiae) cells. In response to extracellular amino acids, Ssy5 proteolytically activates the transcription factors Stp1 and Stp2, leading to enhanced Ssy1-Ptr3-Ssy5 (SPS) sensor-regulated gene expression. Ssy5 comprises a catalytic (Cat) domain and an extensive regulatory prodomain. Ssy5 is refractory to both broad-spectrum and serine protease-specific inhibitors, confounding its classification as a protease, and no information about Ssy5's cleavage-site preferences and its mechanism of substrate selection is available. Here, using mutational and inhibition experiments, we investigated the biogenesis and catalytic properties of Ssy5 and conclusively show that it is a serine protease. Atypical for the majority of serine proteases, Ssy5's prodomain was obligatorily required in cis during biogenesis for the maturation of the proteolytic activity of the Cat domain. Autolysis and Stp1 and Stp2 cleavage occurred between a cysteine (at the P1 site) and a serine or alanine (at the P'1 site) and required residues with short side chains at the P1 site. Substitutions in the Cat domain affecting substrate specificity revealed that residues Phe-634, His-661, and Gly-671 in the S1-binding pocket of this domain are important for Ssy5 catalytic function. This study confirms that the signaling protease Ssy5 is a serine protease and provides a detailed understanding of the biogenesis and intrinsic properties of this key enzyme in yeast.
Collapse
Affiliation(s)
- António Martins
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Thorsten Pfirrmann
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Stijn Heessen
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Gustav Sundqvist
- the Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden, and
| | - Vincent Bulone
- the Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden, and.,the ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Urrbra 5064, South Australia, Australia
| | - Claes Andréasson
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Per O Ljungdahl
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden,
| |
Collapse
|
20
|
On the folding of a structurally complex protein to its metastable active state. Proc Natl Acad Sci U S A 2018; 115:1998-2003. [PMID: 29343647 DOI: 10.1073/pnas.1708173115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For successful protease inhibition, the reactive center loop (RCL) of the two-domain serine protease inhibitor, α1-antitrypsin (α1-AT), needs to remain exposed in a metastable active conformation. The α1-AT RCL is sequestered in a β-sheet in the stable latent conformation. Thus, to be functional, α1-AT must always fold to a metastable conformation while avoiding folding to a stable conformation. We explore the structural basis of this choice using folding simulations of coarse-grained structure-based models of the two α1-AT conformations. Our simulations capture the key features of folding experiments performed on both conformations. The simulations also show that the free energy barrier to fold to the latent conformation is much larger than the barrier to fold to the active conformation. An entropically stabilized on-pathway intermediate lowers the barrier for folding to the active conformation. In this intermediate, the RCL is in an exposed configuration, and only one of the two α1-AT domains is folded. In contrast, early conversion of the RCL into a β-strand increases the coupling between the two α1-AT domains in the transition state and creates a larger barrier for folding to the latent conformation. Thus, unlike what happens in several proteins, where separate regions promote folding and function, the structure of the RCL, formed early during folding, determines both the conformational and the functional fate of α1-AT. Further, the short 12-residue RCL modulates the free energy barrier and the folding cooperativity of the large 370-residue α1-AT. Finally, we suggest experiments to test the predicted folding mechanism for the latent state.
Collapse
|
21
|
|
22
|
Cruzeiro L, Degrève L. Exploring the Levinthal limit in protein folding. J Biol Phys 2016; 43:15-30. [PMID: 27743150 DOI: 10.1007/s10867-016-9431-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022] Open
Abstract
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.
Collapse
Affiliation(s)
- Leonor Cruzeiro
- CCMAR and FCT, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Léo Degrève
- Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1356-62. [DOI: 10.1016/j.bbapap.2016.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023]
|
24
|
Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem. Adv Bioinformatics 2016; 2016:7357123. [PMID: 27413369 PMCID: PMC4931103 DOI: 10.1155/2016/7357123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.
Collapse
|
25
|
Coutandin D, Osterburg C, Srivastav RK, Sumyk M, Kehrloesser S, Gebel J, Tuppi M, Hannewald J, Schäfer B, Salah E, Mathea S, Müller-Kuller U, Doutch J, Grez M, Knapp S, Dötsch V. Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level. eLife 2016; 5. [PMID: 27021569 PMCID: PMC4876613 DOI: 10.7554/elife.13909] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/28/2016] [Indexed: 01/07/2023] Open
Abstract
Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long
periods of time, during which the high concentration of the p53 family member TAp63α
sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and
exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization
and concomitant activation upon detection of DNA damage. Here we show that the TAp63α
dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism
not requiring further translation of other cellular factors in oocytes and is
associated with unfolding of the inhibitory structure that blocks the tetramerization
interface. Using a combination of biophysical methods as well as cell and ovary
culture experiments we explain how TAp63α is kept inactive in the absence of DNA
damage but causes rapid oocyte elimination in response to a few DNA double strand
breaks thereby acting as the key quality control factor in maternal reproduction. DOI:http://dx.doi.org/10.7554/eLife.13909.001 The irradiation and chemotherapy drugs that are used to destroy cancer cells also
damage healthy cells. Germ cells – from which egg cells and sperm cells develop – are
particularly vulnerable as they contain sensitive quality control mechanisms that
kill any cell that contain damaged DNA. Consequently, after surviving cancer many
patients are confronted with infertility. A protein called p63, which is closely related to another protein that suppresses the
formation of tumors, plays an essential role in detecting and responding to DNA
damage. In immature egg cells (also known as oocytes), p63 mostly exists in an
inactive form. The protein then switches to an active form when DNA damage is
detected to trigger the process of cell self-destruction. Now, Coutandin, Osterburg et al. have performed a range of biochemical, biophysical
and cell culture experiments to study how p63 is kept in its inactive form in the
oocytes of mice. The experiments showed that in the inactive form, the two ends of
the protein form a sheet that closes a key site on the protein and prevents it from
changing into its active form. However, this closed form can be thought of as being
like a spring-loaded trap – it doesn’t take much energy to spring the trap and open
the protein into its active form. Once this change has occurred, it is
irreversible. Coutandin, Osterburg et al. also found that the oocytes of mice already contain all
the proteins necessary to activate p63. This means that once the switch to the active
form is triggered there is no delay waiting for other proteins to be made, which
makes oocytes extremely sensitive to DNA damage. Further work is now needed to
investigate the exact molecular mechanisms behind the activation of p63. DOI:http://dx.doi.org/10.7554/eLife.13909.002
Collapse
Affiliation(s)
- Daniel Coutandin
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Ratnesh Kumar Srivastav
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Manuela Sumyk
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Jens Hannewald
- MS-DTB-C Protein Purification, Merck KGaA, Darmstadt, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Eidarus Salah
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Sebastian Mathea
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | | | - James Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Stefan Knapp
- Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom.,Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Buchmann Institute for Molecular Life Science, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
26
|
Foldase and inhibitor functionalities of the pepsinogen prosegment are encoded within discrete segments of the 44 residue domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1300-6. [PMID: 26003941 DOI: 10.1016/j.bbapap.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 11/22/2022]
Abstract
Pepsin is initially produced as the zymogen pepsinogen, containing a 44 residue prosegment (PS) domain. When folded without the PS, pepsin forms a thermodynamically stable denatured state (refolded pepsin, Rp). To guide native folding, the PS binds to Rp, stabilizes the folding transition state, and binds tightly to native pepsin (Np), thereby driving the folding equilibrium to favor the native state. It is unknown whether these functionalities of the PS are encoded within the entire sequence or within discrete segments. PS residues 1p-29p correspond to a highly conserved region in pepsin-like aspartic proteases and we hypothesized that this segment is critical to PS-catalyzed folding. This notion was tested in the present study by characterizing the ability of various truncated PS peptides to bind Rp, catalyze folding from Rp to Np, and to inhibit Np. Four PS truncations were examined, corresponding to PS residues 1p-16p (PS1-16), 1p-29p (PS1-29), 17p-44p (PS17-44) and 30p-44p (PS30-44). The three PS functionalities could be ascribed primarily to discrete regions within the highly conserved motif: 1p-16p dictated Rp binding, 17p-29p dictated Np binding/inhibition, while the entire 1p-29p dictated transition state binding/catalyzing folding. Conversely, PS30-44 played no obvious role in PS-catalyzed folding; it is hypothesized that this more variable region may serve as a linker between PS1-29 and the mature domain. The high sequence conservation of PS1-29 and its role in catalyzing pepsin folding strongly suggest that there is a conserved PS-catalyzed folding mechanism shared by pepsin-like aspartic proteases with this motif.
Collapse
|
27
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
28
|
Kobayashi H, Yoshida T, Miyakawa T, Tashiro M, Okamoto K, Yamanaka H, Tanokura M, Tsuge H. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. J Biol Chem 2015; 290:11130-43. [PMID: 25784551 DOI: 10.1074/jbc.m114.622852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/06/2022] Open
Abstract
Subtilisin-like proteases are broadly expressed in organisms ranging from bacteria to mammals. During maturation of these enzymes, N-terminal propeptides function as intramolecular chaperones, assisting the folding of their catalytic domains. However, we have identified an exceptional case, the serine protease from Aeromonas sobria (ASP), that lacks a propeptide. Instead, ORF2, a protein encoded just downstream of asp, appears essential for proper ASP folding. The mechanism by which ORF2 functions remains an open question, because it shares no sequence homology with any known intramolecular propeptide or other protein. Here we report the crystal structure of the ORF2-ASP complex and the solution structure of free ORF2. ORF2 consists of three regions: an N-terminal extension, a central body, and a C-terminal tail. Together, the structure of the central body and the C-terminal tail is similar to that of the intramolecular propeptide. The N-terminal extension, which is not seen in other subtilisin-like enzymes, is intrinsically disordered but forms some degree of secondary structure upon binding ASP. We also show that C-terminal (ΔC1 and ΔC5) or N-terminal (ΔN43 and ΔN64) deletion eliminates the ability of ORF2 to function as a chaperone. Characterization of the maturation of ASP with ORF2 showed that folding occurs in the periplasmic space and is followed by translocation into extracellular space and dissociation from ORF2, generating active ASP. Finally, a PSI-BLAST search revealed that operons encoding subtilases and their external chaperones are widely distributed among Gram-negative bacteria, suggesting that ASP and its homologs form a novel family of subtilases having an external chaperone.
Collapse
Affiliation(s)
- Hidetomo Kobayashi
- From the Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima 737-0112, Japan
| | - Toru Yoshida
- the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Takuya Miyakawa
- the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Tashiro
- the Department of Chemistry, College of Science and Technology, Meisei University, Hodokubo, Hino, Tokyo 191-0042, Japan, and
| | - Keinosuke Okamoto
- the Department of Pharmacogenetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hiroyasu Yamanaka
- From the Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima 737-0112, Japan
| | - Masaru Tanokura
- the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Tsuge
- the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan,
| |
Collapse
|
29
|
Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J. Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 2015; 5:9129. [PMID: 25774740 PMCID: PMC4360737 DOI: 10.1038/srep09129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones).
Collapse
Affiliation(s)
- Emilio Lamazares
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Isabel Clemente
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Bueno
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain [3] Fundación ARAID, Gobierno de Aragón, Spain
| | - Javier Sancho
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
30
|
Wang D, Coco MW, Rose RB. Interactions with the bifunctional interface of the transcriptional coactivator DCoH1 are kinetically regulated. J Biol Chem 2015; 290:4319-29. [PMID: 25538247 DOI: 10.1074/jbc.m114.616870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied the folding and stability of the DCoH homotetramer. We show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ(½) ∼ 2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a "kinetic hot spot" instead of a "thermodynamic hot spot." Kinetic regulation allows PCD to adopt two distinct functions. Mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.
Collapse
Affiliation(s)
- Dongli Wang
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Matthew W Coco
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Robert B Rose
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| |
Collapse
|
31
|
The principle of compromise in competition: exploring stability condition of protein folding. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Xiao H, Bryksa BC, Bhaumik P, Gustchina A, Kiso Y, Yao SQ, Wlodawer A, Yada RY. The zymogen of plasmepsin V from Plasmodium falciparum is enzymatically active. Mol Biochem Parasitol 2014; 197:56-63. [PMID: 25447707 PMCID: PMC6310130 DOI: 10.1016/j.molbiopara.2014.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Plasmepsin V, a membrane-bound aspartic protease present in Plasmodium falciparum, is involved in the export of malaria parasite effector proteins into host erythrocytes and therefore is a potential target for antimalarial drug development. The present study reports the bacterial recombinant expression and initial characterization of zymogenic and mature plasmepsin V. A 484-residue truncated form of proplasmepsin (Glu37-Asn521) was fused to a fragment of thioredoxin and expressed as inclusion bodies. Refolding conditions were optimized and zymogen was processed into a mature form via cleavage at the Asn80-Ala81 peptide bond. Mature plasmepsin V exhibited a pH optimum of 5.5-7.0 with Km and kcat of 4.6 μM and 0.24s(-1), respectively, at pH 6.0 using the substrate DABCYL-LNKRLLHETQ-E(EDANS). Furthermore, the prosegment of proplasmepsin V was shown to be nonessential for refolding and inhibition. Unexpectedly, unprocessed proplasmepsin V was enzymatically active with slightly reduced substrate affinity (∼ 2-fold), and similar pH optimum as well as turnover compared to the mature form. Both zymogenic and mature plasmepsin V were partially inhibited by pepstatin A as well as several KNI aspartic protease inhibitors while certain metals strongly inhibited activity. Overall, the present study provides the first report on the nonessentiality of the prosegment for plasmepsin V folding and activity, and therefore, subsequent characterization of its structure-function relationships of both zymogen and mature forms in the development of novel inhibitors with potential antimalarial activities is warranted.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1
| | - Brian C Bryksa
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543, Singapore
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Rickey Y Yada
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1; Faculty of Land and Food Systems, University of British Columbia 248-2357 Main Mall Vancouver, BC V6T 1Z4.
| |
Collapse
|
33
|
Dee DR, Horimoto Y, Yada RY. Conserved prosegment residues stabilize a late-stage folding transition state of pepsin independently of ground states. PLoS One 2014; 9:e101339. [PMID: 24983988 PMCID: PMC4077824 DOI: 10.1371/journal.pone.0101339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 06/05/2014] [Indexed: 11/24/2022] Open
Abstract
The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding.
Collapse
Affiliation(s)
- Derek R. Dee
- Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Yasumi Horimoto
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rickey Y. Yada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Karpel RL. The illusive search for the lowest free energy state of globular proteins and RNAs. DNA Repair (Amst) 2014; 21:158-62. [PMID: 24846762 DOI: 10.1016/j.dnarep.2014.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
As a consequence of the one-dimensional storage and transfer of genetic information, DNA→RNA→protein, the process by which globular proteins and RNAs achieve their three-dimensional structure involves folding of a linear chain. The folding process itself could create massive activation barriers that prevent the attainment of many stable protein and RNA structures. We consider several kinds of energy barriers inherent in folding that might serve as kinetic constraints to achieving the lowest energy state. Alternative approaches to forming 3D structure, where a substantial number of weak interactions would be created prior to the formation of all the peptide (or phosphodiester) bonds, might not be subjected to such high barriers. This could lead to unique 3D conformational states, potentially more stable than "native" proteins and RNAs, with new functionalities.
Collapse
Affiliation(s)
- Richard L Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
35
|
Chaotic multiquenching annealing applied to the protein folding problem. ScientificWorldJournal 2014; 2014:364352. [PMID: 24790563 PMCID: PMC3980881 DOI: 10.1155/2014/364352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/19/2014] [Indexed: 11/17/2022] Open
Abstract
The Chaotic Multiquenching Annealing algorithm (CMQA) is proposed. CMQA is a new algorithm, which is applied to protein folding problem (PFP). This algorithm is divided into three phases: (i) multiquenching phase (MQP), (ii) annealing phase (AP), and (iii) dynamical equilibrium phase (DEP). MQP enforces several stages of quick quenching processes that include chaotic functions. The chaotic functions can increase the exploration potential of solutions space of PFP. AP phase implements a simulated annealing algorithm (SA) with an exponential cooling function. MQP and AP are delimited by different ranges of temperatures; MQP is applied for a range of temperatures which goes from extremely high values to very high values; AP searches for solutions in a range of temperatures from high values to extremely low values. DEP phase finds the equilibrium in a dynamic way by applying least squares method. CMQA is tested with several instances of PFP.
Collapse
|
36
|
Shrestha R, Zhang KYJ. Improving fragment quality for de novo structure prediction. Proteins 2014; 82:2240-52. [PMID: 24753351 DOI: 10.1002/prot.24587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
Abstract
De novo structure prediction can be defined as a search in conformational space under the guidance of an energy function. The most successful de novo structure prediction methods, such as Rosetta, assemble the fragments from known structures to reduce the search space. Therefore, the fragment quality is an important factor in structure prediction. In our study, a method is proposed to generate a new set of fragments from the lowest energy de novo models. These fragments were subsequently used to predict the next-round of models. In a benchmark of 30 proteins, the new set of fragments showed better performance when used to predict de novo structures. The lowest energy model predicted using our method was closer to native structure than Rosetta for 22 proteins. Following a similar trend, the best model among top five lowest energy models predicted using our method was closer to native structure than Rosetta for 20 proteins. In addition, our experiment showed that the C-alpha root mean square deviation was improved from 5.99 to 5.03 Å on average compared to Rosetta when the lowest energy models were picked as the best predicted models.
Collapse
Affiliation(s)
- Rojan Shrestha
- Zhang Initiative Research Unit, Institute Laboratories, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | | |
Collapse
|
37
|
Skubatz H, Howald WN. Two global conformation states of a novel NAD(P) reductase like protein of the thermogenic appendix of the Sauromatum guttatum inflorescence. Protein J 2014; 32:399-410. [PMID: 23794126 DOI: 10.1007/s10930-013-9497-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel NAD(P) reductase like protein (RL) belonging to a class of reductases involved in phenylpropanoid synthesis was previously purified to homogeneity from the Sauromatum guttatum appendix. The Sauromatum appendix raises its temperature above ambient temperature to ~30 °C on the day of inflorescence opening (D-day). Changes in the charge state distribution of the protein in electrospray ionization-mass spectrometry spectra were observed during the development of the appendix. RL adopted two conformations, state A (an extended state) that appeared before heat-production (D - 4 to D - 2), and state B (a compact state) that began appearing on D - 1 and reached a maximum on D-day. RL in healthy leaves of Arabidopsis is present in state A, whereas in thermogenic sporophylls of male cones of Encephalartos ferox is present in state B. These conformational changes strongly suggest an involvement of RL in heat-production. The biophysical properties of this protein are remarkable. It is self-assembled in aqueous solutions into micrometer sizes of organized morphologies. The assembly produces a broad range of cyclic and linear morphologies that resemble micelles, rods, lamellar micelles, as well as vesicles. The assemblies could also form network structures. RL molecules entangle with each other and formed branched, interconnected networks. These unusual assemblies suggest that RL is an oligomer, and its oligomerization can provide additional information needed for thermoregulation. We hypothesize that state A controls the plant basal temperature and state B allows a shift in the temperature set point to above ambient temperature.
Collapse
|
38
|
Meyer JG, Kim S, Maltby DA, Ghassemian M, Bandeira N, Komives EA. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Mol Cell Proteomics 2014; 13:823-35. [PMID: 24425750 DOI: 10.1074/mcp.m113.034710] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage through cleavage at sequences complementary to trypsin's may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type α-lytic protease (WaLP) and an active site mutant of WaLP, M190A α-lytic protease (MaLP). We assess several relevant factors, including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. When data from separate digestions with trypsin, LysC, WaLP, and MaLP were combined, proteome coverage was increased by 101% relative to that achieved with trypsin digestion alone. To demonstrate how the gained sequence coverage can yield additional post-translational modification information, we show the identification of a number of novel phosphorylation sites in the Schizosaccharomyces pombe proteome and include an illustrative example from the protein MPD2 wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.
Collapse
Affiliation(s)
- Jesse G Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0378
| | | | | | | | | | | |
Collapse
|
39
|
Sander IM, Chaney JL, Clark PL. Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. J Am Chem Soc 2014; 136:858-61. [PMID: 24392935 PMCID: PMC3959793 DOI: 10.1021/ja411302m] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Anfinsen’s principle asserts
that all information required
to specify the structure of a protein is encoded in its amino acid
sequence. However, during protein synthesis by the ribosome, the N-terminus
of the nascent chain can begin to fold before the C-terminus is available.
We tested whether this cotranslational folding can alter the folded
structure of an encoded protein in vivo, versus the structure formed
when refolded in vitro. We designed a fluorescent protein consisting
of three half-domains, where the N- and C-terminal half-domains compete
with each other to interact with the central half-domain. The outcome
of this competition determines the fluorescence properties of the
resulting folded structure. Upon refolding after chemical denaturation,
this protein produced equimolar amounts of the N- and C-terminal folded
structures, respectively. In contrast, translation in Escherichia coli resulted in a 2-fold enhancement
in the formation of the N-terminal folded structure. Rare synonymous
codon substitutions at the 5′ end of the C-terminal half-domain
further increased selection for the N-terminal folded structure. These
results demonstrate that the rate at which a nascent protein emerges
from the ribosome can specify the folded structure of a protein.
Collapse
Affiliation(s)
- Ian M Sander
- Department of Chemistry & Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
40
|
Wang S, Horimoto Y, Dee DR, Yada RY. Understanding the mechanism of prosegment-catalyzed folding by solution NMR spectroscopy. J Biol Chem 2014; 289:697-707. [PMID: 24265313 DOI: 10.1074/jbc.m113.505891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated.
Collapse
|
41
|
|
42
|
Stein A, Kortemme T. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One 2013; 8:e63090. [PMID: 23704889 PMCID: PMC3660577 DOI: 10.1371/journal.pone.0063090] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/28/2013] [Indexed: 02/04/2023] Open
Abstract
To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC) method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new “next-generation KIC” method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions.
Collapse
Affiliation(s)
- Amelie Stein
- California Institute for Quantitative Biomedical Research and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (AS); (TK)
| | - Tanja Kortemme
- California Institute for Quantitative Biomedical Research and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (AS); (TK)
| |
Collapse
|
43
|
Suzuki M, Sakurai K, Lee YH, Ikegami T, Yokoyama K, Goto Y. A Back Hydrogen Exchange Procedure via the Acid-Unfolded State for a Large Protein. Biochemistry 2012; 51:5564-70. [DOI: 10.1021/bi300495p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mototaka Suzuki
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Osaka 565-0871, Japan
- Research Institute for Bioscience
Products and Fine Chemicals, Ajinomono Company, Inc., Hinaga-cho 1730, Yokkaichi, Mie pref. 510-0885, Japan
| | - Kazumasa Sakurai
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Osaka 565-0871, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Osaka 565-0871, Japan
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Osaka 565-0871, Japan
| | - Keiichi Yokoyama
- Institute for Innovation, Ajinomonoto Company, Inc., Suzuki-cho 1-1, Kawasaki-ku,
Kawasaki 210-8681, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Dillon SL, Williamson DM, Elferich J, Radler D, Joshi R, Thomas G, Shinde U. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3. J Mol Biol 2012; 423:47-62. [PMID: 22743102 DOI: 10.1016/j.jmb.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 01/02/2023]
Abstract
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.
Collapse
Affiliation(s)
- Stephanie L Dillon
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Functional modulation of a protein folding landscape via side-chain distortion. Proc Natl Acad Sci U S A 2012; 109:9414-9. [PMID: 22635267 DOI: 10.1073/pnas.1119274109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ~6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions.
Collapse
|
46
|
Pauwels K, Sanchez del Pino MM, Feller G, Van Gelder P. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability. PLoS One 2012; 7:e36999. [PMID: 22615867 PMCID: PMC3352829 DOI: 10.1371/journal.pone.0036999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier.
Collapse
Affiliation(s)
- Kris Pauwels
- Department of Structural Biology, VIB and Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
47
|
Dee DR, Myers B, Yada RY. Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin. Biophys J 2012; 101:1699-709. [PMID: 21961596 DOI: 10.1016/j.bpj.2011.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022] Open
Abstract
The pepsin folding mechanism involves a prosegment (PS) domain that catalyzes folding, which is then removed, resulting in a kinetically trapped native state. Although native pepsin (Np) is kinetically stable, it is irreversibly denatured due to a large folding barrier, and in the absence of the PS it folds to a more thermodynamically stable denatured state, termed refolded pepsin (Rp). This system serves as a model to understand the nature of kinetic barriers and folding transitions between compact states. Quasielastic neutron scattering (QENS) was used to characterize and compare the flexibility of Np, as a kinetically trapped state, with that of Rp, as a thermodynamically stable fold. Additionally, the dynamics of Np were compared with those of a partially unfolded form and a thermally stabilized, inhibitor-bound form. QENS revealed length-scale-dependent differences between Np and Rp on a picosecond timescale and indicated greater flexibility in Np, leading to the conclusion that kinetic stabilization likely does not correspond to reduced internal dynamics. Furthermore, large differences were observed upon inhibition, indicating that QENS of proteins in solution may prove useful for examining the role of conformational entropy changes in ligand binding.
Collapse
Affiliation(s)
- Derek R Dee
- Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
48
|
Xiao H, Dee D, Yada RY. The native conformation of plasmepsin II is kinetically trapped at neutral pH. Arch Biochem Biophys 2011; 513:102-9. [PMID: 21767524 DOI: 10.1016/j.abb.2011.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsin II (PMII), an aspartic protease from the malarial parasite Plasmodium falciparum, represents a model for understanding protease structure/function relationships due to its unique structure and properties. The present study undertook a thermodynamic and kinetic analysis of the PMII folding mechanism and a pH stability profile. Differential scanning calorimetry revealed that the native state of PMII (Np) was irreversibly unfolded, and in the pH range of 6.5-8.0, PMII refolds to a denatured state (Rp) with higher thermal stability than Np. Rp could also be formed upon partially unfolding PMII at pH 11.0 and 37 °C for 2h, followed by adjustment to a pH in the range of 6.5-8.0. While Rp could be folded/unfolded reversibly, Np was shown to exist as a kinetically trapped state. By examining the unfolding kinetics of Np and the kinetics of Rp folding to Np at 25 °C, it was found that Np is kinetically trapped by an unfolding barrier of 25.5 kcal/mol, and yet once unfolded, is prevented from folding by a comparable folding barrier. The folding mechanism of PMII is similar to that reported for pepsin. It is hypothesized that the PMII zymogen also utilizes a prosegment-catalyzed folding mechanism.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G2W1
| | | | | |
Collapse
|
49
|
Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, Jairajpuri MA. Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization. JOURNAL OF AMINO ACIDS 2011; 2011:606797. [PMID: 22312466 PMCID: PMC3268027 DOI: 10.4061/2011/606797] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 12/02/2022]
Abstract
The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin's native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand. Serpin is delicately balanced to perform its function with many critical residues involved in maintaining metastability. However due to its typical mechanism of inhibition, naturally occurring serpin variants produces conformational instability that allows insertion of RCL of one molecule into the β-sheet A of another to form a loop-sheet linkage leading to its polymerization and aggregation. Thus understanding the molecular basis and amino acid involved in serpin polymerization mechanism is critical to devising strategies for its cure.
Collapse
Affiliation(s)
- Mohammad Sazzad Khan
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi 110025, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Sherrill CD, Merz KM. The energy computation paradox and ab initio protein folding. PLoS One 2011; 6:e18868. [PMID: 21541343 PMCID: PMC3081830 DOI: 10.1371/journal.pone.0018868] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination.
Collapse
Affiliation(s)
- John C. Faver
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
| | - Mark L. Benson
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
| | - Xiao He
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
| | - Benjamin P. Roberts
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
| | - Bing Wang
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
| | - Michael S. Marshall
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - C. David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kenneth M. Merz
- Quantum Theory Project, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|