1
|
Wang Y, Wang H, Wang S, Fang Y. Carbon- and Nitrogen-Based Complexes as Photocatalysts for Prebiotic and Oxygen Chemistry during Earth Evolution. Angew Chem Int Ed Engl 2024:e202413768. [PMID: 39238431 DOI: 10.1002/anie.202413768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Sunlight has long served as primary energy source on our planet, shaping the behavior of living organisms. Extensive research has been dedicated to unraveling the evolutionary pathways involved. When the formation of Earth atmosphere, it primarily consisted of small gas molecules, which are considered crucial for the emergence of life. Recent demonstrations have shown that these molecules can also be transformed into semiconductors, with the potential to harness solar energy and catalyze chemical reactions as photocatalysts. Building upon this research, this minireview focuses on the potential revolutionary impact of photocatalysis on Earth. Initially, it examines key reactions, such as the formation of prebiotic molecules and the oxygen evolution reaction via water oxidation. Additionally, various C-N complexes in photocatalysts are explored, showcasing their roles in catalyzing chemical reactions. The conclusion and outlook provide a potential pathway for the evolution of Earth, shedding light on the significance of metal-free photocatalysts in development of Earth.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Huan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- Sino-UK International joint Laboratory on photocatalysis for clean energy and advanced chemicals & Materials, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
2
|
Thøgersen J, Vaida V, Bregnhøj M, Weidner T, Jensen F. The primary photo-dissociation dynamics of lactate in aqueous solution: decarboxylation prevents dehydroxylation. Phys Chem Chem Phys 2021; 23:4555-4568. [PMID: 33605952 DOI: 10.1039/d0cp05650b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the primary photolysis dynamics of aqueous lactate induced by photo-excitation at λ = 200 nm. Our calculations indicate that both decarboxylation and dehydroxylation are energetically possible, but decarboxylation is favoured dynamically. UV pump - IR probe transient absorption spectroscopy shows that the photolysis is dominated by decarboxylation, whereas dehydroxylation is not observed. Analysis of the transient IR spectrum suggests that photo-dissociation of lactate primarily produces CO2 and CH3CHOH- through the lowest singlet excited state of lactate, which has a lifetime of τ = 11 ps. UV pump - VIS probe transient absorption spectroscopy of electrons from the dissociating lactate anion indicates that the anionic electron from the CO2˙- fragment is transferred to the CH3CHOH˙ counter radical during the decarboxylation process, and CO2˙- is consequently only observed as a minor photo-product. The photo-dissociation quantum yield after the full decay of the excited state is Φ(100ps) = 38 ± 5%.
Collapse
Affiliation(s)
- Jan Thøgersen
- Dept. of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
3
|
Li Y, Li Y, Liu Y, Wu Y, Wu J, Wang B, Ye H, Jia H, Wang X, Li L, Zhu M, Ding H, Lai Y, Wang C, Dick J, Lu A. Photoreduction of inorganic carbon(+IV) by elemental sulfur: Implications for prebiotic synthesis in terrestrial hot springs. SCIENCE ADVANCES 2020; 6:6/47/eabc3687. [PMID: 33208363 PMCID: PMC7673799 DOI: 10.1126/sciadv.abc3687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Terrestrial hydrothermal systems have been proposed as alternative birthplaces for early life but lacked reasonable scenarios for the supply of biomolecules. Here, we show that elemental sulfur (S0), as the dominant mineral in terrestrial hot springs, can reduce carbon dioxide (CO2) into formic acid (HCOOH) under ultraviolet (UV) light below 280 nm. The semiconducting S0 is indicated to have a direct bandgap of 4.4 eV. The UV-excited S0 produces photoelectrons with a highly negative potential of -2.34 V (versus NHE, pH 7), which could reduce CO2 after accepting electrons from electron donors such as reducing sulfur species. Simultaneously, UV light breaks sulfur bonds, benefiting the adsorption of charged carbonates onto S0 and assisting their photoreduction. Assuming that terrestrial hot springs covered 1% of primitive Earth's surface, S0 at 10 μM could have produced maximal 109 kg/year HCOOH within 10-cm-thick photic zones, underlying its remarkable contributions to the accumulation of prebiotic biomolecules.
Collapse
Affiliation(s)
- Yanzhang Li
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yan Li
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China.
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Liu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yifu Wu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Junqi Wu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Bin Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, People's Republic of China
| | - Huan Ye
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Haoning Jia
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao Wang
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Linghui Li
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Meixiang Zhu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yong Lai
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Changqiu Wang
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jeffrey Dick
- The Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physics, Central South University, Changsha 410083, People's Republic of China
| | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China.
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- The Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physics, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
4
|
Abstract
Viruses are diverse parasites of cells and extremely abundant. They might have arisen during an early phase of the evolution of life on Earth dominated by ribonucleic acid or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present-day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate; viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via the lateral transfer of genes. These two models have a bearing on viruses being considered predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
5
|
The Origin and Early History of the Sun and the Planetary System in the Context of Stellar Evolution. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1539299600004962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA plausible scenario for the early history of the sun can be constructed by combining the results of stellar astronomy with lunar and meteoritic chronologies. The meteorites apparently contain material exposed to two nucleosynthetic events, one about 108 yr and another a few 106 yr before solidification. Following II. Reeves, these are associated with supernovae occurring in star clusters in molecular clouds that formed during passage through successive galactic arm shocks. The Orion Trapezium Cluster may be a modern example; its density is such that encounters between members would have been close enough and frequent enough to have had major effects upon their circumstellar ‘solar nebulae,’ as would recurrent FU Ori-like eruptions of the stars themselves. The lunar bombardment continued for 7 × 108 yr following formation of our sun. If this represented disk cleanup, disks must persist for that long, and hence circumstellar activity may still be in progress around some young stars in the solar vicinity. The observed time decay of axial rotation and surface activity in solar-type stars can be extended backwards, and indicates that the ultraviolet radiation of the young sun would have had major photochemical consequences upon the primitive earth.
Collapse
|
6
|
Rapf RJ, Vaida V. Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys 2016; 18:20067-84. [DOI: 10.1039/c6cp00980h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review considers how photochemistry and sunlight-driven reactions can abiotically generate prebiotic molecules necessary for the evolution of life.
Collapse
Affiliation(s)
- Rebecca J. Rapf
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| | - Veronica Vaida
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| |
Collapse
|
7
|
Introduction to Virus Origins and Their Role in Biological Evolution. VIRUS AS POPULATIONS 2016. [PMCID: PMC7204881 DOI: 10.1016/b978-0-12-800837-9.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses are extremely abundant and diverse parasites of cells. They might have arisen during an early phase of the evolution of life on Earth dominated by RNA or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate: viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via lateral transfers of genes. These two models bear on considering viruses predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
8
|
Harman CE, Schwieterman EW, Schottelkotte JC, Kasting JF. ABIOTIC O2LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/812/2/137] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ducluzeau AL, Schoepp-Cothenet B, van Lis R, Baymann F, Russell MJ, Nitschke W. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective. J R Soc Interface 2015; 11:20140196. [PMID: 24968694 DOI: 10.1098/rsif.2014.0196] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes.
Collapse
Affiliation(s)
- Anne-Lise Ducluzeau
- Beadle Center, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588-0660, USA
| | - Barbara Schoepp-Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Robert van Lis
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20 13402, France
| |
Collapse
|
10
|
Griffith EC, Shoemaker RK, Vaida V. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life. ORIGINS LIFE EVOL B 2013; 43:341-52. [PMID: 24362712 DOI: 10.1007/s11084-013-9349-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/20/2013] [Indexed: 10/25/2022]
Abstract
Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.
Collapse
Affiliation(s)
- Elizabeth C Griffith
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO, 80309, USA
| | | | | |
Collapse
|
11
|
Photochemical Consequences of Enhanced CO2
Levels in Earth's Early Atmosphere. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/gm032p0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
12
|
Abstract
The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.
Collapse
|
13
|
|
14
|
Abstract
SynopsisBecause of both the energy costs and the slowness of the reactions of the nitrogenase complex compared with those involving some form of combined nitrogen (oxidised or reduced), we argue that the evolution of nitrogen-fixing organisms required an environment which was very limited in combined nitrogen. This is thought to have occurred after phototrophy evolved, but before water was used as a hydrogen donor (and therefore oxygen was present in the atmosphere). After oxygenic photosynthesis evolved, the need for a high level of biological nitrogen-fixation remained, since abiotic inputs were insufficient to keep pace with the rapidly evolving biomass (flora and fauna). Symbiotic fixation probably first evolved in the form of casual associations between cyanobacteria and most other groups of plants. By inhabiting the sporophytic generation of evolving land plants (cycads in particular), protection against nitrogenase-inactivating oxygen and a more desiccating environment was achieved simultaneously.We envisage nodulated plants arising by the transfer ofnifgenes into tumour-forming bacteria. In the case of legumes, these would be ancestors of extant agrobacteria, which gain entry into their hostsviawounds. Co-evolution of symbionts from nitrogen-fixing tumours has taken several routes, leading to extant nodules differing in mode of infection, structure and physiology. Evolution towards optimisation of oxygen usage is continuing.Nitrogen-fixing symbiosis in animal systems is only advantageous in specialised ecological niches in which wood is the sole dietary intake. In the case of shipworms, the symbiosis has many of the advanced features associated with nitrogen fixing root nodules.
Collapse
|
15
|
Mielke RE, Robinson KJ, White LM, McGlynn SE, McEachern K, Bhartia R, Kanik I, Russell MJ. Iron-sulfide-bearing chimneys as potential catalytic energy traps at life's emergence. ASTROBIOLOGY 2011; 11:933-950. [PMID: 22111762 DOI: 10.1089/ast.2011.0667] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The concept that life emerged where alkaline hydrogen-bearing submarine hot springs exhaled into the most ancient acidulous ocean was used as a working hypothesis to investigate the nature of precipitate membranes. Alkaline solutions at 25-70°C and pH between 8 and 12, bearing HS(-)±silicate, were injected slowly into visi-jars containing ferrous chloride to partially simulate the early ocean on this or any other wet and icy, geologically active rocky world. Dependent on pH and sulfide content, fine tubular chimneys and geodal bubbles were generated with semipermeable walls 4-100 μm thick that comprised radial platelets of nanometric mackinawite [FeS]±ferrous hydroxide [∼Fe(OH)(2)], accompanied by silica and, at the higher temperature, greigite [Fe(3)S(4)]. Within the chimney walls, these platelets define a myriad of micropores. The interior walls of the chimneys host iron sulfide framboids, while, in cases where the alkaline solution has a pH>11 or relatively low sulfide content, their exteriors exhibit radial flanges with a spacing of ∼4 μm that comprise microdendrites of ferrous hydroxide. We speculate that this pattern results from outward and inward radial flow through the chimney walls. The outer Fe(OH)(2) flanges perhaps precipitate where the highly alkaline flow meets the ambient ferrous iron-bearing fluid, while the intervening troughs signal where the acidulous iron-bearing solutions could gain access to the sulfidic and alkaline interior of the chimneys, thereby leading to the precipitation of the framboids. Addition of soluble pentameric peptides enhances membrane durability and accentuates the crenulations on the chimney exteriors. These dynamic patterns may have implications for acid-base catalysis and the natural proton motive force acting through the matrix of the porous inorganic membrane. Thus, within such membranes, steep redox and pH gradients would bear across the nanometric platelets and separate the two counter-flowing solutions, a condition that may have led to the onset of an autotrophic metabolism through the reduction of carbon dioxide.
Collapse
Affiliation(s)
- Randall E Mielke
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gengeliczki Z, Callahan MP, Kabeláč M, Rijs AM, de Vries MS. Structure of 2,4-Diaminopyrimidine–Theobromine Alternate Base Pairs. J Phys Chem A 2011; 115:11423-7. [DOI: 10.1021/jp205831n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zsolt Gengeliczki
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | | | - Martin Kabeláč
- Faculty of Natural Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Anouk M. Rijs
- FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Mattanjah S. de Vries
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106-9510, United States
| |
Collapse
|
17
|
Thiemens MH, Heidenreich JE. The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 2010; 219:1073-5. [PMID: 17811750 DOI: 10.1126/science.219.4588.1073] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental evidence is presented which demonstrates a chemically produced, mass-independent isotopic fractionation of oxygen. The effect is thought to result from self-shielding by the major isotopic species (16)O(2), but other possible mechanisms such as molecular symmetry cannot be ruled out. In a three-isotope plot, the experimentally produced fractionation line is essentially equal in slope to the observed carbonaceous chondrite mixing line. The implications for the early history of the solar system are discussed.
Collapse
|
18
|
Russell MJ. The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 2007; 55:133-79. [PMID: 17704896 DOI: 10.1007/s10441-007-9018-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 11/27/2022]
Abstract
The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100 degrees C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron-nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery--the electrochemical reactor--from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Science and Life Detection Section 3220, MS:183-601, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109-8099, USA.
| |
Collapse
|
19
|
Abstract
To get a proper perspective on the current status of atmospheric ozone, which protects the biosphere from ultraviolet-B (UV-B; 280-315 nm) radiation, it would be of value to know how ozone and UV-B radiation have varied in the past. The record of worldwide ozone monitoring goes back only a few decades, and the record of reliable UV-B measurements is even shorter. Here we review indirect methods to assess their status further back in time. These include variations in the Sun's emission and how these affect the atmosphere, changes in the Earth's orbit, geologic imprints of atmospheric ozone, effects of catastrophic events such as volcanic eruptions, biological proxies of UV-B radiation, the spectral signature of terrestrial ozone in old recordings of star spectra, and the modeling of UV-B irradiance from ozone data and meteorological recordings. Although reliable reconstructions do not yet extend far into the past, there is some hope for future progress.
Collapse
Affiliation(s)
- Lars Olof Björn
- Lund University, Department of Cell and Organism Biology, Sweden.
| | | |
Collapse
|
20
|
Cockell CS, Horneck G. The History of the UV Radiation Climate of the Earth-Theoretical and Space-based Observations¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730447thotur2.0.co2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Marangoni R, Messina N, Gioffré D, Colombetti G. Effects of UV-B Irradiation on a Marine Microecosystem¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00052.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF. Habitat of early life: Solar X-ray and UV radiation at Earth's surface 4–3.5 billion years ago. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002784] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
|
24
|
Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1857-75. [PMID: 17008224 PMCID: PMC1664690 DOI: 10.1098/rstb.2006.1896] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 microm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods-vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies.
Collapse
Affiliation(s)
- Frances Westall
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Marcano V, Benitez P, Palacios-Prü E. UV-Screening Strategies of a Lower Eukaryote Grown in Hydrocarbon Media. ORIGINS LIFE EVOL B 2006; 36:65-84. [PMID: 16372198 DOI: 10.1007/s11084-005-5011-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 03/01/2005] [Indexed: 11/30/2022]
Abstract
In this paper, a detailed analysis of the UV-screening strategies of the fungus Fusarium alkanophyllum is offered using spectroscopic (UV-VIS, FTIR), chromatographic (TLC, HPLC) and physiological analysis methods. Fusarium alkanophyllum showed an optimum growth when exposed to UV radiation at 253.7 (inducing DNA and protein damages) or 354.5 nm (inducing photoxidative damage) in several hydrocarbon media. Further, no ultrastructural difference was seen when cultures were or not irradiated with monochromatic UV. High absorbance between 200-300 nm of F. alkanophyllum indole derivatives, viz. melanin-type pigments, suggests a protector effect for proteins and nucleic acids. The presence of sulfur linked to aliphatic groups in hydrocarbons which is itself a strong UV absorber in the region of lambda < 270 nm can explain why mineral oil and kerosene showed high absorptivity at the UVC and UVB ranges. In light hydrocarbon, high absorptivities at the UVB and UVA spectral regions could be explained due to the presence of C=O stretching vibrations corresponding to ketones linked to aliphatic groups. The occurrence of indole derivatives in modern fungi may be a significant relic of the early evolution of microbial pigmentation. Likewise, it is thought that sulfur-enriched heterogeneous hydrocarbon environments could have occurred on the surface of the early Earth and could have absorbed and scattered UV-radiation avoiding or minimizing the damage produced on the biochemical machinery of early microorganisms able to metabolize those hydrocarbons.
Collapse
Affiliation(s)
- Vicente Marcano
- Evolutionary Biology and Chemistry Laboratory, Electron Microscopy Center, University of the Andes, P. O. Box 163, Mérida, Venezuela.
| | | | | |
Collapse
|
26
|
Marangoni R, Messina N, Gioffré D, Colombetti G. Effects of UV-B Irradiation on a Marine Microecosystem¶. Photochem Photobiol 2004; 80:78-83. [PMID: 15339218 DOI: 10.1562/tm-03-14.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Purpose of this work was to study the effect of UV irradiation on a microecosystem consisting of several interacting species. The system chosen was of a hypersaline type, where all the species present live at high salt concentration; it comprises different bacteria; a producer, the photosynthetic green alga Dunaliella salina; and a consumer, the ciliated protozoan Fabrea salina, which form a complete food chain. We were able to establish the initial conditions that give rise to a self-sustaining microecosystem, stable for at least 3 weeks. We then determined the effect of UV irradiation on this microecosystem under laboratory-controlled conditions, in particular by measuring the critical UV exposure for the two main components of the microecosystem (algae and protozoa) under UV-B irradiances comparable to those of solar irradiation. In our experiments, we varied irradiance, total dose and spectral composition of the actinic light. The critical doses at irradiances of the order of 56 kJ/m(2) (typical average daily irradiance in a sunny summer day in Pisa), measured for each main component of the microecosystem (algae and ciliates), turned out to be around 70 kJ/m(2) for ciliates and 50 kJ/m(2) for D. salina. By exposing microecosystems to daily UV-B irradiances of the order of 8 kJ/m(2) (typical average daily irradiance in a sunny winter day in Pisa), we found no effect at total doses of the order of the critical doses at high irradiances, showing that the reciprocity law does not hold. We have also measured a preliminary spectral-sensitive curve of the UV effects, which shows an exponential decay with wavelength.
Collapse
Affiliation(s)
- Roberto Marangoni
- Istituto di Biofisica del C.N.R., Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
27
|
Weber AL. Prebiotic formation of 'energy-rich' thioesters from glyceraldehyde and N-acetylcysteine. ORIGINS LIFE EVOL B 2001; 15:17-27. [PMID: 11541968 DOI: 10.1007/bf01809390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The 'energy-rich' thioester, N-acetyl-S-lactoylcysteine, is formed from low concentrations of glyceraldehyde and N-acetylcysteine under anaerobic conditions at ambient temperature in aqueous solutions of sodium phosphate (pH 7.0). Reactions with 2 mM glyceraldehyde, 2 mM N-acetylcysteine, and 500 mM sodium phosphate (pH 7.0) convert about 3%/day of the glyceraldehyde to lactoyl thioester. The formation of lactoyl thioester in similar reactions with 500 mM imidazole hydrochloride (pH 7.0) is supported by the thiol-dependence of lactate formation, which is 3-fold greater in the presence of thiol (0.11%/day) than in the absence of thiol (0.04%/day). The formation of lactoyl thioester is thought to proceed by the phosphate (or imidazole)-catalyzed dehydration of glyceraldehyde to give pyruvaldehyde, which adds to the thiol to form a hemithioacetal that rearranges to the thioester. A limited amount of a second thioester, N-acetyl-S-glyceroyl-cycsteine, is also formed at the beginning of these reactions. The significance of these reactions to the origin of life is discussed.
Collapse
Affiliation(s)
- A L Weber
- The Salk Institute for Biological Studies, San Diego, CA 92138, USA
| |
Collapse
|
28
|
Abstract
One-dimensional radiative convective and photochemical models are used to estimate the vertical temperature structure and composition of the earth's prebiotic atmosphere. Greatly enhanced CO2 levels (100-1000 times present) are required to keep the mean surface temperature above freezing in the face of decreased solar luminosity during the earth's early history. Such high CO2 partial pressures would have affected the atmospheric oxidation state by facilitating the photochemical production of soluble species including H2O2 and H2CO. Oxidation of ferrous iron in the oceans by H2O2 dissolved in rainwater should have kept the atmospheric H2 mixing ratio above 2x10(-4) and the ground-level O2 mixing ratio below 10(-11), regardless of the magnitude of the rate of volcanic release of reduced gases.
Collapse
Affiliation(s)
- J F Kasting
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
29
|
Levine JS, Augustsson TR. The photochemistry of biogenic gases in the early and present atmosphere. ORIGINS LIFE EVOL B 2001; 15:299-318. [PMID: 11539611 DOI: 10.1007/bf01808175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- J S Levine
- Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia 23665, USA
| | | |
Collapse
|
30
|
Cockell CS, Horneck G. The history of the UV radiation climate of the earth--theoretical and space-based observations. Photochem Photobiol 2001; 73:447-51. [PMID: 11332042 DOI: 10.1562/0031-8655(2001)073<0447:thotur>2.0.co;2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the Archean era (3.8-2.5 Ga ago) the Earth probably lacked a protective ozone column. Using data obtained in the Earth's orbit on the inactivation of Bacillus subtilis spores we quantitatively estimate the potential biological effects of such an environment. We combine this practical data with theoretical calculations to propose a history of the potential UV stress on the surface of the Earth over time. The data suggest that an effective ozone column was established at a pO2 of approximately 5 x 10(-3) present atmospheric level. The improvement in the UV environment on the early Proterozoic Earth might have been a much more rapid event than has previously been supposed, with DNA damage rates dropping by two orders of magnitude in the space of just a few tens of millions of years. We postulate that a coupling between reduced UV stress and increased pO2 production could have contributed toward a positive feedback in the production of ozone in the early Proterozoic atmosphere. This would contribute to the apparent rapidity of the oxidation event. The data provide an evolutionary perspective on present-day Antarctic ozone depletion.
Collapse
Affiliation(s)
- C S Cockell
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | | |
Collapse
|
31
|
Abstract
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.
Collapse
Affiliation(s)
- L J Rothschild
- Ecosystem Science and Technology Branch, Mail Stop 239-20, NASA Ames Research Center, Moffett Field, CA, USA.
| | | |
Collapse
|
32
|
Abstract
Ultraviolet radiation has provided an evolutionary challenge to life on Earth. Recent increases in surficial ultraviolet B fluxes have focused attention on the role of UV radiation in protistan ecology, cancer, and DNA damage. Exploiting this new wealth of data, I examine the possibility that ultraviolet radiation may have played a significant role in the evolution of the first eukaryotes, that is, protists. Protists probably arose well before the formation of a significant ozone shield, and thus were probably subjected to substantial ultraviolet A, ultraviolet B, and ultraviolet C fluxes early in their evolution. Evolution consists of the generation of heritable variations and the subsequent selection of these variants. Ultraviolet radiation has played a role both as a mutagen and as a selective agent. In its role as a mutagen, it may have been crucial in the origin of sex and as a driver of molecular evolution. As a selective agent, its influence has been broad. Discussed in this paper are the influence of ultraviolet radiation on biogeography, photosynthesis, and desiccation resistance.
Collapse
Affiliation(s)
- L J Rothschild
- Ecosystem Science and Technology Branch, NASA Ames Research Center, Moffett Field, California 94035-1000, USA.
| |
Collapse
|
33
|
Cleaves HJ, Miller SL. Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci U S A 1998; 95:7260-3. [PMID: 9636136 PMCID: PMC22584 DOI: 10.1073/pnas.95.13.7260] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.
Collapse
Affiliation(s)
- H J Cleaves
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0506, USA
| | | |
Collapse
|
34
|
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. JOURNAL OF THE GEOLOGICAL SOCIETY 1997; 154:377-402. [PMID: 11541234 DOI: 10.1144/gsjgs.154.3.0377] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here we argue that life emerged on Earth from a redox and pH front at c. 4.2 Ga. This front occurred where hot (c. 150 degrees C), extremely reduced, alkaline, bisulphide-bearing, submarine seepage waters interfaced with the acid, warm (c. 90 degrees C), iron-hearing Hadean ocean. The low pH of the ocean was imparted by the ten bars of CO2 considered to dominate the Hadean atmosphere/hydrosphere. Disequilibrium between the two solutions was maintained by the spontaneous precipitation of a colloidal FeS membrane. Iron monosulphide bubbles comprising this membrane were inflated by the hydrothermal solution upon sulphide mounds at the seepage sites. Our hypothesis is that the FeS membrane, laced with nickel, acted as a semipermeable catalytic boundary between the two fluids, encouraging synthesis of organic anions by hydrogenation and carboxylation of hydrothermal organic primers. The ocean provided carbonate, phosphate, iron, nickel and protons; the hydrothermal solution was the source of ammonia, acetate, HS-, H2 and tungsten, as well as minor concentrations of organic sulphides and perhaps cyanide and acetaldehyde. The mean redox potential (delta Eh) across the membrane, with the energy to drive synthesis, would have approximated to 300 millivolts. The generation of organic anions would have led to an increase in osmotic pressure within the FeS bubbles. Thus osmotic pressure could take over from hydraulic pressure as the driving force for distension, budding and reproduction of the bubbles. Condensation of the organic molecules to polymers, particularly organic sulphides, was driven by pyrophosphate hydrolysis. Regeneration of pyrophosphate from the monophosphate in the membrane was facilitated by protons contributed from the Hadean ocean. This was the first use by a metabolizing system of protonmotive force (driven by natural delta pH) which also would have amounted to c. 300 millivolts. Protonmotive force is the universal energy transduction mechanism of life. Taken together with the redox potential across the membrane, the total electrochemical and chemical energy available for protometabolism amounted to a continuous supply at more than half a volt. The role of the iron sulphide membrane in keeping the two solutions separated was appropriated by the newly synthesized organic sulphide polymers. This organic take-over of the membrane material led to the miniaturization of the metabolizing system. Information systems to govern replication could have developed penecontemporaneously in this same milieu. But iron, sulphur and phosphate, inorganic components of earliest life, continued to be involved in metabolism.
Collapse
Affiliation(s)
- M J Russell
- Department of Geology and Applied Geology, University of Glasgow, UK
| | | |
Collapse
|
35
|
Wang KJ, Pan XM, Wu JL, Wang WQ. Enhancement of the Photolysis of Nucleic Acid Monomers by Phosphates. Photochem Photobiol 1997. [DOI: 10.1111/j.1751-1097.1997.tb01907.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
Plants related to aquatic Charophycean green algae were probably terrestrial by the early to mid Silurian; these plants were the ancestors of the vascular plants that have dominated the Earth’s flora since the Devonian. The arthropods have been the major herbivores and carnivores in many terrestrial communities since the Devonian: they arose from a number of aquatic arthropod stocks which invaded the land from the Silurian onwards. The vascular plants and arthropods conduct their basic metabolism in the same way as their aquatic counterparts, but in the aerial environment which differs greatly from the aquatic in the exchange of materials, momentum and heat between organisms and their environment. Terrestrial organisms differ from their aquatic relatives in (
inter alia
) the water vapour loss attendant on the exchange of gases in photosynthesis and respiration; the potential for large and rapid changes in body temperature; and differences in the structural requirements for maintenance of posture and, in animals, locomotion. The (putatively) adaptive responses to these problems of terrestrial life show a number of im portant parallels between the vascular plants and arthropods, including internalization of gas-exchange surfaces, regulation of gas diffusion between the gas-exchange surfaces and the outside air, a wax layer over the general body surface which restricts non-respiratory and non-photosynthetic water loss, and the importance of rigid skeletal members (present in the ancestral aquatic arthropods, but not in algae). At the biochemical level many of the prerequisites for the special structures and functions found in terrestrial organisms can be traced in their algal and aquatic arthropod relatives. The seductive argument that increasing O
2
levels in the atmosphere in the Siluro-Devonian were of great significance in permitting larger phototrophs (absence of restriction of plants to shaded habitats to avoid ultraviolet, and increased bulk of non-photosynthetic parts permitted by greater O
2
availability) and larger and more active phagotrophs (as a result of greater O
2
availability) is, alas, very difficult to test quantitatively.
Collapse
|
37
|
Rozema J, van de Staaij J, Björn LO, Caldwell M. UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 1997; 12:22-8. [DOI: 10.1016/s0169-5347(96)10062-8] [Citation(s) in RCA: 464] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Kasting JF. Planetary atmosphere evolution: do other habitable planets exist and can we detect them? ASTROPHYSICS AND SPACE SCIENCE 1996; 241:3-24. [PMID: 11542303 DOI: 10.1007/978-94-011-5808-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?
Collapse
Affiliation(s)
- J F Kasting
- Department of Geosciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
39
|
Rosenqvist J, Chassefière E. Inorganic chemistry of O2 in a dense primitive atmosphere. PLANETARY AND SPACE SCIENCE 1995; 43:3-10. [PMID: 11538435 DOI: 10.1016/0032-0633(94)00202-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A simple steady-state photochemical model is developed in order to determine typical molecular oxygen concentrations for a comprehensive range of primitive abiotic atmospheres. Carbon dioxide is assumed to be the dominant constituent in these atmospheres since CO2 photodissociation may potentially result in the enhancement of the O2 partial pressure. The respective effects of the H2O content, temperature, eddy diffusion coefficient and UV flux on the results are investigated. It is shown that for any pressure at the surface, the partial pressure of molecular oxygen does not exceed 10 mbar. The peculiar case of a runaway greenhouse which has possibly taken place on Venus is qualitatively envisaged. Although O2 is basically absent in the present Venus atmosphere, a transient presence in a primitive stage cannot be ruled out. Possible mechanisms for O2 removal in such an atmosphere are reviewed. At the present stage, we think that the detection of large O2 amounts would be at least a good clue for the presence of life on an extrasolar planet.
Collapse
Affiliation(s)
- J Rosenqvist
- DESPA, Observatoire de Paris-Meudon, Meudon, France
| | | |
Collapse
|
40
|
Affiliation(s)
- Kenneth M. Towe
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20560
| |
Collapse
|
41
|
Abstract
Ideas about atmospheric composition and climate on the early Earth have evolved considerably over the last 30 years, but many uncertainties still remain. It is generally agreed that the atmosphere contained little or no free oxygen initially and that oxygen concentrations increased markedly near 2.0 billion years ago, but the precise timing of and reasons for its rise remain unexplained. Likewise, it is usually conceded that the atmospheric greenhouse effect must have been higher in the past to offset reduced solar luminosity, but the levels of atmospheric carbon dioxide and other greenhouse gases required remain speculative. A better understanding of past atmospheric evolution is important to understanding the evolution of life and to predicting whether Earth-like planets might exist elsewhere in the galaxy.
Collapse
Affiliation(s)
- J F Kasting
- Department of Geosciences, The Pennsylvania State University, University Park 16802
| |
Collapse
|
42
|
|
43
|
Anbar AD, Holland HD. The photochemistry of manganese and the origin of Banded Iron Formations. GEOCHIMICA ET COSMOCHIMICA ACTA 1992; 56:2595-2603. [PMID: 11537803 DOI: 10.1016/0016-7037(92)90346-k] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The photochemical oxidation of Fe(2+) -hydroxide complexes dissolved in anoxic Precambrian oceans has been suggested as a mechanism to explain the deposition of Banded Iron Formations (BIFs). Photochemical studies have not yet addressed the low levels of manganese in many of these deposits, which probably precipitated from solutions bearing similar concentrations of Fe2+ and Mn2+. Depositional models must also explain the stratigraphic separation of iron and manganese ores in manganiferous BIFs. In this study, solutions containing 0.56 M NaCl and approximately 180 micromoles MnCl2 with or without 3 to 200 micromoles FeCl2 were irradiated with filtered and unfiltered UV light from a medium-pressure mercury-vapor lamp for up to 8 hours. The solutions were deaerated and buffered to pH approximately 7, and all experiments were conducted under O2-free (< 1 ppm) atmospheres. In experiments with NaCl + MnCl2, approximately 20% of the Mn2+ was oxidized and precipitated as birnessite in 8 hours. Manganese precipitation was only observed when light with lambda < 240 nm was used. In experiments with NaCl + MnCl2 + FeCl2, little manganese was lost from solution, while Fe2+ was rapidly oxidized to Fe3+ and precipitated as gamma-FeOOH or as amorphous ferric hydroxide. The Mn:Fe ratio of these precipitates was approximately 1:50, similar to the ratios observed in BIFs. A strong upper limit on the rate of manganese photo-oxidation during the Precambrian is estimated to be 0.1 mg cm-2 yr-1, a factor of 10(3) slower than the rate of iron photo-oxidation considered reasonable in BIF depositional basins. Thus, a photochemical model for the origin of oxide facies BIFs is consistent with field observations, although models that invoke molecular O2 as the oxidant of Fe2+ and Mn2+ are not precluded. Apparently, oxide facies BIFs could have formed under anoxic, as well as under mildly oxygenated atmospheres.
Collapse
Affiliation(s)
- A D Anbar
- Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
44
|
Chyba C, Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 1992; 355:125-32. [PMID: 11538392 DOI: 10.1038/355125a0] [Citation(s) in RCA: 503] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sources of organic molecules on the early Earth divide into three categories: delivery by extraterrestrial objects; organic synthesis driven by impact shocks; and organic synthesis by other energy sources (such as ultraviolet light or electrical discharges). Estimates of these sources for plausible end-member oxidation states of the early terrestrial atmosphere suggest that the heavy bombardment before 3.5 Gyr ago either produced or delivered quantities of organics comparable to those produced by other energy sources. Which sources of prebiotic organics were quantitatively dominant depends strongly on the composition of the early terrestrial atmosphere. In the event of an early strongly reducing atmosphere, production by atmospheric shocks seems to have dominated that due to electrical discharges. Organic synthesis by ultraviolet light may, in turn, have dominated shock production, but only if a long-wavelength absorber such as H2S were supplied to the atmosphere at a rate sufficient for synthesis to have been limited by ultraviolet flux, rather than by reactant abundance. In the apparently more likely case of an early terrestrial atmosphere of intermediate oxidation state, atmospheric shocks were probably of little importance for direct organic production. For [H2]/[CO2] ratios of approximately 0.1, net organic production was some three orders of magnitude lower than for reducing atmospheres, with delivery of intact exogenous organics in interplanetary dust particles (IDPs) and ultraviolet production being the most important sources. At still lower [H2]/[CO2] ratios, IDPs may have been the dominant source of prebiotic organics on the early Earth. Endogenous, exogenous and impact-shock sources of organics could each have made a significant contribution to the origins of life.
Collapse
Affiliation(s)
- C Chyba
- Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
45
|
Knoll AH. Biological and Biogeochemical Preludes to the Ediacaran Radiation. TOPICS IN GEOBIOLOGY 1992. [DOI: 10.1007/978-1-4899-2427-8_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
46
|
Shock EL. Geochemical constraints on the origin of organic compounds in hydrothermal systems. ORIGINS LIFE EVOL B 1990. [DOI: 10.1007/bf01808115] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Lazcano A, Guerrero R, Margulis L, Oró J. The evolutionary transition from RNA to DNA in early cells. J Mol Evol 1988; 27:283-90. [PMID: 2464698 DOI: 10.1007/bf02101189] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolution of genetic material can be divided into at least three major phases: first, genomes of "nucleic acid-like" molecules; secondly, genomes of RNA; and finally, double-stranded DNA genomes such as those present in all contemporary cells. Using properties of nucleic acid molecules, we attempt to explain the evolutionary transition from RNA alone as a cellular informational macromolecule prior to the evolution of cell systems based on double-stranded DNA. The idea that ribonucleic acid-based cellular genomes preceded DNA is based on the following: (1) protein synthesis can occur in the absence of DNA but not of RNA; (2) RNA molecules have some catalytic properties; (3) the ubiquity of purine and pyridine nucleotide coenzymes as well as other similar ribonucleotide cofactors in metabolic pathways; and (4) the fact that the biosynthesis of deoxyribonucleotides always proceeds via the enzymatic reduction of ribonucleotides. The "RNA prior to DNA" hypothesis can be further developed by understanding the selective pressures that led to the biosynthesis of deoxyribose, thymine, and proofreading DNA polymerases. Taken together these observations suggest to us that DNA was selected as an informational molecule in cells to stabilize earlier RNA-protein replicating systems.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Lazcano
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, IPN, México, Distrito Federal
| | | | | | | |
Collapse
|
48
|
Kasting JF. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. PRECAMBRIAN RESEARCH 1987; 34:205-29. [PMID: 11542097 DOI: 10.1016/0301-9268(87)90001-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.
Collapse
Affiliation(s)
- J F Kasting
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
49
|
Owen T. How primitive are the gases in Titan's atmosphere? ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1987; 7:51-54. [PMID: 11538220 DOI: 10.1016/0273-1177(87)90355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- T Owen
- Department of Earth and Space Sciences, State University of New York, Stony Brook 11794, USA
| |
Collapse
|
50
|
On the role of submarine hot springs on the archaean earth: The chemistry of sea water, degassing, and the oxidation/reduction balance. ORIGINS LIFE EVOL B 1986. [DOI: 10.1007/bf02421975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|