1
|
Sato K, Momose-Sato Y. Optical recording of oscillatory activity in the absence of external Ca 2+ in the embryonic chick olfactory bulb. Neurosci Lett 2023; 809:137310. [PMID: 37225118 DOI: 10.1016/j.neulet.2023.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
We applied 464/1020-site optical recording systems with a voltage-sensitive dye (NK2761) to the embryonic chick olfactory system and detected oscillatory activity in the olfactory bulb (OB) in the absence of synaptic transmission. In embryonic day 8-10 (E8-E10) chick olfactory nerve (N.I)-OB-forebrain preparations, the removal of Ca2+ from the external solution completely blocked the glutamatergic excitatory postsynaptic potential (EPSP) from the N.I to the OB as well as oscillations following the EPSP. However, a novel type of oscillatory activity was detected in the OB with the long-term perfusion of a Ca2+-free solution. The characteristics of oscillatory activity in the Ca2+-free solution differed from those in normal physiological solution. The present results suggest the existence of a neural communication system in the absence of synaptic transmission at the early stage of embryonic development.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Inagi-shi, Tokyo 206-8511, Japan.
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan
| |
Collapse
|
2
|
Sato K, Momose-Sato Y. Functional development of olfactory nerve-related neural circuits in the embryonic chick forebrain revealed by voltage-sensitive dye imaging. Eur J Neurosci 2022; 56:4914-4929. [PMID: 35920370 DOI: 10.1111/ejn.15788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
Multiple-site optical recordings with NK2761, a voltage-sensitive absorption dye, were applied to the embryonic chick olfactory system, and the functional development of olfactory nerve (N.I)-related neural circuits was examined in the forebrain. The stimulation of the N. I elicited neural responses in N.I-olfactory bulb (OB)-forebrain preparations at the embryonic 8-12 day (E8-E12) stages. At the E11 stage, we functionally identified two circuits projecting from the OB to the forebrain. The first circuit passed through the ventral side of the forebrain and spread in the dorso-caudal direction, while the second circuit passed through the dorsal side to the first circuit. Pharmacological experiments showed that NMDA receptor function was more significant for the transfer of sensory information in these circuits. The functional development of N.I-related circuits was investigated, and the results obtained revealed that the ventral circuit was generated earlier than the dorsal circuit. Neural responses in the ventral circuit were detected from the E9 stage in normal physiological solution and the E8 stage in Mg2+ -free solution, which activated NMDA receptor function. At the E10 stage, neural responses in the dorsal circuit were clearly recognized in addition to ventral responses. We attempted to identify possible candidates for relay nuclei in the forebrain by comparing contour line maps of the optical signal amplitude with previously reported neuroanatomical data. The present results suggest that N.I-related neural circuits from the periphery to the subpallium functionally mature earlier than those to the pallium during ontogenesis.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Inagi-shi, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
3
|
Zhou Y, Liu E, Müller H, Cui B. Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging. J Am Chem Soc 2021; 143:10482-10499. [PMID: 34191488 PMCID: PMC8514153 DOI: 10.1021/jacs.1c02960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measuring and monitoring the electrical signals transmitted between neurons is key to understanding the communication between neurons that underlies human perception, information processing, and decision-making. While electrode-based electrophysiology has been the gold standard, optical electrophysiology has opened up a new area in the past decade. Voltage-dependent fluorescent reporters enable voltage imaging with high spatial resolution and flexibility to choose recording locations. However, they exhibit photobleaching as well as phototoxicity and may perturb the physiology of the cell. Label-free optical electrophysiology seeks to overcome these hurdles by detecting electrical activities optically, without the incorporation of exogenous fluorophores in cells. For example, electrochromic optical recording detects neuroelectrical signals via a voltage-dependent color change of extracellular materials, and interferometric optical recording monitors membrane deformations that accompany electrical activities. Label-free optical electrophysiology, however, is in an early stage, and often has limited sensitivity and temporal resolution. In this Perspective, we review the recent progress to overcome these hurdles. We hope this Perspective will inspire developments of label-free optical electrophysiology techniques with high recording sensitivity and temporal resolution in the near future.
Collapse
Affiliation(s)
- Yuecheng Zhou
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Erica Liu
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| | - Holger Müller
- Department of Physics, University of California, 366 LeConte Hall, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, S285 ChEM-H/Wu Tsai Neuroscience Research Complex, Stanford, California 94305, United States
| |
Collapse
|
4
|
Momose-Sato Y, Sato K. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity. IBRO Rep 2020; 9:14-23. [PMID: 32642591 PMCID: PMC7334560 DOI: 10.1016/j.ibror.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/28/2022] Open
Abstract
Correlated spontaneous activity propagating over a wide region of the central nervous system is expressed during a specific period of embryonic development. We previously demonstrated using an optical imaging technique with a voltage-sensitive dye that this wave-like activity, which we referred to as the depolarization wave, is fundamentally involved in the early process of synaptic network formation. We found that the in ovo application of bicuculline/strychnine or d-tubocurarine, which blocked the neurotransmitters mediating the wave, significantly reduced functional synaptic expression in the brainstem sensory nucleus. This result, particularly for d-tubocurarine, an antagonist of nicotinic acetylcholine receptors, suggested that prenatal nicotine exposure associated with maternal smoking affects the development of neural circuit formation by interfering with the correlated wave. In the present study, we tested this hypothesis by examining the effects of nicotine on the correlated activity and assessing the chronic action of nicotine in ovo on functional synaptic expression along the vagal sensory pathway. In ovo observations of chick embryo behavior and electrical recording using in vitro preparations showed that the application of nicotine transiently increased embryonic movements and electrical bursts associated with the wave, but subsequently inhibited these activities, suggesting that the dominant action of the drug was to inhibit the wave. Optical imaging with the voltage-sensitive dye showed that the chronic exposure to nicotine in ovo markedly reduced functional synaptic expression in the higher-order sensory nucleus of the vagus nerve, the parabrachial nucleus. The results suggest that prenatal nicotine exposure disrupts the initial formation of the neural circuitry by inhibiting correlated spontaneous wave activity.
Collapse
Key Words
- APV, DL-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione
- E, embryonic day (days of incubation in avians and days of pregnancy in mammals)
- EPSP, excitatory postsynaptic potential
- GABA, γ-aminobutyric acid
- In ovo
- NMDA, N-methyl-D-aspartate
- NTS, nucleus of the tractus solitarius
- Nicotine
- Optical recording
- PBN, parabrachial nucleus
- Spontaneous activity
- Synaptic network formation
- Voltage-sensitive dye
- nAChR, nicotinic acetylcholine receptor
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, 236-8501, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women’s University, Inagi-shi, Tokyo, 206-8511, Japan
| |
Collapse
|
5
|
Momose-Sato Y, Sato K. Voltage-sensitive dye recording of glossopharyngeal nerve-related synaptic networks in the embryonic mouse brainstem. IBRO Rep 2019; 6:176-184. [PMID: 31193501 PMCID: PMC6531809 DOI: 10.1016/j.ibror.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
The glossopharyngeal nerve (N.IX) transfers motor and sensory information related to visceral and somatic functions, such as salivary secretion, gustation and the control of blood pressure. N.IX-related neural circuits are indispensable for these essential functions. Compared with the strenuous analysis of morphogenesis, we are only just starting to elucidate the functiogenesis of these neural circuits during ontogenesis. In the present study, we applied voltage-sensitive dye recording to the embryonic mouse brainstem, and examined the functional development of the N.IX-related neural circuits. First, we optically identified the motor nucleus (the inferior salivatory nucleus (ISN)) and the first-order sensory nucleus (the nucleus of the tractus solitarius (NTS)). We also succeeded in recording optical responses in the second/higher-order sensory nuclei via the NTS, including the parabrachial nucleus. Second, we pursued neuronal excitability and the onset of synaptic function in the N.IX-related nuclei. The neurons in the ISN were excitable at least at E11, and functional synaptic transmission in the NTS was first expressed at E12. In the second/higher-order sensory nuclei, synaptic function emerged at around E12-13. Third, by mapping optical responses to N.IX and vagus nerve (N.X) stimulation, we showed that the distribution patterns of neural activity in the NTS were different between the N.IX and the N.X from the early stage of ontogenesis. We discuss N.IX-related neural circuit formation in the brainstem, in comparison with our previous results obtained from chick and rat embryos.
Collapse
Key Words
- APV, dl-2-amino-5-phosphonovaleric acid
- CNQX, 6-cyano-7- nitroquinoxaline-2,3-dione
- CNS, central nervous system
- Development
- EPSP, excitatory postsynaptic potential
- Glossopharyngeal nerve
- ISN, inferior salivatory nucleus
- N.IX, glossopharyngeal nerve
- N.X, vagus nerve
- NTS, nucleus of the tractus solitarius
- Neural circuit formation
- Optical recording
- PBN, parabrachial nucleus
- Synaptogenesis
- VSD, voltage-sensitive dye
- Voltage-sensitive dye
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women’s University Faculty of Human Health, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
6
|
Momose-Sato Y, Sato K. Optical analysis of functional development of the facial motor nucleus in the embryonic rat brainstem. Eur J Neurosci 2018; 48:3273-3287. [PMID: 30118560 DOI: 10.1111/ejn.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Facial motor neurons of the rat embryo are first generated in rhombomere 4 and then migrate in the caudo-ventral direction. This migration forms a unique axonal trajectory called the genu, a loop of facial motor axons around the abducens nucleus. It is still unclear when and how this unique structure is functionally established during ontogenesis. Using voltage-sensitive dye (VSD) recording and the DiI staining method, we identified neural responses evoked by facial nerve (N.VII) stimulation and examined developmental processes of the facial motor nucleus in E12-E17 rat brainstems. We identified two types of fast spike-like signals; a long-duration signal, which corresponded to the action potential in the N.VII soma, and a short-duration signal, which reflected the action potential in the N.VII axons. The long-duration signal was detected as early as E13, suggesting that the N.VII motor neuron is already excitable at the beginning of cell migration. The response area of the long-duration signal extended caudally at E13-E14, and shifted in a ventral direction at E15. At E16-E17, the long-duration signal was concentrated in the caudo-ventral area, which was comparable to the location of the facial motor nucleus in the adult rat brainstem. These results demonstrate that developmental processes of cell migration and nuclear organization can be visualized and identified functionally with the VSD recording. We discuss the results by comparing functiogenesis and morphogenesis of the N.VII pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Tokyo, Japan
| |
Collapse
|
7
|
Ling T, Boyle KC, Goetz G, Zhou P, Quan Y, Alfonso FS, Huang TW, Palanker D. Full-field interferometric imaging of propagating action potentials. LIGHT, SCIENCE & APPLICATIONS 2018; 7:107. [PMID: 30564313 PMCID: PMC6290013 DOI: 10.1038/s41377-018-0107-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 05/15/2023]
Abstract
Currently, cellular action potentials are detected using either electrical recordings or exogenous fluorescent probes that sense the calcium concentration or transmembrane voltage. Ca imaging has a low temporal resolution, while voltage indicators are vulnerable to phototoxicity, photobleaching, and heating. Here, we report full-field interferometric imaging of individual action potentials by detecting movement across the entire cell membrane. Using spike-triggered averaging of movies synchronized with electrical recordings, we demonstrate deformations up to 3 nm (0.9 mrad) during the action potential in spiking HEK-293 cells, with a rise time of 4 ms. The time course of the optically recorded spikes matches the electrical waveforms. Since the shot noise limit of the camera (~2 mrad/pix) precludes detection of the action potential in a single frame, for all-optical spike detection, images are acquired at 50 kHz, and 50 frames are binned into 1 ms steps to achieve a sensitivity of 0.3 mrad in a single pixel. Using a self-reinforcing sensitivity enhancement algorithm based on iteratively expanding the region of interest for spatial averaging, individual spikes can be detected by matching the previously extracted template of the action potential with the optical recording. This allows all-optical full-field imaging of the propagating action potentials without exogeneous labels or electrodes.
Collapse
Affiliation(s)
- Tong Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Kevin C. Boyle
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
| | - Peng Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA
| | - Yi Quan
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| | - Felix S. Alfonso
- Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Tiffany W. Huang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
8
|
Momose-Sato Y, Sato K. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem. Neuroscience 2017; 365:33-47. [PMID: 28951326 DOI: 10.1016/j.neuroscience.2017.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
One of the earliest activities expressed within the developing central nervous system is a widely propagating wave-like activity, which we referred to as the depolarization wave. Despite considerable consensus concerning the global features of the activity, its physiological role is yet to be clarified. The depolarization wave is expressed during a specific period of functional synaptogenesis, and this developmental profile has led to the hypothesis that the wave plays some roles in synaptic network organization. In the present study, we tested this hypothesis by inhibiting the depolarization wave in ovo and examining its effects on the development of functional synapses in vagus nerve-related brainstem nuclei of the chick embryo. Chronic inhibition of the depolarization wave had no significant effect on the developmental time course, amplitude, and spatial distribution of monosynaptic excitatory postsynaptic potentials in the first-order nuclei of the vagal sensory pathway (the nucleus of the tractus solitarius (NTS) and the contralateral non-NTS region), but reduced polysynaptic responses in the higher-order nucleus (the parabrachial nucleus). These results suggest that the depolarization wave plays an important role in the initial process of functional synaptic expression in the brainstem, especially in the higher-order nucleus of the cranial sensory pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
9
|
Momose-Sato Y, Sato K. Development of synaptic networks in the mouse vagal pathway revealed by optical mapping with a voltage-sensitive dye. Eur J Neurosci 2016; 44:1906-18. [PMID: 27207499 DOI: 10.1111/ejn.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 11/27/2022]
Abstract
The central issue in developmental neuroscience is when and how neural synaptic networks are established and become functional within the central nervous system (CNS). Investigations of the neural network organization have been hampered because conventional electrophysiological means have some technical limitations. In this study, the multiple-site optical recording technique with a voltage-sensitive dye was employed to survey the developmental organization of the vagal system in the mouse embryo. Stimulation of the vagus nerve in E11-E14 mouse embryos elicited optical responses in areas corresponding to the vagal sensory and motor nuclei. Postsynaptic responses in the first-order sensory nucleus, the nucleus of the tractus solitarius (NTS), were identified from E11, suggesting that sensory information becomes transferred to the brain at this stage. In addition to the NTS, optical responses were identified in the rostral and contralateral brainstem regions, which corresponded to second/higher order nuclei of the vagus nerve including the parabrachial nucleus (PBN). Postsynaptic responses in the second/higher-order nuclei were detected from E12, suggesting that polysynaptic networks were functional at this stage. We discuss the results of our optical mapping, comparing them with previous findings obtained in the chick and rat embryos, and suggest some fundamental principles in the functional organization of synaptic networks in the embryonic brain.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-ku, Yokohama, 236-8503, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Tokyo, Japan
| |
Collapse
|
10
|
Antic SD, Empson RM, Knöpfel T. Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 2016; 116:135-52. [PMID: 27075539 DOI: 10.1152/jn.00226.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems.
Collapse
Affiliation(s)
- Srdjan D Antic
- Stem Cell Institute, Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Ruth M Empson
- Department of Physiology, Brain Research New Zealand, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand; and
| | - Thomas Knöpfel
- Division of Brain Sciences, Department of Medicine and Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Abstract
UNLABELLED The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate.
Collapse
|
12
|
Sato K, Hayashi S, Inaji M, Momose-Sato Y. Oscillations in the embryonic chick olfactory bulb: initial expression and development revealed by optical imaging with a voltage-sensitive dye. Eur J Neurosci 2016; 43:1111-21. [PMID: 26833763 DOI: 10.1111/ejn.13189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/31/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
In a previous study, we applied a multiple-site optical recording technique with a voltage-sensitive dye to the embryonic chick olfactory system and showed that functional synaptic transmission in the olfactory bulb was expressed at embryonic 6-7-day stages. It is known that oscillations, i.e. stereotyped sinusoidal neural activity, appear in the olfactory system of various species. The focus of the present study is to determine whether the oscillation is also generated in the embryonic chick olfactory bulb and, if this is the case, when the oscillation appears and how its profiles change during embryogenesis. At the early stages of development (embryonic 6- to 8-day stages), postsynaptic response-related optical signals evoked by olfactory nerve stimulation exhibited a simple monophasic waveform that lasted for a few seconds. At embryonic 9-day stage, the optical signal became multi-phasic, and the oscillatory event was detected in some preparations. The oscillation was restricted to the distal half of the olfactory bulb. As development proceeded, the incidence and duration of the oscillation gradually increased, and the waveform became complicated. In some cases at embryonic 12-day stage, the oscillation lasted for nearly a minute. The frequency of the oscillation increased slightly with development, but it remained in the range of theta oscillation during the 9- to 12-day stages. We discuss the ontogenetic dynamics of the oscillation and the significance of this activity in the developing olfactory bulb.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo, 206-8511, Japan
| | - Shihori Hayashi
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Faculty of Medicine, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
13
|
López-Duarte I, Chairatana P, Wu Y, Pérez-Moreno J, Bennett PM, Reeve JE, Boczarow I, Kaluza W, Hosny NA, Stranks SD, Nicholas RJ, Clays K, Kuimova MK, Anderson HL. Thiophene-based dyes for probing membranes. Org Biomol Chem 2015; 13:3792-802. [PMID: 25703541 DOI: 10.1039/c4ob02507e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the synthesis of four new cationic dipolar push–pull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (–CH=CH–) or ethynylene (–C≡C–) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 μM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 μM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 μM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.
Collapse
Affiliation(s)
- Ismael López-Duarte
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK OX1 3TA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fisher JAN, Salzberg BM. Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:427-53. [PMID: 26238063 DOI: 10.1007/978-3-319-17641-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functional imaging microscopy based on voltage-sensitive dyes (VSDs) has proven effective for revealing spatio-temporal patterns of activity in vivo and in vitro. Microscopy based on two-photon excitation of fluorescent VSDs offers the possibility of recording sub-millisecond membrane potential changes on micron length scales in cells that lie upwards of one millimeter below the brain's surface. Here we describe progress in monitoring membrane voltage using two-photon excitation (TPE) of VSD fluorescence, and detail an application of this emerging technology in which action potentials were recorded in single trials from individual mammalian nerve terminals in situ. Prospects for, and limitations of this method are reviewed.
Collapse
|
15
|
Nakamori T, Sato K, Kinoshita M, Kanamatsu T, Sakagami H, Tanaka K, Ohki-Hamazaki H. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning. J Neurochem 2014; 132:110-23. [PMID: 25270582 DOI: 10.1111/jnc.12954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 01/22/2023]
Abstract
Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition.
Collapse
Affiliation(s)
- Tomoharu Nakamori
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan; Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Human Frontier Science Program, Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Momose-Sato Y, Sato K. Optical survey of initial expression of synaptic function in the embryonic chick trigeminal sensory nucleus. Neurosci Lett 2014; 570:92-6. [PMID: 24769319 DOI: 10.1016/j.neulet.2014.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Abstract
We examined the initial expression of synaptic function in the embryonic chick trigeminal nucleus using voltage-sensitive dye recording. Brainstem preparations with three trigeminal nerve afferents, the ophthalmic nerve (N.V1), maxillary nerve (N.V2) and mandibular nerve (N.V3), were dissected from 5.5- to 6.5-day-old chick embryos. In our previous study [Sato et al., 1999], we detected slow signals corresponding to glutamatergic excitatory postsynaptic potentials and identified the principal sensory nucleus of the trigeminal nerve (Pr5), spinal sensory nucleus of the trigeminal nerve (Sp5) and trigeminal motor nucleus. In this study, we examined the effects of removing Mg(2+) from the physiological solution, which enhanced N-methyl-d-aspartate receptor function in the sensory nuclei. In 6.5-day-old (St 29) embryos, the slow signal was observed in Pr5 and Sp5 only when N.V1 was stimulated, whereas it appeared in Mg(2+)-free solution with every nerve stimulation. In 6-day-old (St 28) embryos, the slow signal was observed in Sp5 with N.V1 stimulation, and the appearance of synaptic function in Mg(2+)-free solution varied, depending on the nerves and preparations used. In 5.5-day-old (St 27) embryos, synaptic function was not detected even when external Mg(2+) was removed. These results indicate that the initial expression of synaptic function in the trigeminal system occurs earlier than previously considered, and that the developmental organization of synaptic function differs among the three trigeminal nerves and between the two sensory nuclei.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, Kanto Gakuin University, College of Human and Environmental Studies, Yokohama 236-8503, Japan.
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women's University Faculty of Human Health, Tokyo 206-8511, Japan
| |
Collapse
|
17
|
Momose-Sato Y, Sato K. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator. Neuroscience 2014; 266:186-96. [PMID: 24568731 DOI: 10.1016/j.neuroscience.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/24/2022]
Abstract
Widely correlated spontaneous activity in the developing nervous system is transiently expressed and is considered to play a fundamental role in neural circuit formation. The depolarization wave, which spreads over a long distance along the neuraxis, maximally extending to the lumbosacral cord and forebrain, is an example of this spontaneous activity. Although the depolarization wave is typically initiated in the spinal cord in intact preparations, spontaneous discharges have also been detected in the isolated brainstem. Although this suggests that the brainstem has the ability to generate spontaneous activity, but is paced by a caudal rhythm generator of higher excitability, a number of questions remains. Does brainstem activity simply appear as a passive consequence, or does any active change occur in the brainstem network to compensate for this activity? If the latter is the case, does this compensation occur equally at different developmental stages? Where is the new rhythm generator in the isolated brainstem? To answer these questions, we optically analyzed spatio-temporal patterns of activity detected from the chick brainstem before and after transection at the obex. The results revealed that the depolarization wave was homeostatically maintained, which was characterized by an increase in excitability and/or the number of neurons recruited to the wave. The wave was more easily maintained in younger embryos. Furthermore, we demonstrated that the ability of brainstem neurons to perform such an active compensation was not lost even at the stage when the depolarization wave was no longer observed in the intact brainstem.
Collapse
Affiliation(s)
- Y Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - K Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan.
| |
Collapse
|
18
|
Hill MRH, Greenfield SA. Characterization of early cortical population response to thalamocortical input in vitro. Front Neurosci 2014; 7:273. [PMID: 24550766 PMCID: PMC3907706 DOI: 10.3389/fnins.2013.00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/13/2022] Open
Abstract
The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging (VSDI). We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer (GL) IV and one in the infragranular layer (IGL) V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the IGL. Finally we investigated the short-term dynamics of both the VSDI signal and the local field potential (LFP) in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short-term plasticity between the VSDI response and the LFP. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.
Collapse
|
19
|
Xu J, Yang M, Kosterin P, Salzberg BM, Milovanova TN, Bhopale VM, Thom SR. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction. Toxicol Appl Pharmacol 2013; 273:410-7. [PMID: 24090814 DOI: 10.1016/j.taap.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang M, Kosterin P, Salzberg BM, Milovanova TN, Bhopale VM, Thom SR. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening. J Appl Physiol (1985) 2013; 115:1481-6. [PMID: 24052032 DOI: 10.1152/japplphysiol.00745.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.
Collapse
Affiliation(s)
- Ming Yang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
21
|
Mullah SHER, Komuro R, Yan P, Hayashi S, Inaji M, Momose-Sato Y, Loew LM, Sato K. Evaluation of voltage-sensitive fluorescence dyes for monitoring neuronal activity in the embryonic central nervous system. J Membr Biol 2013; 246:679-88. [PMID: 23975337 PMCID: PMC4096138 DOI: 10.1007/s00232-013-9584-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/04/2013] [Indexed: 11/29/2022]
Abstract
Using an optical imaging technique with voltage-sensitive dyes (VSDs), we investigated the functional organization and architecture of the central nervous system (CNS) during embryogenesis. In the embryonic nervous system, a merocyanine-rhodanine dye, NK2761, has proved to be the most useful absorption dye for detecting neuronal activity because of its high signal-to-noise ratio (S/N), low toxicity and small dye bleaching. In the present study, we evaluated the suitability of fluorescence VSDs for optical recording in the embryonic CNS. We screened eight styryl (hemicyanine) dyes in isolated brainstem-spinal cord preparations from 7-day-old chick embryos. Measurements of voltage-related optical signals were made using a multiple-site optical recording system. The signal size, S/N, photobleaching, effects of perfusion and recovery of neural responses after staining were compared. We also evaluated optical responses with various magnifications. Although the S/N was lower than with the absorption dye, clear optical responses were detected with several fluorescence dyes, including di-2-ANEPEQ, di-4-ANEPPS, di-3-ANEPPDHQ, di-4-AN(F)EPPTEA, di-2-AN(F)EPPTEA and di-2-ANEPPTEA. Di-2-ANEPEQ showed the largest S/N, whereas its photobleaching was faster and the recovery of neural responses after staining was slower. Di-4-ANEPPS and di-3-ANEPPDHQ also exhibited a large S/N but required a relatively long time for recovery of neural activity. Di-4-AN(F)EPPTEA, di-2-AN(F)EPPTEA and di-2-ANEPPTEA showed smaller S/Ns than di-2-ANEPEQ, di-4-ANEPPS and di-3-ANEPPDHQ; but the recovery of neural responses after staining was faster. This study demonstrates the potential utility of these styryl dyes in optical monitoring of voltage changes in the embryonic CNS.
Collapse
Affiliation(s)
- Saad Habib-E-Rasul Mullah
- Department of Health and Nutrition Sciences, Komazawa Women’s University Faculty of Human Health, Tokyo 206-8511, Japan
| | - Ryo Komuro
- Department of Health and Nutrition, Kanto Gakuin University, College of Human and Environmental Studies, Yokohama 236-8501, Japan
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030-6406, USA
| | - Shihori Hayashi
- Department of Neurosurgery, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo 113-8519, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Tokyo 113-8519, Japan
| | - Yoko Momose-Sato
- Department of Health and Nutrition, Kanto Gakuin University, College of Human and Environmental Studies, Yokohama 236-8501, Japan
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030-6406, USA
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Komazawa Women’s University Faculty of Human Health, Tokyo 206-8511, Japan
| |
Collapse
|
22
|
Nakamori T, Maekawa F, Sato K, Tanaka K, Ohki-Hamazaki H. Neural basis of imprinting behavior in chicks. Dev Growth Differ 2013; 55:198-206. [DOI: 10.1111/dgd.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | - Fumihiko Maekawa
- Center for Environmental Health Sciences; National Institute for Environmental Studies; Tsukuba; Ibaraki; 305-8506; Japan
| | - Katsushige Sato
- Human Frontier Science Program; Department of Health and Nutrition Sciences, Faculty of Human Health; Komazawa Women's University; Inagi; Tokyo; 206-8511; Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, School of Biomedical Science & Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku; Tokyo; 113-8510; Japan
| | - Hiroko Ohki-Hamazaki
- Division of Biology, College of Liberal Arts and Sciences; Kitasato University; Sagamihara; Kanagawa; 252-0373; Japan
| |
Collapse
|
23
|
Momose-Sato Y, Nakamori T, Sato K. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging. Eur J Neurosci 2012; 35:1230-41. [PMID: 22339904 DOI: 10.1111/j.1460-9568.2012.07997.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage-sensitive dye, we have revealed previously that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. We have observed in the chick and rat embryos that the activity spread over an extensive region of the CNS, including the spinal cord, hindbrain, cerebellum, midbrain and forebrain. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by showing that the widely propagating wave appeared independently of the localized spontaneous activity detected previously with Ca(2+) imaging. Furthermore, we mapped the origin of the depolarization wave and revealed that the wave generator moved from the rostral spinal cord to the caudal cord as development proceeded, and was later replaced with mature rhythmogenerators. The present study, together with an accompanying paper that describes pharmacological properties of the mouse depolarization wave, shows that a synchronized wave with common characteristics is expressed in different species, suggesting fundamental roles in neural development.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Yokohama 236-8503, Japan.
| | | | | |
Collapse
|
24
|
Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye. Neuroscience 2011; 192:781-92. [DOI: 10.1016/j.neuroscience.2011.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
|
25
|
Coulter DA, Yue C, Ang CW, Weissinger F, Goldberg E, Hsu FC, Carlson GC, Takano H. Hippocampal microcircuit dynamics probed using optical imaging approaches. J Physiol 2011; 589:1893-903. [PMID: 21224219 PMCID: PMC3090592 DOI: 10.1113/jphysiol.2010.202184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 01/07/2011] [Indexed: 12/20/2022] Open
Abstract
Mammalian cortical structures are endowed with the capacity for plasticity, which emerges from a combination of the dynamics of circuit connectivity and function, and the intrinsic function of the neurons within the circuit. However, this capacity is accompanied by a significant risk: the capability to generate seizure discharges is also a property of all mammalian cortices. How do cortical circuits reconcile the requirement to maintain plasticity, but at the same time control seizure initiation? These issues come into particular focus in the hippocampus. The hippocampus is one of the main plasticity engines in the brain, and is also a structure frequently implicated in the generation of epileptic seizures, with temporal lobe epilepsy constituting the most prevalent form of epilepsy in the adult population. One aspect of hippocampal circuitry that is particularly prominent is its intimate interconnections with the entorhinal cortex. These interconnections create a number of excitatory synaptic loops within the limbic system, which, in addition to being important in cognitive function, can support reentrant activation and seizure generation. In the present review, using optical imaging approaches to elucidate circuit processing at high temporal and spatial resolution, we examine how two targets of entorhinal cortical input within the hippocampus, the dentate gyrus and area CA1, regulate these synaptic pathways in ways that can maintain functions important in generation of normal activity patterns, but that dampen the ability of these inputs to generate seizure discharges.
Collapse
Affiliation(s)
- Douglas A Coulter
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Voltage-sensitive dye imaging analysis of functional development of the neonatal rat corticostriatal projection. Neuroimage 2011; 54:1831-9. [DOI: 10.1016/j.neuroimage.2010.09.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/02/2010] [Accepted: 09/26/2010] [Indexed: 11/20/2022] Open
|
27
|
Abstract
Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.
Collapse
|
28
|
Kosterin P, Obaid A, Salzberg B. Long-lasting intrinsic optical changes observed in the neurointermediate lobe of the mouse pituitary reflect volume changes in cells of the pars intermedia. Neuroendocrinology 2010; 92:158-67. [PMID: 20551618 PMCID: PMC3214829 DOI: 10.1159/000314619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Complex intrinsic optical changes (light scattering) are readily observed in the neurointermediate lobe of the mouse pituitary gland following electrical stimulation of the infundibular stalk. Our laboratory has previously identified three distinct phases within the light scattering signal: two rapid responses to action potential stimulation and a long duration recovery. The rapid light scattering signals, restricted to the neurohypophysial portion (posterior pituitary) of the neurointermediate lobe, consist of an E-wave and an S-wave that reflect excitation and secretion, respectively. The E-wave has the approximate shape of the action potential and includes voltage- and current-related components and is independent of Ca(2+) entry. The S-wave is related to Ca(2+) entry and exocytosis. The slow recovery phase of the light scattering signal, which we designated the R-wave, is less well characterized. METHODS Using high temporal resolution light scattering measurements, we monitored intrinsic optical changes in the neurointermediate lobe of the mouse pituitary gland. Pharmacological interventions during the measurements were employed. RESULTS The data presented here provide optical and pharmacological evidence suggesting that the R-wave, which comprises signals from the posterior pituitary as well as from the pars intermedia, mirrors volume changes in pars intermedia cells following a train of stimuli applied to the infundibular stalk. These volume changes were blocked by the GABA-receptor antagonists bicuculline and picrotoxin, and were mimicked by direct application of GABA in the absence of electrical stimulation. CONCLUSIONS These results emphasize the importance of central GABAergic projections into the neurointermediate lobe, and the potential role of GABA in effecting hormone release from the pars intermedia.
Collapse
Affiliation(s)
- P. Kosterin
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
| | - A.L. Obaid
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
| | - B.M. Salzberg
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
- *Brian M. Salzberg, Department of Neuroscience, University of Pennsylvania School of Medicine, 234 Stemmler Hall, Philadelphia, PA 19104-6074 (USA), Tel. +1 215 898 2441, Fax +1 215 746 2758, E-Mail
| |
Collapse
|
29
|
Abstract
Electrophysiology, the 'gold standard' for investigating neuronal signalling, is being challenged by a new generation of optical probes. Together with new forms of microscopy, these probes allow us to measure and control neuronal signals with spatial resolution and genetic specificity that already greatly surpass those of electrophysiology. We predict that the photon will progressively replace the electron for probing neuronal function, particularly for targeted stimulation and silencing of neuronal populations. Although electrophysiological characterization of channels, cells and neural circuits will remain necessary, new combinations of electrophysiology and imaging should lead to transformational discoveries in neuroscience.
Collapse
|
30
|
Mochida H, Sato K, Momose-Sato Y. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo. Eur J Neurosci 2008; 29:14-30. [PMID: 19087161 DOI: 10.1111/j.1460-9568.2008.06569.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Widely propagating correlated neuronal activity is a hallmark of the developing nervous system. The activity is usually mediated by multiple transmitters, and the contribution of gap junctions has also been suggested in several systems. In some structures, such as the retina and spinal cord, it has been shown that the dominant transmitter mediating the correlated wave switches from acetylcholine to glutamate during development, although the functional significance of this phenomenon has not been clarified. An important question is whether such a transmitter switch occurs in other systems, especially in the brain. In the present study, we demonstrate that the major transmitter mediating correlated wave activity in the embryonic chick hindbrain changes from acetylcholine/gamma-aminobutyric acid (GABA)/glycine to glutamate/GABA as development proceeds. The results show for the first time that the dominant transmitter switches from acetylcholine to glutamate in a region other than the retina and spinal cord. This finding sheds more light on the role of nicotinic acetylcholine receptors in the generation of correlated wave activity, which is considered to regulate the development of the nervous system.
Collapse
Affiliation(s)
- Hiraku Mochida
- Department of Psychiatry, Graduate School and Faculty of Medicine, Kobe University, Kobe, Japan
| | | | | |
Collapse
|
31
|
Momose-Sato Y, Mochida H, Kinoshita M. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes. Eur J Neurosci 2008; 29:1-13. [PMID: 19077122 DOI: 10.1111/j.1460-9568.2008.06568.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous correlated neuronal activity during early development spreads like a wave by recruiting a large number of neurons, and is considered to play a fundamental role in neural development. One important and as yet unresolved question is where the activity originates, especially at the earliest stage of wave expression. In other words, which part of the brain differentiates first as a source of the correlated activity, and how does it change as development proceeds? We assessed this issue by examining the spatiotemporal patterns of the depolarization wave, the optically identified primordial correlated activity, using the optical imaging technique with voltage-sensitive dyes. We surveyed the region responsible for the induction of the evoked and spontaneous depolarization waves in chick embryos, and traced its developmental changes. The results showed that the wave initially originated in a restricted area near the obex and was generated by multiple regions at later stages. We suggest that the upper cervical cord/lower medulla near the obex is the kernel that differentiates first as the source of the correlated activity, and that regional and temporal differences in neuronal excitability might underlie the developmental profile of wave generation in early chick embryos.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin University, Yokohama, Japan.
| | | | | |
Collapse
|
32
|
Foley J, Muschol M. Action spectra of electrochromic voltage-sensitive dyes in an intact excitable tissue. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064015. [PMID: 19123661 DOI: 10.1117/1.3013326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Voltage-sensitive dyes (VSDs) provide a spatially resolved optical read-out of electrical signals in excitable tissues. Several common fluorescent VSDs display electrochromic shifts of their emission spectra, making them suitable candidates for ratiometric measurements of transmembrane voltages. These advantages of VSDs are tempered by tissue-specific shifts to their fluorescence emission. In addition, the optimal electrochromic dye response occurs in wavelength bands distinct from the dye's maximal resting emission. This "action spectrum" can undergo tissue-specific shifts as well. We have developed a technique for in situ measurements of the action spectra of VSDs in intact excitable tissues. Fluorescence emission spectra of VSDs during action-potential depolarization were obtained within a single sweep of a spectrophotometer equipped with a change-coupled device (CCD) array detector. To resolve the subtle electrochromic shifts in voltage-induced dye emission, fluorescence emission spectra measured right before and during field-induced action-potential depolarization were averaged over about 100 trials. Removing white-noise contributions from the spectrometer's CCD detector/amplifier via low-pass filtering in Fourier space, the action spectra of all dyes could be readily determined.
Collapse
Affiliation(s)
- Joseph Foley
- University of South Florida, Department of Physics, Tampa, Florida 33620-5700, USA
| | | |
Collapse
|
33
|
Momose-Sato Y, Kinoshita M, Sato K. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording. Neuroscience 2007; 148:140-50. [PMID: 17629626 DOI: 10.1016/j.neuroscience.2007.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Using voltage-sensitive dye recording, we surveyed neural responses related to the vagus nerve in the embryonic chick brainstem. In our previous studies, we identified four vagus nerve-related response areas in the brainstem. On the stimulated side, they included (1) the nucleus of the tractus solitarius (NTS: the primary sensory nucleus) and (2) the dorsal motor nucleus of the vagus nerve (DMNV), whereas on the contralateral side, they corresponded to (3) the parabrachial nucleus (PBN: the second/higher-ordered nucleus) and (4) the medullary non-NTS region. In the present study, in addition to these areas, we identified another response area circumflex to the obex. The intensity of the optical signal in the response area was much smaller than that in the NTS/DMNV, and the spatio-temporal pattern could be discerned after signal averaging. The conduction rate to the response area was slower than that to the other four areas. Ontogenetically, the response area was distributed on the stimulated side at the 6-day embryonic stage, and it spread into the contralateral side in 7- and 8-day embryonic stages. These distribution patterns were consistent with projection patterns of vagal afferent fibers stained with a fluorescent tracer, suggesting that the response area included a primary sensory nucleus. In comparison with the functional development of the other four response areas, we traced the functional organization of vagus nerve-related nuclei in the embryonic brainstem.
Collapse
Affiliation(s)
- Y Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
34
|
Momose-Sato Y, Sato K, Kinoshita M. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS. Eur J Neurosci 2007; 25:929-44. [PMID: 17331191 DOI: 10.1111/j.1460-9568.2007.05352.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During development, correlated neuronal activity plays an important role in the establishment of the central nervous system (CNS). We have previously reported that a widely propagating correlated neuronal activity, termed the depolarization wave, is evoked by various sensory inputs. A remarkable feature of the depolarization wave is that it spreads broadly through the brain and spinal cord. In the present study, we examined whether the depolarization wave occurs spontaneously in the embryonic rat CNS and, if so, where it originates. In E15-16 rat embryos, spontaneous optically-revealed signals appeared in association with the rhythmic discharges of cranial motoneurons and propagated widely with similar characteristics to the evoked depolarization wave. At E15, the spontaneous wave mostly originated in the cervical to upper lumbar cords. At E16, the wave was predominantly generated in the lumbosacral cord although a wave associated with the second oscillatory burst was initiated in the rostral cord. At E16, a few waves also originated in the rostral ventrolateral medulla and the dorsomedial pons. When the influence of the caudal cord was removed by transecting the spinal cord, the contribution of the medulla and pons became more significant. These results show that the depolarization wave can be triggered by the spontaneous activity of multiple neuronal populations which are distributed widely from the pons to the lumbosacral cord, although the spinal cord usually plays a predominant role. This network possibly works as a self-distributing system that maintains the incidence and complicated patterns of the correlated activity in the developing CNS.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
35
|
Arai Y, Mentis GZ, Wu JY, O'Donovan MJ. Ventrolateral origin of each cycle of rhythmic activity generated by the spinal cord of the chick embryo. PLoS One 2007; 2:e417. [PMID: 17479162 PMCID: PMC1855078 DOI: 10.1371/journal.pone.0000417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/15/2007] [Indexed: 11/19/2022] Open
Abstract
Background The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. Methodology/Principal Findings The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. Conclusions/Significance These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical mechanism for cycling within an episode.
Collapse
Affiliation(s)
- Yoshiyasu Arai
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - George Z. Mentis
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jiang-young Wu
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- Department of Physiology and Biophysics, Georgetown University, Washington, D. C., United States of America
| | - Michael J. O'Donovan
- Laboratory of Neural Control, Section on Developmental Neurobiology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Affiliation(s)
- Bob Eisenberg
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
37
|
Sato K, Kinoshita M, Momose-Sato Y. Optical mapping of spatiotemporal emergence of functional synaptic connections in the embryonic chick olfactory pathway. Neuroscience 2007; 144:1334-46. [PMID: 17184922 DOI: 10.1016/j.neuroscience.2006.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 11/26/2022]
Abstract
In order to understand the functional maturation of the CNS, it is essential to first describe the functional maturation of sensory processing. We have approached this topic by following the ontogenetic patterning of neural circuit formation related to cranial and spinal sensory input using voltage-sensitive dye imaging. In previous studies, we have described the functional maturation of synapses in brainstem/midbrain neural circuits. Here, we elucidate the functional maturation of forebrain circuits by investigating neural networks related to the olfactory nerve (N. I) of chicken embryo. In the isolated N. I-olfactory bulb-forebrain preparation, application of electrical stimulation to N. I elicited excitatory postsynaptic potential (EPSP)-related slow optical signals in the olfactory bulb. The slow signal was mainly mediated by glutamate, and was easily fatigued with repetitive stimuli because of the immaturity of synapses in the embryonic CNS. Ontogenetically, the slow signal was detected from the 6-day embryonic stage, suggesting that functional synaptic connections between N. I and olfactory bulb emerge around this stage. In addition, from the 8-day embryonic stage, another response area was discriminated within the forebrain, which corresponded to the higher-ordered nucleus of the olfactory pathway. In comparison with our previous studies concerning the functional development of other cranial nerve-related sensory nuclei in the embryonic brainstem and midbrain, these results suggest that the olfactory pathway is functionally generated in the early stages of development when neural networks related to other visceral and somatic sensory inputs are also in the process of developing.
Collapse
Affiliation(s)
- K Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
38
|
Momose-Sato Y, Glover JC, Sato K. Development of Functional Synaptic Connections in the Auditory System Visualized With Optical Recording: Afferent-Evoked Activity Is Present From Early Stages. J Neurophysiol 2006; 96:1949-62. [PMID: 16790599 DOI: 10.1152/jn.00319.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive survey of auditory network formation was performed in the brain stem of the chicken embryo using voltage-sensitive dye recording. Intact medulla/brain stem preparations with the auditory branch of the eighth nerve attached were dissected from 5.5- to 8-day chicken embryos, and responses evoked by nerve stimulation were recorded optically. In the medulla of 7- and 8-day embryos, we identified four response areas, corresponding to ipsilateral Nucleus magnocellularis (NM) and Nucleus angularis (NA), which receive the auditory afferents, and ipsi- and contralateral Nucleus laminaris (NL), which receive projections from NM. The optical responses consisted of a fast spikelike signal followed by a long-lasting slow signal, which reflected the sodium-dependent action potential and glutamatergic excitatory postsynaptic potential (EPSP), respectively. In NM, NA, and NL, the EPSP-related slow optical signals were detected from some 6-day and all 7- and 8-day preparations, indicating that functional synaptic connectivity in these nuclei arises by the 7-day stage. In the pons of 7- and 8-day embryos, we identified two additional response areas, which evidently correspond to ipsi- and contralateral Nucleus lemnisci lateralis (NLL), the higher-order nuclei of the auditory pathway. Furthermore, we detected optical responses from the contralateral cerebellum, which possibly correspond to transient projections observed only during embryogenesis. The present study demonstrates that functional auditory circuits are established in the chicken embryo at stages earlier than previously reported. We discuss the possible role of afferent-evoked activity with reference to auditory neural network formation.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Salama G, Choi BR, Azour G, Lavasani M, Tumbev V, Salzberg BM, Patrick MJ, Ernst LA, Waggoner AS. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol 2006; 208:125-40. [PMID: 16645742 PMCID: PMC3018276 DOI: 10.1007/s00232-005-0826-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Membrane potential measurements using voltage-sensitive dyes (VSDs) have made important contributions to our understanding of electrophysiological properties of multi-cellular systems. Here, we report the development of long wavelength VSDs designed to record cardiac action potentials (APs) from deeper layers in the heart. The emission spectrum of styryl VSDs was red-shifted by incorporating a thienyl group in the polymethine bridge to lengthen and retain the rigidity of the chromophore. Seven dyes, Pittsburgh I to IV and VI to VIII (PGH I-VIII) were synthesized and characterized with respect to their spectral properties in organic solvents and heart muscles. PGH VSDs exhibited 2 absorption, 2 excitation and 2 voltage-sensitive emission peaks, with large Stokes shifts (> 100 nm). Hearts (rabbit, guinea pig and Rana pipiens) and neurohypophyses (CD-1 mice) were effectively stained by injecting a bolus (10-50 microl) of stock solution of VSD (2-5 mM) dissolved in in dimethylsulfoxide plus low molecular weight Pluronic (16% of L64). Other preparations were better stained with a bolus of VSD (2-5 mM) Tyrode's solution at pH 6.0. Action spectra measured with a fast CCD camera showed that PGH I exhibited an increase in fractional fluorescence, DeltaF/F = 17.5 % per AP at 720 nm with 550 nm excitation and DeltaF/F = - 6% per AP at 830 nm with 670 nm excitation. In frog hearts, PGH1 was stable with approximately 30% decrease in fluorescence and AP amplitude during 3 h of intermittent excitation or 1 h of continuous high intensity excitation (300 W Xe-Hg Arc lamp), which was attributed to a combination of dye wash out > photobleaching > dynamic damage > run down of the preparation. The long wavelengths, large Stokes shifts, high DeltaF/F and low baseline fluorescence make PGH dyes a valuable tool in optical mapping and for simultaneous mapping of APs and intracellular Ca(2+).
Collapse
Affiliation(s)
- G Salama
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, S314 Biomedical Science Tower, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Civillico EF, Contreras D. Comparison of responses to electrical stimulation and whisker deflection using two different voltage-sensitive dyes in mouse barrel cortex in vivo. J Membr Biol 2006; 208:171-82. [PMID: 16645745 DOI: 10.1007/s00232-005-0828-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/29/2022]
Abstract
We examined the spatial structure of noise in optical recordings made with two commonly used voltage-sensitive dyes (RH795 and RH1691) in mouse barrel cortex in vivo, and determined that the signal-to-noise ratio of the two dyes was comparable when averaging over barrel-sized areas, or at single pixels distant from large blood vessels. We examined the spatiotemporal development of whisker- and electrically-evoked optical responses by quantifying the area of activated cortical surface as a function of time. Whisker and electrical stimuli activated cortical areas between 0.2-2.0 mm(2) depending on intensity. More importantly, both types of activation recruited cortical area at similar rates and showed a linear relationship between the maximal activated area and the peak rate of increase of the activated area. We propose a general rule of supragranular cortical activation in which the initial spreading speed of the response determines the total activated area, independent of the type of activation. Finally, despite comparable single-response kinetics, we observed greater paired-pulse depression of whisker-evoked responses relative to electrically-evoked responses.
Collapse
Affiliation(s)
- E F Civillico
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | |
Collapse
|
41
|
Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J Membr Biol 2006; 208:113-24. [PMID: 16645741 DOI: 10.1007/s00232-005-0824-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1-2 s) trains of stimuli. With fluorescence excitation at either 350 +/- 20 or 450 +/- 50 nm, and with emission measured, respectively, at 450 +/- 50 or > or = 520 nm, DeltaF/F(o) was approximately 5-8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by approximately 100 ms and were eliminated by 1 microM tetrodotoxin (TTX). The signals were partially inhibited by 500 microM Cd(2+), by substitution of Mg(2+) for Ca(2+), by Ca(2+)-free Ringer's with 0.5 mM EGTA, and by 50 microM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 microM), FCCP (0.3 microM), and NaN(3) (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO(2)) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH(2) is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca(2+)](i) triggers an increase in FAD and NAD as FADH(2) and NADH are oxidized, but that elevation of [Ca(2+)](i), alone cannot account for the totality of changes in intrinsic fluorescence.
Collapse
Affiliation(s)
- P Kosterin
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Civillico EF, Contreras D. Integration of evoked responses in supragranular cortex studied with optical recordings in vivo. J Neurophysiol 2006; 96:336-51. [PMID: 16571736 DOI: 10.1152/jn.00128.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex representations in sensory cortices rely on the integration of inputs that overlap temporally and spatially, particularly in supragranular layers, yet the spatiotemporal dynamics of this synaptic integration are largely unknown. The rodent somatosensory system offers an excellent opportunity to study these dynamics because of the overlapping functional representations of single-whisker inputs. We recorded responses in mouse primary somatosensory (barrel) cortex to single and paired whisker deflections using high-speed voltage-sensitive dye imaging. Responses to paired deflections at intervals of 0 and 10 ms summed sublinearly, producing a single transient smaller in amplitude than the sum of the component responses. At longer intervals of 50 and 100 ms, the response to the second deflection was reduced in amplitude and limited spatially relative to control. Between 100 and 200 ms, the response to the second deflection recovered and often showed areas of facilitation. With increasing interstimulus interval from 50 to 200 ms, recovery of the second response occurred from the second stimulated whisker's barrel column outward. In contrast to results with paired-whisker stimulation, when a whisker deflection was preceded by a weak electrical stimulus applied to the neighboring cortex, the summation of evoked responses was predominantly linear at all intervals tested. Thus under our conditions, the linearity of response summation in cortex was not predicted by the amplitudes of the component responses on a column-by-column basis, but rather by the timing and nature of the inputs.
Collapse
Affiliation(s)
- Eugene F Civillico
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19106-6074, USA
| | | |
Collapse
|
43
|
Ang CW, Carlson GC, Coulter DA. Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J Neurosci 2006; 25:9567-80. [PMID: 16237162 PMCID: PMC2048747 DOI: 10.1523/jneurosci.2992-05.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal CA1 pyramidal neurons receive intrahippocampal and extrahipppocampal inputs during theta cycle, whose relative timing and magnitude regulate the probability of CA1 pyramidal cell spiking. Extrahippocampal inputs, giving rise to the primary theta dipole in CA1 stratum lacunosum moleculare, are conveyed by the temporoammonic pathway. The temporoammonic pathway impinging onto the CA1 distal apical dendritic tuft is the most electrotonically distant from the perisomatic region yet is critical in regulating CA1 place cell activity during theta cycles. How does local hippocampal circuitry regulate the integration of this essential, but electrotonically distant, input within the theta period? Using whole-cell somatic recording and voltage-sensitive dye imaging with simultaneous dendritic recording of CA1 pyramidal cell responses, we demonstrate that temporoammonic EPSPs are normally compartmentalized to the apical dendritic tuft by feedforward inhibition. However, when this input is preceded at a one-half theta cycle interval by proximally targeted Schaffer collateral activity, temporoammonic EPSPs propagate to the soma through a joint, codependent mechanism involving activation of Schaffer-specific NMDA receptors and presynaptic inhibition of GABAergic terminals. These afferent interactions, tuned for synaptic inputs arriving one-half theta interval apart, are in turn modulated by feedback inhibition initiated via axon collaterals of pyramidal cells. Therefore, CA1 circuit integration of excitatory inputs endows the CA1 principal cell with a novel property: the ability to function as a temporally specific "AND" gate that provides for sequence-dependent readout of distal inputs.
Collapse
Affiliation(s)
- Chyze W Ang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Momose-Sato Y, Sato K. Primary Vagal Projection to the Contralateral Non-NTS Region in the Embryonic Chick Brainstem Revealed by Optical Recording. J Membr Biol 2005; 208:183-91. [PMID: 16645746 DOI: 10.1007/s00232-005-0829-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.
Collapse
Affiliation(s)
- Y Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, Bunkyo-ku, Japan.
| | | |
Collapse
|
45
|
Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJF. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 2005; 28:325-33. [PMID: 15927689 DOI: 10.1016/j.tins.2005.04.006] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/24/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Brain function is fundamentally related in the most general sense to the richness of thalamocortical interconnectivity, and in particular to the rhythmic oscillatory properties of thalamocortical loops. Such rhythmicity is involved in the genesis of cognition, in the sleep-wake cycle, and in several neurological and psychiatric disorders. The role of GABA-mediated transmission in regulating these functional states is addressed here. At the cortical level, inhibition determines the spread of cortical activation by sculpting the precise activity patterns that underlie the details of cognition and motor control. At the thalamic level, GABA-mediated inhibition modulates and resets distribution of the ongoing thalamocortical rhythmic oscillations that bind multisensory inputs into a single cognitive experience and regulate arousal levels.
Collapse
Affiliation(s)
- Rodolfo Llinás
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
46
|
Salzberg BM, Kosterin PV, Muschol M, Obaid AL, Rumyantsev SL, Bilenko Y, Shur MS. An ultra-stable non-coherent light source for optical measurements in neuroscience and cell physiology. J Neurosci Methods 2005; 141:165-9. [PMID: 15585300 DOI: 10.1016/j.jneumeth.2004.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 06/11/2004] [Indexed: 11/20/2022]
Abstract
We demonstrate that high power light-emitting diodes (LED's) exhibit low-frequency noise characteristics that are clearly superior to those of quartz tungsten halogen lamps, the non-coherent light source most commonly employed when freedom from intensity variation is critical. Their extreme stability over tens of seconds (combined with readily selectable wavelength) makes high power LED's ideal light sources for DC recording of optical changes, from living cells and tissues, that last more than a few hundred milliseconds. These optical signals (DeltaI/I(0)) may be intrinsic (light scattering, absorbance or fluorescence) or extrinsic (absorbance or fluorescence from probe molecules) and we show that changes as small as approximately 8 x 10(-5) can be recorded without signal averaging when LED's are used as monochromatic light sources. Here, rapid and slow changes in the intrinsic optical properties of mammalian peptidergic nerve terminals are used to illustrate the advantages of high power LED's compared to filament bulbs.
Collapse
Affiliation(s)
- B M Salzberg
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Sato K, Miyakawa N, Momose-Sato Y. Optical survey of neural circuit formation in the embryonic chick vagal pathway. Eur J Neurosci 2004; 19:1217-25. [PMID: 15016080 DOI: 10.1111/j.1460-9568.2004.03218.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiple-site optical recording technique with a voltage-sensitive dye, NK2761, was used to survey functional organization of neural circuits related to the vagus nerve in the embryonic chick brainstem. When we stimulated the vagus nerve, in addition to the responses in the vagal sensory nucleus (nucleus of the tractus solitarius (NTS)) and motor nucleus (dorsal motor nucleus of the vagus nerve (DMNV)) on the stimulated side, another response area was discriminated at the level of the pons/rostral medulla on the contralateral side. Characteristics of the contralateral optical signals suggested that they correspond to the neural activity in the second/higher-ordered nucleus of the vagal pathway, possibly the parabrachial nucleus, which receives inputs from the NTS. Blockade of non-N-methyl-d-aspartate (NMDA) receptors abolished the responses on the contralateral side, together with the postsynaptic firing in the NTS, suggesting the significance of non-NMDA receptor function in sensory information transfer via the NTS. The responses on the contralateral side were first detected from the 7-day-old embryonic stage, when the glutamatergic excitatory postsynaptic potentials were first expressed in the NTS. The results suggest that the synaptic pathway from the NTS to the contralateral nucleus is already generated when the primary vagal afferents make functional synapses on NTS neurons.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
48
|
Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction". J Neurosci 2004. [PMID: 14672999 DOI: 10.1523/jneurosci.23-36-11352.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.
Collapse
|
49
|
Yang SM, Doi T, Jing S, Kaneko T, Matsumoto-Ono A, Asako M, Yamashita T. Optical imaging of glycinergic inhibition in the vestibular and cochlear nuclei. Brain Res 2002; 949:213-7. [PMID: 12213319 DOI: 10.1016/s0006-8993(02)03098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using multiple-site optical recording techniques, the spatiotemporal activity was observed in both the cochlear and vestibular nucleus in newborn mice. The optical responses were obviously enhanced by bath-applied strychnine. A quantitative analysis showed higher enhancements to occur in the cochlear nucleus than in the vestibular nucleus. Optical imaging enables us to visualize the spatiotemporal extent of the inhibitory receptive field after the application of strychnine.
Collapse
Affiliation(s)
- Shi-Ming Yang
- Department of Otolaryngology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Sato K, Mochida H, Yazawa I, Sasaki S, Momose-Sato Y. Optical approaches to functional organization of glossopharyngeal and vagal motor nuclei in the embryonic chick hindbrain. J Neurophysiol 2002; 88:383-93. [PMID: 12091562 DOI: 10.1152/jn.2002.88.1.383] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the functional organization of the glossopharyngeal and vagal motor nuclei during embryogenesis using multiple-site optical recording with a fast voltage-sensitive dye. Intact brain stem preparations with glossopharyngeal and vagus nerves were dissected from 4- to 8-day-old chick embryos. Electrical responses evoked by glossopharyngeal/vagus nerve stimulation were optically recorded from many loci of the stained preparations. In 4- to 6-day-old preparations, action potential-related fast spikelike signals were detected from the nucleus of the glossopharyngeal nerve and the dorsal motor nucleus of the vagus nerve. Contour line maps of the signal amplitude showed multiple-peak patterns, suggesting that the neurons and/or their activity were not uniformly distributed within the nuclei at early developmental stages. As development proceeded from 4 to 6 days, the peaks fused with each other and the number of peaks decreased gradually. In most 7- and 8-day-old preparations, only a single peak was identified in the nuclei, and the distribution of the signal amplitude formed a layered pattern surrounding the peak-signal area. These results suggest that functional organization of the motor nuclei in the embryonic hindbrain changes dynamically with development, resulting in a rearrangement of functional nuclear cores from multiple-peaks to a single peak.
Collapse
Affiliation(s)
- Katsushige Sato
- Department of Physiology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | |
Collapse
|