1
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Maestri A, Pons BJ, Pursey E, Chong CE, Gandon S, Custodio R, Olina A, Agapov A, Chisnall MAW, Grasso A, Paterson S, Szczelkun MD, Baker KS, van Houte S, Chevallereau A, Westra ER. The bacterial defense system MADS interacts with CRISPR-Cas to limit phage infection and escape. Cell Host Microbe 2024; 32:1412-1426.e11. [PMID: 39094583 DOI: 10.1016/j.chom.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The constant arms race between bacteria and their parasites has resulted in a large diversity of bacterial defenses, with many bacteria carrying multiple systems. Here, we report the discovery of a phylogenetically widespread defense system, coined methylation-associated defense system (MADS), which is distributed across gram-positive and gram-negative bacteria. MADS interacts with a CRISPR-Cas system in its native host to provide robust and durable resistance against phages. While phages can acquire epigenetic-mediated resistance against MADS, co-existence of MADS and a CRISPR-Cas system limits escape emergence. MADS comprises eight genes with predicted nuclease, ATPase, kinase, and methyltransferase domains, most of which are essential for either self/non-self discrimination, DNA restriction, or both. The complex genetic architecture of MADS and MADS-like systems, relative to other prokaryotic defenses, points toward highly elaborate mechanisms of sensing infections, defense activation, and/or interference.
Collapse
Affiliation(s)
- Alice Maestri
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Benoit J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Elizabeth Pursey
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Charlotte E Chong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK; Department of Genetics, University of Cambridge, Downing Place, Cambridge CB2 3EH, UK
| | - Sylvain Gandon
- CEFE, CNRS, Université de Montpellier, EPHE, IRD, Montpellier 34293, France
| | - Rafael Custodio
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anna Olina
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Aleksei Agapov
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Matthew A W Chisnall
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anita Grasso
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Kate S Baker
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK; Department of Genetics, University of Cambridge, Downing Place, Cambridge CB2 3EH, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK
| | - Anne Chevallereau
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris 75014, France.
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|
3
|
Lee J, Hunter B, Shim H. A pangenome analysis of ESKAPE bacteriophages: the underrepresentation may impact machine learning models. Front Mol Biosci 2024; 11:1395450. [PMID: 38974320 PMCID: PMC11224154 DOI: 10.3389/fmolb.2024.1395450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Bacteriophages are the most prevalent biological entities in the biosphere. However, limitations in both medical relevance and sequencing technologies have led to a systematic underestimation of the genetic diversity within phages. This underrepresentation not only creates a significant gap in our understanding of phage roles across diverse biosystems but also introduces biases in computational models reliant on these data for training and testing. In this study, we focused on publicly available genomes of bacteriophages infecting high-priority ESKAPE pathogens to show the extent and impact of this underrepresentation. First, we demonstrate a stark underrepresentation of ESKAPE phage genomes within the public genome and protein databases. Next, a pangenome analysis of these ESKAPE phages reveals extensive sharing of core genes among phages infecting the same host. Furthermore, genome analyses and clustering highlight close nucleotide-level relationships among the ESKAPE phages, raising concerns about the limited diversity within current public databases. Lastly, we uncover a scarcity of unique lytic phages and phage proteins with antimicrobial activities against ESKAPE pathogens. This comprehensive analysis of the ESKAPE phages underscores the severity of underrepresentation and its potential implications. This lack of diversity in phage genomes may restrict the resurgence of phage therapy and cause biased outcomes in data-driven computational models due to incomplete and unbalanced biological datasets.
Collapse
Affiliation(s)
- Jeesu Lee
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, Republic of Korea
| | - Branden Hunter
- Department of Biology, California State University, Fresno, CA, United States
| | - Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Biology, California State University, Fresno, CA, United States
| |
Collapse
|
4
|
Wang M, Zhang J, Wei J, Jiang L, Jiang L, Sun Y, Zeng Z, Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit Rev Microbiol 2024; 50:196-211. [PMID: 38400715 DOI: 10.1080/1040841x.2023.2181056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| |
Collapse
|
5
|
Andriianov A, Trigüis S, Drobiazko A, Sierro N, Ivanov NV, Selmer M, Severinov K, Isaev A. Phage T3 overcomes the BREX defense through SAM cleavage and inhibition of SAM synthesis by SAM lyase. Cell Rep 2023; 42:112972. [PMID: 37578860 DOI: 10.1016/j.celrep.2023.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Bacteriophage T3 encodes a SAMase that, through cleavage of S-adenosyl methionine (SAM), circumvents the SAM-dependent type I restriction-modification (R-M) defense. We show that SAMase also allows T3 to evade the BREX defense. Although SAM depletion weakly affects BREX methylation, it completely inhibits the defensive function of BREX, suggesting that SAM could be a co-factor for BREX-mediated exclusion of phage DNA, similar to its anti-defense role in type I R-M. The anti-BREX activity of T3 SAMase is mediated not just by enzymatic degradation of SAM but also by direct inhibition of MetK, the host SAM synthase. We present a 2.8 Å cryoelectron microscopy (cryo-EM) structure of the eight-subunit T3 SAMase-MetK complex. Structure-guided mutagenesis reveals that this interaction stabilizes T3 SAMase in vivo, further stimulating its anti-BREX activity. This work provides insights in the versatility of bacteriophage counterdefense mechanisms and highlights the role of SAM as a co-factor of diverse bacterial immunity systems.
Collapse
Affiliation(s)
| | - Silvia Trigüis
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden.
| | | | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia.
| |
Collapse
|
6
|
Kirillov A, Morozova N, Kozlova S, Polinovskaya V, Smirnov S, Khodorkovskii M, Zeng L, Ispolatov Y, Severinov K. Cells with stochastically increased methyltransferase to restriction endonuclease ratio provide an entry for bacteriophage into protected cell population. Nucleic Acids Res 2022; 50:12355-12368. [PMID: 36477901 PMCID: PMC9757035 DOI: 10.1093/nar/gkac1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The action of Type II restriction-modification (RM) systems depends on restriction endonuclease (REase), which cleaves foreign DNA at specific sites, and methyltransferase (MTase), which protects host genome from restriction by methylating the same sites. We here show that protection from phage infection increases as the copy number of plasmids carrying the Type II RM Esp1396I system is increased. However, since increased plasmid copy number leads to both increased absolute intracellular RM enzyme levels and to a decreased MTase/REase ratio, it is impossible to determine which factor determines resistance/susceptibility to infection. By controlled expression of individual Esp1396I MTase or REase genes in cells carrying the Esp1396I system, we show that a shift in the MTase to REase ratio caused by overproduction of MTase or REase leads, respectively, to decreased or increased protection from infection. Consistently, due to stochastic variation of MTase and REase amount in individual cells, bacterial cells that are productively infected by bacteriophage have significantly higher MTase to REase ratios than cells that ward off the infection. Our results suggest that cells with transiently increased MTase to REase ratio at the time of infection serve as entry points for unmodified phage DNA into protected bacterial populations.
Collapse
Affiliation(s)
- Alexander Kirillov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Natalia Morozova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia,Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Svetlana Kozlova
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Vasilisa Polinovskaya
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Sergey Smirnov
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Lanying Zeng
- Texas A&M University, Department of Biochemistry and Biophysics, Center for Phage Technology, College Station, TX 77843, USA
| | - Yaroslav Ispolatov
- University of Santiago of Chile (USACH), Physics Department, Av. Víctor Jara 3493, Santiago, Chile
| | - Konstantin Severinov
- To whom correspondence should be addressed. Tel: +7 9854570284; Fax: +1 848 445 5735;
| |
Collapse
|
7
|
Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K. Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Mol Biol 2022. [DOI: 10.1134/s0026893322060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacteriophages—viruses that infect bacterial cells—are the most abundant biological entities on Earth. The use of phages in fundamental research and industry requires tools for precise manipulation of their genomes. Yet, compared to bacterial genome engineering, modification of phage genomes is challenging because of the lack of selective markers and thus requires laborious screenings of recombinant/mutated phage variants. The development of the CRISPR-Cas technologies allowed to solve this issue by the implementation of negative selection that eliminates the parental phage genomes. In this manuscript, we summarize current methods of phage genome engineering and their coupling with CRISPR-Cas technologies. We also provide examples of our successful application of these methods for introduction of specific insertions, deletions, and point mutations in the genomes of model Escherichia coli lytic phages T7, T5, and T3.
Collapse
|
8
|
Li Z, Wang W, Ma B, Yin J, Hu C, Luo P, Wang Y. Genomic and biological characteristics of a newly isolated lytic bacteriophage PZJ0206 infecting the Enterobacter cloacae. Virus Res 2022; 316:198800. [DOI: 10.1016/j.virusres.2022.198800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
9
|
Kitti T, Kongfak S, Leungtongkam U, Thummeepak R, Tasanapak K, Thanwisai A, Sitthisak S. Comparative genome analysis of Escherichia coli bacteriophages isolated from sewage and chicken meat. Virus Res 2022; 315:198784. [DOI: 10.1016/j.virusres.2022.198784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
|
10
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Guo X, Söderholm A, Kanchugal P S, Isaksen GV, Warsi O, Eckhard U, Trigüis S, Gogoll A, Jerlström-Hultqvist J, Åqvist J, Andersson DI, Selmer M. Structure and mechanism of a phage-encoded SAM lyase revises catalytic function of enzyme family. eLife 2021; 10:61818. [PMID: 33567250 PMCID: PMC7877911 DOI: 10.7554/elife.61818] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
The first S-adenosyl methionine (SAM) degrading enzyme (SAMase) was discovered in bacteriophage T3, as a counter-defense against the bacterial restriction-modification system, and annotated as a SAM hydrolase forming 5’-methyl-thioadenosine (MTA) and L-homoserine. From environmental phages, we recently discovered three SAMases with barely detectable sequence similarity to T3 SAMase and without homology to proteins of known structure. Here, we present the very first phage SAMase structures, in complex with a substrate analogue and the product MTA. The structure shows a trimer of alpha–beta sandwiches similar to the GlnB-like superfamily, with active sites formed at the trimer interfaces. Quantum-mechanical calculations, thin-layer chromatography, and nuclear magnetic resonance spectroscopy demonstrate that this family of enzymes are not hydrolases but lyases forming MTA and L-homoserine lactone in a unimolecular reaction mechanism. Sequence analysis and in vitro and in vivo mutagenesis support that T3 SAMase belongs to the same structural family and utilizes the same reaction mechanism. Bacteria can be infected by viruses known as bacteriophages. These viruses inject their genetic material into bacterial cells and use the bacteria’s own machinery to build the proteins they need to survive and infect other cells. To protect themselves, bacteria produce a molecule called S-adenosyl methionine, or SAM for short, which deposits marks on the bacteria’s DNA. These marks help the bacteria distinguish their own genetic material from the genetic material of foreign invaders: any DNA not bearing the mark from SAM will be immediately broken down by the bacterial cell. This system helps to block many types of bacteriophage infections, but not all. Some bacteriophages carry genes that code for enzymes called SAMases, which can break down SAM, switching off the bacteria’s defenses. The most well-known SAMase was first discovered in the 1960s in a bacteriophage called T3. Chemical studies of this SAMase suggested that it works as a 'hydrolase', meaning that it uses water to break SAM apart. New SAMases have since been discovered in bacteriophages from environmental water samples, which, despite being able to degrade SAM, are genetically dissimilar to one another and the SAMase in T3. This brings into question whether these enzymes all use the same mechanism to break SAM down. To gain a better understanding of how these SAMases work, Guo, Söderholm, Kanchugal, Isaksen et al. solved the crystal structure of one of the newly discovered enzymes called Svi3-3. This revealed three copies of the Svi3-3 enzyme join together to form a unit that SAM binds to at the border between two of the enzymes. Computer simulations of this structure suggested that Svi3-3 holds SAM in a position where it cannot interact with water, and that once in the grip of the SAMase, SAM instead reacts with itself and splits into two. Experiments confirmed these predictions for Svi3-3 and the other tested SAMases. Furthermore, the SAMase from bacteriophage T3 was also found to degrade SAM using the same mechanism. This shows that this group of SAMases are not hydrolases as originally thought, but in fact ‘lyases’: enzymes that break molecules apart without using water. These findings form a starting point for further investigations into how SAM lyases help bacteriophages evade detection. SAM has various different functions in other living organisms, and these lyases could be used to modulate the levels of SAM in future studies investigating its role.
Collapse
Affiliation(s)
- Xiaohu Guo
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Annika Söderholm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandesh Kanchugal P
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Geir V Isaksen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Omar Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulrich Eckhard
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Silvia Trigüis
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Adolf Gogoll
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Shah M, Taylor VL, Bona D, Tsao Y, Stanley SY, Pimentel-Elardo SM, McCallum M, Bondy-Denomy J, Howell PL, Nodwell JR, Davidson AR, Moraes TF, Maxwell KL. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol Cell 2021; 81:571-583.e6. [PMID: 33412111 DOI: 10.1016/j.molcel.2020.12.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.
Collapse
Affiliation(s)
- Megha Shah
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Véronique L Taylor
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Diane Bona
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Yvonne Tsao
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sabrina Y Stanley
- Department of Molecular Genetics, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sheila M Pimentel-Elardo
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Matthew McCallum
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Program in Molecular Structure & Function, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Program in Molecular Structure & Function, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Alan R Davidson
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Molecular Genetics, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, MaRS West Tower, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
13
|
Affiliation(s)
- Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Bower EKM, Cooper LP, Roberts GA, White JH, Luyten Y, Morgan RD, Dryden DTF. A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes. Nucleic Acids Res 2019; 46:9067-9080. [PMID: 30165537 PMCID: PMC6158711 DOI: 10.1093/nar/gky760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the ‘deconstruction’ of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I ‘scaffold’, an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.
Collapse
Affiliation(s)
- Edward K M Bower
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Laurie P Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Gareth A Roberts
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - John H White
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FJ, UK
| | - Yvette Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
15
|
Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. mBio 2019; 10:mBio.02899-18. [PMID: 30808697 PMCID: PMC6391923 DOI: 10.1128/mbio.02899-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring plasmids constitute a major category of mobile genetic elements responsible for harboring and transferring genes important in survival and fitness. A targeted evaluation of plasmidomes can reveal unique adaptations required by microbial communities. We developed a model system to optimize plasmid DNA isolation procedures targeted to groundwater samples which are typically characterized by low cell density (and likely variations in the plasmid size and copy numbers). The optimized method resulted in successful identification of several hundred circular plasmids, including some large plasmids (11 plasmids more than 50 kb in size, with the largest being 1.7 Mb in size). Several interesting observations were made from the analysis of plasmid DNA isolated in this study. The plasmid pool (plasmidome) was more conserved than the corresponding microbiome distribution (16S rRNA based). The circular plasmids were diverse as represented by the presence of seven plasmid incompatibility groups. The genes carried on these groundwater plasmids were highly enriched in metal resistance. Results from this study confirmed that traits such as metal, antibiotic, and phage resistance along with toxin-antitoxin systems are encoded on abundant circular plasmids, all of which could confer novel and advantageous traits to their hosts. This study confirms the ecological role of the plasmidome in maintaining the latent capacity of a microbiome, enabling rapid adaptation to environmental stresses.IMPORTANCE Plasmidomes have been typically studied in environments abundant in bacteria, and this is the first study to explore plasmids from an environment characterized by low cell density. We specifically target groundwater, a significant source of water for human/agriculture use. We used samples from a well-studied site and identified hundreds of circular plasmids, including one of the largest sizes reported in plasmidome studies. The striking similarity of the plasmid-borne ORFs in terms of taxonomical and functional classifications across several samples suggests a conserved plasmid pool, in contrast to the observed variability in the 16S rRNA-based microbiome distribution. Additionally, the stress response to environmental factors has stronger conservation via plasmid-borne genes as marked by abundance of metal resistance genes. Last, identification of novel and diverse plasmids enriches the existing plasmid database(s) and serves as a paradigm to increase the repertoire of biological parts that are available for modifying novel environmental strains.
Collapse
|
16
|
Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, Ansong C, Orr G, Adkins JN, Sullivan MB. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. THE ISME JOURNAL 2018; 12:1605-1618. [PMID: 29568113 PMCID: PMC5955906 DOI: 10.1038/s41396-018-0099-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.
Collapse
Affiliation(s)
| | | | | | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O:3. Virol J 2014; 11:188. [PMID: 25347934 PMCID: PMC4283147 DOI: 10.1186/1743-422x-11-188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/19/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bacteriophage vB_YenP_AP5 is a lytic bacteriophage capable of infecting Yersinia enterocolitica strains of serotype O:3, an epidemiologically significant serotype within this bacterial species that causes yersiniosis in humans. This work describes the complete genome sequence of this phage. RESULTS The genome consists of linear double-stranded DNA of 38,646 bp, with direct terminal repeats of 235 bp in length, and a GC content of 50.7%. There are 45 open reading frames which occupy 89.9% of the genome. Most of the proteins encoded by this virus exhibit sequence similarity to Yersinia phage φYeO3-12 and Salmonella phage φSG-JL2 proteins. CONCLUSIONS Genomic and morphological analyses place the bacteriophage vB_YenP_AP5 in the T7likevirus genus of the subfamily Autographivirinae within the family Podoviridae.
Collapse
Affiliation(s)
- Carlos G Leon-Velarde
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Andrew M Kropinski
- />Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Shu Chen
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
| | - Arash Abbasifar
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mansel W Griffiths
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Joseph A Odumeru
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
18
|
Eustáquio AS, Härle J, Noel JP, Moore BS. S-Adenosyl-L-methionine hydrolase (adenosine-forming), a conserved bacterial and archaeal protein related to SAM-dependent halogenases. Chembiochem 2009; 9:2215-9. [PMID: 18720493 PMCID: PMC2692205 DOI: 10.1002/cbic.200800341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alessandra S Eustáquio
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0204, USA
| | | | | | | |
Collapse
|
19
|
Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 2008; 74:6970-9. [PMID: 18820072 DOI: 10.1128/aem.01088-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.
Collapse
|
20
|
Urbonavičius J, Jäger G, Björk GR. Amino acid residues of the Escherichia coli tRNA(m5U54)methyltransferase (TrmA) critical for stability, covalent binding of tRNA and enzymatic activity. Nucleic Acids Res 2007; 35:3297-305. [PMID: 17459887 PMCID: PMC1904294 DOI: 10.1093/nar/gkm205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli trmA gene encodes the tRNA(m5U54)methyltransferase, which catalyses the formation of m5U54 in tRNA. During the synthesis of m5U54, a covalent 62-kDa TrmA-tRNA intermediate is formed between the amino acid C324 of the enzyme and the 6-carbon of uracil. We have analysed the formation of this TrmA-tRNA intermediate and m5U54 in vivo, using mutants with altered TrmA. We show that the amino acids F188, Q190, G220, D299, R302, C324 and E358, conserved in the C-terminal catalytic domain of several RNA(m5U)methyltransferases of the COG2265 family, are important for the formation of the TrmA-tRNA intermediate and/or the enzymatic activity. These amino acids seem to have the same function as the ones present in the catalytic domain of RumA, whose structure is known, and which catalyses the formation of m5U in position 1939 of E. coli 23 S rRNA. We propose that the unusually high in vivo level of the TrmA-tRNA intermediate in wild-type cells may be due to a suboptimal cellular concentration of SAM, which is required to resolve this intermediate. Our results are consistent with the modular evolution of RNA(m5U)methyltransferases, in which the specificity of the enzymatic reaction is achieved by combining the conserved catalytic domain with different RNA-binding domains.
Collapse
Affiliation(s)
| | | | - Glenn R. Björk
- *To whom correspondence should be addressed. Tel: +46-90-7856759; Fax: +46-90-772630;
| |
Collapse
|
21
|
Schlenk F. Methylthioadenosine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 54:195-265. [PMID: 6405586 DOI: 10.1002/9780470122990.ch4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Nekrasov SV, Agafonova OV, Belogurova NG, Delver EP, Belogurov AA. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J Mol Biol 2006; 365:284-97. [PMID: 17069852 DOI: 10.1016/j.jmb.2006.09.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.
Collapse
Affiliation(s)
- Sergei V Nekrasov
- Department of Genetic Engineering, National Cardiology Research and Development Center, Moscow 121552, Russia
| | | | | | | | | |
Collapse
|
23
|
Loenen WAM. Tracking EcoKI and DNA fifty years on: a golden story full of surprises. Nucleic Acids Res 2004; 31:7059-69. [PMID: 14654681 PMCID: PMC291878 DOI: 10.1093/nar/gkg944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1953 was a historical year for biology, as it marked the birth of the DNA helix, but also a report by Bertani and Weigle on 'a barrier to infection' of bacteriophage lambda in its natural host, Escherichia coli K-12, that could be lifted by 'host-controlled variation' of the virus. This paper lay dormant till Nobel laureate Arber and PhD student Dussoix showed that the lambda DNA was rejected and degraded upon infection of different bacterial hosts, unless it carried host-specific modification of that DNA, thus laying the foundations for the phenomenon of restriction and modification (R-M). The restriction enzyme of E.coli K-12, EcoKI, was purified in 1968 and required S-adenosylmethionine (AdoMet) and ATP as cofactors. By the end of the decade there was substantial evidence for a chromosomal locus hsdK with three genes encoding restriction (R), modification (M) and specificity (S) subunits that assembled into a large complex of >400 kDa. The 1970s brought the message that EcoKI cut away from its DNA recognition target, to which site the enzyme remained bound while translocating the DNA past itself, with concomitant ATP hydrolysis and subsequent double-strand nicks. This translocation event created clearly visible DNA loops in the electron microscope. EcoKI became the archetypal Type I R-M enzyme with curious DNA translocating properties reminiscent of helicases, recognizing the bipartite asymmetric site AAC(N6)GTGC. Cloning of the hsdK locus in 1976 facilitated molecular understanding of this sophisticated R-M complex and in an elegant 'pas de deux' Murray and Dryden constructed the present model based on a large body of experimental data plus bioinformatics. This review celebrates the golden anniversary of EcoKI and ends with the exciting progress on the vital issue of restriction alleviation after DNA damage, also first reported in 1953, which involves intricate control of R subunit activity by the bacterial proteasome ClpXP, important results that will keep scientists on the EcoKI track for another 50 years to come.
Collapse
Affiliation(s)
- Wil A M Loenen
- Department of Medical Microbiology, University Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, Henderson RM, Edwardson JM, Dryden DTF. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 2002; 9:187-94. [PMID: 11804597 DOI: 10.1016/s1097-2765(02)00435-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have solved, by X-ray crystallography to a resolution of 1.8 A, the structure of a protein capable of mimicking approximately 20 base pairs of B-form DNA. This ocr protein, encoded by gene 0.3 of bacteriophage T7, mimics the size and shape of a bent DNA molecule and the arrangement of negative charges along the phosphate backbone of B-form DNA. We also demonstrate that ocr is an efficient inhibitor in vivo of all known families of the complex type I DNA restriction enzymes. Using atomic force microscopy, we have also observed that type I enzymes induce a bend in DNA of similar magnitude to the bend in the ocr molecule. This first structure of an antirestriction protein demonstrates the construction of structural mimetics of long segments of B-form DNA.
Collapse
Affiliation(s)
- M D Walkinshaw
- Institute of Cell and Molecular Biology, The King's Buildings, University of Edinburgh, EH9 3JR, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blackstock JJ, Egelhaaf SU, Atanasiu C, Dryden DT, Poon WC. Shape of Ocr, the gene 0.3 protein of bacteriophage T7: modeling based on light scattering experiments. Biochemistry 2001; 40:9944-9. [PMID: 11502189 DOI: 10.1021/bi010587+] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ocr, the first protein expressed by bacteriophage T7, inhibits type Iota DNA restriction enzymes by preventing them from binding to DNA. This inhibition allows the phage to successfully infect the host. The shape of ocr is modeled on the basis of static and dynamic light scattering measurements. The static light scattering data confirm previous observations that ocr exists in solution as a dimer. The diffusion constant determined by dynamic light scattering indicates a nonspherical shape of the ocr dimer. Hydrodynamic models of ellipsoids are presented, and it is argued that ocr is best described by a prolate ellipsoid with dimensions of 10.4 nm by 2.6 nm. The size and shape predicted by this model are consistent with ocr acting as a mimic of the DNA structure bound by type Iota restriction enzymes.
Collapse
Affiliation(s)
- J J Blackstock
- Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, UK
| | | | | | | | | |
Collapse
|
26
|
Pajunen MI, Kiljunen SJ, Söderholm ME, Skurnik M. Complete genomic sequence of the lytic bacteriophage phiYeO3-12 of Yersinia enterocolitica serotype O:3. J Bacteriol 2001; 183:1928-37. [PMID: 11222590 PMCID: PMC95087 DOI: 10.1128/jb.183.6.1928-1937.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
phiYeO3-12 is a T3-related lytic bacteriophage of Yersinia enterocolitica serotype O:3. The nucleotide sequence of the 39,600-bp linear double-stranded DNA (dsDNA) genome was determined. The phage genome has direct terminal repeats of 232 bp, a GC content of 50.6%, and 54 putative genes, which are all transcribed from the same DNA strand. Functions were assigned to 30 genes based on the similarity of the predicted products to known proteins. A striking feature of the phiYeO3-12 genome is its extensive similarity to the coliphage T3 and T7 genomes; most of the predicted phiYeO3-12 gene products were >70% identical to those of T3, and the overall organizations of the genomes were similar. In addition to an identical promoter specificity, phiYeO3-12 shares several common features with T3, nonsubjectibility to F exclusion and growth on Shigella sonnei D(2)371-48 (M. Pajunen, S. Kiljunen, and M. Skurnik, J. Bacteriol. 182:5114-5120, 2000). These findings indicate that phiYeO3-12 is a T3-like phage that has adapted to Y. enterocolitica O:3 or vice versa. This is the first dsDNA yersiniophage genome sequence to be reported.
Collapse
Affiliation(s)
- M I Pajunen
- Department of Medical Biochemistry, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
27
|
Posnick LM, Samson LD. Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli. J Bacteriol 1999; 181:6756-62. [PMID: 10542178 PMCID: PMC94141 DOI: 10.1128/jb.181.21.6756-6762.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.
Collapse
Affiliation(s)
- L M Posnick
- Division of Toxicology, Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Yin X, Stotzky G. Gene transfer among bacteria in natural environments. ADVANCES IN APPLIED MICROBIOLOGY 1997; 45:153-212. [PMID: 9342828 DOI: 10.1016/s0065-2164(08)70263-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- X Yin
- SRA Technologies, Inc., Rockville, Maryland 20850, USA
| | | |
Collapse
|
29
|
Bartel PL, Roecklein JA, SenGupta D, Fields S. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet 1996; 12:72-7. [PMID: 8528255 DOI: 10.1038/ng0196-72] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genome sequencing projects are predicting large numbers of novel proteins, whose interactions with other proteins must mediate the function of cellular processes. To analyse these networks, we used the yeast two-hybrid system on a genome-wide scale to identify 25 interactions among the proteins of Escherichia coli bacteriophage T7. Among these is a set of six interactions connecting proteins that function in DNA replication and DNA packaging. Remarkably, two genes, arranged such that one entirely overlaps the other and uses a different reading frame, encode interacting proteins. Several of the interactions reflect intramolecular associations of different domains of the same polypeptide, suggesting that the two-hybrid assay may be useful in the analysis of protein folding. This global approach to protein-protein interactions may be applicable to the analysis of more complex genomes whose sequences are becoming available.
Collapse
Affiliation(s)
- P L Bartel
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794, USA
| | | | | | | |
Collapse
|
30
|
Belogurov AA, Delver EP. A motif conserved among the type I restriction-modification enzymes and antirestriction proteins: a possible basis for mechanism of action of plasmid-encoded antirestriction functions. Nucleic Acids Res 1995; 23:785-7. [PMID: 7708494 PMCID: PMC306760 DOI: 10.1093/nar/23.5.785] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.
Collapse
Affiliation(s)
- A A Belogurov
- Department of Genetic Engineering, Cardiology Research Center, Moscow, Russia
| | | |
Collapse
|
31
|
Abstract
To understand the role of restriction in regulating gene flow in bacterial populations, we would like to understand the regulation of restriction enzyme activity. Several antirestriction (restriction alleviation) systems are known that reduce the activity of type I restriction enzymes like EcoKI in vivo. Most of these do not act on type II or type III enzymes, but little information is available for the unclassified modification-dependent systems, of which there are three in E. coli K-12. Of particular interest are two physiological controls on type I enzymes: EcoKI restriction is reduced 2 to 3 orders of magnitude following DNA damage, and a similar effect is seen constitutively in Dam- cells. We used the behavior of EcoKI as a control for testing the response to UV treatment of the three endogenous modification-dependent restriction systems of K-12, McrA, McrBC, and Mrr. Two of these were also tested for response to Dam status. We find that all four resident restriction systems show reduced activity following UV treatment, but not in a unified fashion; each response was genetically and physiologically distinct. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- J E Kelleher
- New England Biolabs, Beverly, Massachusetts 01915
| | | |
Collapse
|
32
|
Belogurov AA, Delver EP, Rodzevich OV. Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J Bacteriol 1993; 175:4843-50. [PMID: 8393008 PMCID: PMC204937 DOI: 10.1128/jb.175.15.4843-4850.1993] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The IncN plasmid pKM101 (a derivative of R46) encodes the antirestriction protein ArdB (alleviation of restriction of DNA) in addition to another antirestriction protein, ArdA, described previously. The relevant gene, ardB, was located in the leading region of pKM101, about 7 kb from oriT. The nucleotide sequence of ardB was determined, and an appropriate polypeptide was identified in maxicells of Escherichia coli. Like ArdA, ArdB efficiently inhibits restriction by members of the three known families of type I systems of E. coli and only slightly affects the type II enzyme, EcoRI. However, in contrast to ArdA, ArdB is ineffective against the modification activity of the type I (EcoK) system. Comparison of deduced amino acid sequences of ArdA and ArdB revealed only one small region of similarity (nine residues), suggesting that this region may be somehow involved in the interaction with the type I restriction systems. We also found that the expression of both ardA and ardB genes is controlled jointly by two pKM101-encoded proteins, ArdK and ArdR, with molecular weights of about 15,000 and 20,000, respectively. The finding that the sequences immediately upstream of ardA and ardB share about 94% identity over 218 bp suggests that their expression may be controlled by ArdK and ArdR at the transcriptional level. Deletion studies and promoter probe analysis of these sequences revealed the regions responsible for the action of ArdK and ArdR as regulatory proteins. We propose that both types of antirestriction proteins may play a pivotal role in overcoming the host restriction barrier by self-transmissible broad-host-range plasmids. It seems likely that the ardKR-dependent regulatory system serves in this case as a genetic switch that controls the expression of plasmid-encoded antirestriction functions during mating.
Collapse
Affiliation(s)
- A A Belogurov
- Department of Genetic Engineering, National Cardiology Research Center, Moscow, Russia
| | | | | |
Collapse
|
33
|
Abstract
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.
Collapse
Affiliation(s)
- T A Bickle
- Department of Microbiology, Biozentrum, Basel University, Switzerland
| | | |
Collapse
|
34
|
Liu Q, Richardson CC. Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:1761-5. [PMID: 7680479 PMCID: PMC45959 DOI: 10.1073/pnas.90.5.1761] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gene 5.5 of coliphage T7 is one of the most highly expressed genes during T7 infection. Gene 5.5 protein, purified from cells overexpressing the cloned gene, purifies with the nucleoid protein H-NS of Escherichia coli during three chromatographic steps. A fusion protein of gene 5.5 protein and maltose binding protein also purifies with H-NS. The fusion protein binds to the DNA-H-NS complex and abolishes H-NS-mediated inhibition of transcription by Escherichia coli and T7 RNA polymerases in vitro. Expression of gene 5.5 also relieves the repression of the Escherichia coli proU promoter by H-NS in vivo. The change of leucine to proline at residue 30 of gene 5.5 protein abolishes the interaction between gene 5.5 protein and H-NS.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
35
|
Belogurov AA, Delver EP, Rodzevich OV. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions. J Bacteriol 1992; 174:5079-85. [PMID: 1321121 PMCID: PMC206324 DOI: 10.1128/jb.174.15.5079-5085.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.
Collapse
Affiliation(s)
- A A Belogurov
- Department of Genetic Engineering, National Cardiology Research Center, Moscow, Russia
| | | | | |
Collapse
|
36
|
Delver EP, Kotova VU, Zavilgelsky GB, Belogurov AA. Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid colIb-P9. J Bacteriol 1991; 173:5887-92. [PMID: 1653225 PMCID: PMC208323 DOI: 10.1128/jb.173.18.5887-5892.1991] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The IncI1 plasmid ColIb-P9 was found to encode an antirestriction function. The relevant gene, ard (alleviation of restriction of DNA), maps about 5 kb from the origin of transfer, in the region transferred early during bacterial conjugation. Ard inhibits both restriction and modification by each of the four type I systems of Escherichia coli tested, but it had no effect on restriction by either EcoRI, a type II system, or EcoP1, a type III system. The nucleotide sequence of the ColIb ard gene was determined; the predicted molecular weight of the Ard polypeptide is 19,193. The proposed polypeptide chain contains an excess of 25 negatively charged amino acids, suggesting that its overall character is very acidic. Deletion analysis of the gene revealed that the Ard protein contained a distinct functional domain located in the COOH-terminal half of the polypeptide. We suggest that the biological role of the ColIb Ard protein is associated with overcoming host-controlled restriction during bacterial conjugation.
Collapse
Affiliation(s)
- E P Delver
- Department of Biotechnology, USSR Cardiology Research Center, Moscow
| | | | | | | |
Collapse
|
37
|
Deschavanne P, Radman M. Counterselection of GATC sequences in enterobacteriophages by the components of the methyl-directed mismatch repair system. J Mol Evol 1991; 33:125-32. [PMID: 1920448 DOI: 10.1007/bf02193626] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Weak to severe deficit of GATC sequences in the DNA of enterobacteriophages appears to be correlated with their undermethylation during growth in dam+ (GATC ade-methylase) bacteria. This observation is corroborated by the sequence analysis showing no evidence for site-specific mutagenicity of 6meAde. The MutH protein of the methyl-directed mismatch repair system recognizes and cleaves the undermethylated GATC sequences in the course of mismatch repair. To enquire whether the MutH function of the methyl-directed mismatch repair system participates in counterselection of GATC sequences in enterobacteriophages, we have studied the yield of bacteriophage phi X174 containing either 0, 1, or 2 GATC sequences, in wild type, dam, and mut (H, L, S, U) Escherichia coli. Following transfection with unmethylated DNA containing two GATC sequences, a net decrease in the yield of infective particles was observed in all bacterial mutH+ dam- strains, whereas no detectable decrease was observed in bacteria infected by DNA without GATC sequence. This effect of the MutH function is maximum in wild type and mutL and mutS bacteria whereas the effect is not significant in mutU bacteria, suggesting an interaction of the helicase II with the MutH protein. However, in dam+ bacteria, the presence of GATC sequences leads to an increased yield of infective particles. The effect of GATC sequence and its Dam methylation system on phage yield in mutH- bacteria reveals that methylated GATC sequences are advantageous to the phage.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Deschavanne
- Laboratoire de Mutagénèse, Institut J. Monod, France
| | | |
Collapse
|
38
|
Hughes JA, Brown LR, Ferro AJ. Expression of the cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in Escherichia coli. J Bacteriol 1987; 169:3625-32. [PMID: 3301808 PMCID: PMC212442 DOI: 10.1128/jb.169.8.3625-3632.1987] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have developed a new research tool for the study of S-adenosylmethionine (AdoMet) metabolism by cloning the coliphage T3 AdoMet hydrolase (AdoMetase; EC 3.3.1.2) gene into the M13mp8 expression vector. The recombinant bacteriophage clones expressed an AdoMetase activity in Escherichia coli like that found in T3-infected cells. High levels of AdoMetase expression impaired AdoMet-mediated activities such as dam and dcm methylase-directed DNA modifications and the synthesis of spermidine from putrescine. Expression vectors containing the cloned AdoMetase gene thus provide an alternate approach to the use of chemical inhibitors or mutants defective in AdoMet biosynthesis to probe the effect of AdoMet limitation.
Collapse
|
39
|
Hughes JA, Brown LR, Ferro AJ. Nucleotide sequence and analysis of the coliphage T3 S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites. Nucleic Acids Res 1987; 15:717-29. [PMID: 3547328 PMCID: PMC340462 DOI: 10.1093/nar/15.2.717] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To understand better the characteristics of the coliphage T3 S-adenosyl-L-methionine (AdoMet) hydrolase (AdoMetase, E.C. 3.3.1.2) and its expression in phage-infected Escherichia coli, we determined the DNA sequence of the cloned gene and its surrounding ribonuclease (RNase) III mRNA transcript processing sites. The AdoMetase gene contains two in-frame protein translation initiation sites specifying peptides 17105 and 13978 daltons in size. Both proteins terminate at the same ochre codon making the shorter peptide identical to the carboxy terminal 82% of the 17 kd protein. Our data explain the existence of two AdoMetase-related peptides in preparations of the purified enzyme as well as identify sequences that might serve to regulate the enzyme's expression. Comparisons between this T3 sequence and the homologous 0.3 gene region of the closely related coliphage T7 show both the nucleotide and amino acid sequences to be unrelated. The RNase III mRNA processing sites that bracket these genes in T3 and T7 are highly conserved in both their primary and secondary structures.
Collapse
|
40
|
Loenen WA, Murray NE. Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage lambda. J Mol Biol 1986; 190:11-22. [PMID: 3023633 DOI: 10.1016/0022-2836(86)90071-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The product of the lambda ral gene alleviates restriction and enhances modification by the Escherichia coli K-12 restriction and modification system. An open reading frame (orf) located between genes N and Ea10 has been assigned to the ral gene. We have cloned this orf in a plasmid where its transcription is controlled by a thermolabile lambda repressor. Inactivation of the lambda repressor caused a 1000-fold reduction in K-specific restriction of unmodified lambda phage and a 100-fold increase in modification. In minicells transformed with ral+ plasmids, derepression resulted in the appearance of a polypeptide with a lower mobility than that predicted for a protein encoded by the orf attributed to ral; in a transcription and translation system in vitro DNA from a ral+ plasmid encoded a polypeptide with the same mobility. This polypeptide was absent when the plasmid DNA carried a mutant ral gene. The nucleotide sequence of this mutant gene defined two base changes, one of which inactivates the initiation codon of the orf. The K restriction endonuclease, which is also a K-specific methylase, is encoded by three genes designated hsdR, hsdM and hsdS, although the hsdR polypeptide is not essential for the methylase activity. We show that Ral enhances modification in a host strain lacking the entire hsdR gene, and lambda phages carrying the hsdM and S genes modify their own DNA inefficiently in the absence of Ral, despite the fact that derivatives of these phages provide efficient amplification of the K-specific methylase. Our data support a model in which, as a consequence of the interaction of Ral with either the hsdM or the hsdS polypeptide, the conformation of the enzyme is changed and the efficiency of methylation of unmodified target sites is enhanced. It has been postulated that Ral counteracts Rho, but in our experiments Ral did not relieve transcriptional polarity.
Collapse
|
41
|
Krüger DH, Schroeder C, Reuter M, Bogdarina IG, Buryanov YI, Bickle TA. DNA methylation of bacterial viruses T3 and T7 by different DNA methylases in Escherichia coli K12 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 150:323-30. [PMID: 3894024 DOI: 10.1111/j.1432-1033.1985.tb09024.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have investigated the susceptibility of the genomes of the related bacteriophages T3 and T7 to the three major DNA methyltransferases (EcoK, dam, dcm) of their host, Escherichia coli K12. In vivo the EcoK host specificity enzyme only methylates the DNA of ocr- phages. This is due to an inhibition of the enzyme by the phage ocr+ gene product, which had previously been shown to be an inhibitor of the restriction endonuclease. EcoK-specific DNA methylation protects the ocr- viruses after one growth cycle on these host cells against the action of corresponding restriction endonuclease EcoK. Owing to the unique S-adenosyl-L-methionine hydrolase (sam+) activity of the T3-coded ocr+ protein, the T3 DNA is absolutely devoid of the methylated bases 6-methylaminopurine and 5-methylcytosine. In contrast to this, T7 derivatives and sam- derivatives of T3 carry a small number of about 2-4 molecules 6-methylaminopurine and 5-methylcytosine per genome. The presence of 6-methylaminopurine is due to dam methylation, though the majority of dam sites remain unmethylated. In vivo as well as in vitro the ocr+ protein has no influence on the activities of the dam and dcm methylase. The experiments gave some evidence for the existence of a second cytosine methylase in E. coli K12. Besides dam and dcm recognition sites being undermethylated, their absolute number in T3 and T7 DNAs is far below the expected value. Moreover, one of the two dcm sites present in T7 (Studier strain) is missing in our T7 strain owing to a 1300-base-pair deletion in gene 0.7.
Collapse
|
42
|
Ohsawa H, Herrlich P, Gualerzi C. In vitro template activity of 0.3 mRNA from wild type and initiation mutants of bacteriophage T7. MOLECULAR & GENERAL GENETICS : MGG 1984; 196:53-8. [PMID: 6384730 DOI: 10.1007/bf00334091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacteriophage T7 0.3 mRNA synthesised and processed in vitro has been purified starting from the DNA of T7+ as well as from that of two initiation mutants of T7 (CR17 with a U----C transition in the initiation codon and CR35b whose potential Shine and Dalgarno (S-D) interaction is interrupted by a G----A transition). These mRNAs were used as templates to direct the binding of fMet-tRNA and the synthesis of 0.3 protein in both E. coli and wheat germ cell-free systems. The initiation codon mutant displayed approximately 50% inhibition of fMet-tRNA binding and 0.3 protein synthesis in both systems. The S-D sequence mutant, on the other hand, was found to be less affected than the initiation triplet mutant (20%-40% inhibition) in both fMet-tRNA binding and template activity in the E. coli system. In the wheat germ system, which does not make use of the S-D interaction, however, this mutant displayed normal template activity suggesting that the inhibition obtained in the E. coli system, albeit slight, is due to the impairment of the S-D interaction and not to an alteration of the mRNA secondary or tertiary structure caused by the base substitution.
Collapse
|
43
|
Abstract
DNA of Escherichia coli virus T1 is resistant to MboI cleavage and appears to be heavily methylated. Analysis of methylation by the isoschizomeric restriction enzymes Sau3AI and DpnI revealed that recognition sites for E. coli DNA adenine methylase (dam methylase) are methylated. The same methylation pattern was found for virus T1 DNA grown on an E. coli dam host, indicating a T1-specific DNA methyltransferase.
Collapse
|
44
|
|
45
|
Krüger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 1983; 47:345-60. [PMID: 6314109 PMCID: PMC281580 DOI: 10.1128/mr.47.3.345-360.1983] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Some theoretical aspects of protein coevolution in the ecosystem “phage-bacteria” I. The problem. J Theor Biol 1983. [DOI: 10.1016/0022-5193(83)90346-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Wagner EF, Auer B, Schweiger M. Escherichia coli virus T1: genetic controls during virus infection. Curr Top Microbiol Immunol 1983; 102:131-52. [PMID: 6340981 DOI: 10.1007/978-3-642-68906-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Miyazaki J, Fujisawa H, Ryo Y, Minagawa T. Isolation and characterization of bacteriophage T3 mutants sensitive to restriction by EcoRI. Virology 1982; 122:1-7. [PMID: 6291231 DOI: 10.1016/0042-6822(82)90371-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Adams J, Rothman ED. Estimation of phylogenetic relationships from DNA restriction patterns and selection of endonuclease cleavage sites. Proc Natl Acad Sci U S A 1982; 79:3560-4. [PMID: 6285352 PMCID: PMC346461 DOI: 10.1073/pnas.79.11.3560] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The distribution of cleavage sites and their related sequences have been analyzed for 54 restriction endonucleases in the genome of human mitochondrial DNA; in three papova viruses, BK, simian virus 40, and polyoma; and in three bacteriophages, phi X174, fd, and G4. The results show that the cleavage sites and related sequences for most of the restriction enzymes tested are distributed nonrandomly. These results (i) constitute prima facie evidence for the action of natural selection, either direct or indirect on the restriction sites, and (ii) suggest that estimates of phylogenetic relationship, based on a phenetic approach using restriction enzyme data, will be biased.
Collapse
|
50
|
Krüger DH, Reuter M, Hansen S, Schroeder C. Influence of phage T3 and T7 gene functions on a type III(EcoP1) DNA restriction-modification system in vivo. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:457-61. [PMID: 6285143 DOI: 10.1007/bf00334140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ocr+ gene function (gp 0.3) of bacteriophages T3 and T7 not only counteracts type I (EcoB, EcoK) but also type III restriction endonucleases (EcoP1). Despite the presence of recognition sites, phage DNA as well as simultaneously introduced plasmid DNA are protected by ocr+ expression against both the endonucleolytic and the methylating activities of the EcoP1 enzyme. Nevertheless, the EcoP1 protein causes the exclusion of T3 and T7 in P1-lysogenic cells, apparently by exerting a repressor-like effect on phage gene expression. T3 which induces an S-adenosylmethionine hydrolase is less susceptible to the repressor effect of the SAM-stimulated EcoP1 enzyme. The abundance of EcoP1 recognition sites in the T7 genome is explained by their near identity with the T7 DNA primase recognition site.
Collapse
|