1
|
Shao Y, Tian HY, Zhang JJ, Kharrati-Koopaee H, Guo X, Zhuang XL, Li ML, Nanaie HA, Dehghani Tafti E, Shojaei B, Reza Namavar M, Sotoudeh N, Oluwakemi Ayoola A, Li JL, Liang B, Esmailizadeh A, Wang S, Wu DD. Genomic and Phenotypic Analyses Reveal Mechanisms Underlying Homing Ability in Pigeon. Mol Biol Evol 2020; 37:134-148. [PMID: 31501895 DOI: 10.1093/molbev/msz208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | | | - Elahe Dehghani Tafti
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bahador Shojaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Narges Sotoudeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shu Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Kerpal C, Richert S, Storey JG, Pillai S, Liddell PA, Gust D, Mackenzie SR, Hore PJ, Timmel CR. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat Commun 2019; 10:3707. [PMID: 31420558 PMCID: PMC6697675 DOI: 10.1038/s41467-019-11655-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.
Collapse
Affiliation(s)
- Christian Kerpal
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jonathan G Storey
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Smitha Pillai
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Paul A Liddell
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Devens Gust
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Stuart R Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
3
|
Insight into shark magnetic field perception from empirical observations. Sci Rep 2017; 7:11042. [PMID: 28887553 PMCID: PMC5591188 DOI: 10.1038/s41598-017-11459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
Elasmobranch fishes are among a broad range of taxa believed to gain positional information and navigate using the earth’s magnetic field, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making significantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic field, with no difference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantified detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic field perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks.
Collapse
|
4
|
Xu J, Pan W, Zhang Y, Li Y, Wan G, Chen F, Sword GA, Pan W. Behavioral evidence for a magnetic sense in the oriental armyworm, Mythimna separata. Biol Open 2017; 6:340-347. [PMID: 28126710 PMCID: PMC5374402 DOI: 10.1242/bio.022954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress has been made in understanding the mechanisms underlying directional navigation in migratory insects, yet the magnetic compass involved has not been fully elucidated. Here we developed a flight simulation system to study the flight directionality of the migratory armyworm Mythimna separata in response to magnetic fields. Armyworm moths were exposed to either a 500 nT extreme weak magnetic field, 1.8 T strong magnetic field, or a deflecting magnetic field and subjected to tethered flight trials indoors in the dark. The moths were disoriented in the extreme weak magnetic field, with flight vectors that were more dispersed (variance=0.60) than in the geomagnetic field (variance=0.32). After exposure to a 1.8 T strong magnetic field, the mean flight vectors were shifted by about 105° in comparison with those in the geomagnetic field. In the deflecting magnetic field, the flight directions varied with the direction of the magnetic field, and also pointed to the same direction of the magnetic field. In the south-north magnetic field and the east-west field, the flight angles were determined to be 98.9° and 166.3°, respectively, and formed the included angles of 12.66° or 6.19° to the corresponding magnetic direction. The armyworm moths responded to the change of the intensity and direction of magnetic fields. Such results provide initial indications of the moth reliance on a magnetic compass. The findings support the hypothesis of a magnetic sense used for flight orientation in the armyworm Mythimna separata. Summary: Responses to changes in the intensity and direction of magnetic fields in the armyworm moth (Mythimna separata) indicate a reliance on a magnetic compass for flight orientation.
Collapse
Affiliation(s)
- Jingjing Xu
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,Department of Electrical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,Department of Electrical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchao Zhang
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,Department of Electrical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Mirabello G, Lenders JJM, Sommerdijk NAJM. Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 2016; 45:5085-106. [PMID: 27385627 DOI: 10.1039/c6cs00432f] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
6
|
Lenders JJM, Mirabello G, Sommerdijk NAJM. Bioinspired magnetite synthesis via solid precursor phases. Chem Sci 2016; 7:5624-5634. [PMID: 30034699 PMCID: PMC6021960 DOI: 10.1039/c6sc00523c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 12/15/2022] Open
Abstract
Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts.
Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms – without the need of high supersaturation levels – to accumulate significant quantities of mineral material at the desired place and time, where they can be molded and crystallized into the right morphology and structure. This strategy is also of interest in the field of bioinspired materials science, as it potentially enables the bottom-up creation of novel materials with equal or improved functionality as compared to Nature, in water and at ambient temperatures. Also for the biomineralization of magnetite (Fe3O4) such a strategy has been reported: ferrihydrite, a poorly crystalline iron oxide, has been identified as a precursor for the final magnetite phase in the magnetosomes of magnetotactic bacteria as well as in the outer layers of chiton teeth. In this perspective, we discuss the efforts of us and others to understand and tune the nucleation and growth of magnetite crystals to date, in aqueous, room-temperature syntheses and employing different solid precursor phases. The various examples demonstrate the importance of the precursor approach in controlling the different properties of magnetite nanoparticles.
Collapse
Affiliation(s)
- Jos J M Lenders
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Institute for Complex Molecular Systems , Eindhoven University of Technology , PO box 513 , 5600 MB Eindhoven , The Netherlands .
| | - Giulia Mirabello
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Institute for Complex Molecular Systems , Eindhoven University of Technology , PO box 513 , 5600 MB Eindhoven , The Netherlands .
| | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry , Centre for Multiscale Electron Microscopy , Department of Chemical Engineering and Chemistry , Institute for Complex Molecular Systems , Eindhoven University of Technology , PO box 513 , 5600 MB Eindhoven , The Netherlands .
| |
Collapse
|
7
|
Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B. Magnetic particle-mediated magnetoreception. J R Soc Interface 2015; 12:0499. [PMID: 26333810 PMCID: PMC4614459 DOI: 10.1098/rsif.2015.0499] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/12/2015] [Indexed: 11/12/2022] Open
Abstract
Behavioural studies underpin the weight of experimental evidence for the existence of a magnetic sense in animals. In contrast, studies aimed at understanding the mechanistic basis of magnetoreception by determining the anatomical location, structure and function of sensory cells have been inconclusive. In this review, studies attempting to demonstrate the existence of a magnetoreceptor based on the principles of the magnetite hypothesis are examined. Specific attention is given to the range of techniques, and main animal model systems that have been used in the search for magnetite particulates. Anatomical location/cell rarity and composition are identified as two key obstacles that must be addressed in order to make progress in locating and characterizing a magnetite-based magnetoreceptor cell. Avenues for further study are suggested, including the need for novel experimental, correlative, multimodal and multidisciplinary approaches. The aim of this review is to inspire new efforts towards understanding the cellular basis of magnetoreception in animals, which will in turn inform a new era of behavioural research based on first principles.
Collapse
Affiliation(s)
- Jeremy Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Alastair Boyd
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Michael House
- School of Physics, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Robert Woodward
- School of Physics, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Falko Mathes
- School of Earth and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gary Cowin
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
8
|
Kishkinev DA, Chernetsov NS. Magnetoreception systems in birds: A review of current research. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s2079086415010041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc Natl Acad Sci U S A 2014; 112:262-7. [PMID: 25535350 DOI: 10.1073/pnas.1407915112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells. Attempts to find these primary sensors have largely relied on the Prussian Blue stain that labels cells rich in ferric iron. This method has proved problematic as it has led investigators to conflate iron-rich macrophages with magnetoreceptors. An alternative approach developed by Eder et al. [Eder SH, et al. (2012) Proc Natl Acad Sci USA 109(30):12022-12027] is to identify candidate magnetoreceptive cells based on their magnetic moment. Here, we explore the utility of this method by undertaking a screen for magnetic cells in the pigeon. We report the identification of a small number of cells (1 in 476,000) with large magnetic moments (8-106 fAm(2)) from various tissues. The development of single-cell correlative light and electron microscopy (CLEM) coupled with electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) permitted subcellular analysis of magnetic cells. This revealed the presence of extracellular structures composed of iron, titanium, and chromium accounting for the magnetic properties of these cells. Application of single-cell CLEM to magnetic cells from the trout failed to identify any intracellular structures consistent with biogenically derived magnetite. Our work illustrates the need for new methods to test the magnetite hypothesis of magnetosensation.
Collapse
|
10
|
Affiliation(s)
- R. A. Holland
- School of Biological Sciences; Queen's University of Belfast; Belfast UK
| |
Collapse
|
11
|
Treiber CD, Salzer M, Breuss M, Ushakova L, Lauwers M, Edelman N, Keays DA. High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun Integr Biol 2013; 6:e24859. [PMID: 23940826 PMCID: PMC3738016 DOI: 10.4161/cib.24859] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022] Open
Abstract
The cells that are responsible for detecting magnetic fields in animals remain undiscovered. Previous studies have proposed that pigeons employ a magnetic sense system that consists of six bilateral patches of magnetite containing dendrites located in the rostral subepidermis of the upper beak. We have challenged this hypothesis arguing that clusters of iron-rich cells in this region are macrophages, not magnetosensitive neurons. Here we present additional data in support of this conclusion. We have undertaken high resolution anatomical mapping of iron-rich cells in the rostral upper beak of pigeons, excluding the possibility that a conserved six-loci magnetic sense system exists. In addition we have extended our immunohistochemical studies to a second cohort of pigeons, confirming that iron rich cells in the upper beak are positive for MHCII and CD44, which are expressed by macrophages. We argue that it is important to critically assess conclusions that have been made in the past, while keeping an open mind as the search for the magnetoreceptor continues.
Collapse
|
12
|
Holland RA, Helm B. A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 2013; 10:20121047. [PMID: 23389901 DOI: 10.1098/rsif.2012.1047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms by which migratory birds achieve their often spectacular navigational performance are still largely unclear, but perception of cues from the Earth's magnetic field is thought to play a role. Birds that possess migratory experience can use map-based navigation, which may involve a receptor that uses ferrimagnetic material for detecting gradients in the magnetic field. Such a mechanism can be experimentally disrupted by applying a strong magnetic pulse that re-magnetizes ferrimagnetic materials. In captivity, this treatment indeed affected bearings of adult but not of naive juvenile birds. However, field studies, which expose birds to various navigational cues, yielded mixed results. Supportive studies were difficult to interpret because they were conducted in spring when all age groups navigate back to breeding areas. The present study, therefore, applied a magnetic pulse treatment in autumn to naturally migrating, radio-tagged European robins. We found that, although overall bearings were seasonally correct, orientation of adult but not juvenile robins was compromised by a pulse. Pulsed adults that departed within 10 days of treatment failed to show significant orientation and deviated more from mean migration direction than adult controls and juveniles. Thus, our data give field-based support for a possible ferrimagnetic map-sense during bird migration.
Collapse
Affiliation(s)
- Richard A Holland
- Department for Migration and Immune-ecology, Max Planck Institute for Ornithology, Schlossallee 2, Radolfzell 78315, Germany.
| | | |
Collapse
|
13
|
Holland R, Filannino C, Gagliardo A. A magnetic pulse does not affect homing pigeon navigation: a GPS tracking experiment. J Exp Biol 2013; 216:2192-200. [DOI: 10.1242/jeb.083543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The cues by which homing pigeons are able to return to a home loft after displacement to unfamiliar release sites remain debated. A number of experiments in which migratory birds have been treated with a magnetic pulse have produced a disruption in their orientation, which argues that a ferrimagnetic sense is used for navigation in birds. One previous experiment has also indicated an effect of magnetic pulses on homing pigeon navigation, although with inconsistent results. Previous studies have shown that some magnetic-related information is transmitted by the trigeminal nerve to the brain in some bird species including the homing pigeon. The function of this information is still unclear. It has been suggested that this information is important for navigation. Previous studies with trigeminal nerve lesioned pigeons have clearly shown that the lack of trigeminally mediated information, even if magnetic, is not crucial for homing performance in homing pigeons. However, this result does not completely exclude the possibility that other ferrimagnetic receptors in the homing pigeon play role in navigation. Additionally, recent studies on homing pigeons suggested the existence of a ferrimagnetic sense in a novel location presumably located in the inner ear (lagena). In the current study, we tested whether any ferrimagnetic magnetoreceptors, irrespective of their location in the bird's head, are involved in pigeons' homing. To do this, we treated homing pigeons with a strong magnetic pulse before release, tracked birds with GPS-loggers and analyzed whether this treatment affected homing performance. In the single previous magnetic pulse experiment on homing pigeons only initial orientation at a release site was considered and the results were inconsistent.We observed no effect of the magnetic pulse at any of the sites used, either in initial orientation, homing performance, tortuosity or track efficiency, which does not support a role for the ferrimagnetic sense in homing pigeon navigation, at least not in this geographic area, where magnetic field variations are in the region of 200 nT intensity and 0.8° inclination.
Collapse
|
14
|
Wiltschko R, Wiltschko W. The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 199:89-98. [PMID: 23111859 PMCID: PMC3552369 DOI: 10.1007/s00359-012-0769-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/01/2022]
Abstract
Iron-rich structures have been described in the beak of homing pigeons, chickens and several species of migratory birds and interpreted as magnetoreceptors. Here, we will briefly review findings associated with these receptors that throw light on their nature, their function and their role in avian navigation. Electrophysiological recordings from the ophthalmic nerve, behavioral studies and a ZENK-study indicate that the trigeminal system, the nerves innervating the beak, mediate information on magnetic changes, with the electrophysiological study suggesting that these are changes in intensity. Behavioral studies support the involvement of magnetite and the trigeminal system in magnetoreception, but clearly show that the inclination compass normally used by birds represents a separate system. However, if this compass is disrupted by certain light conditions, migrating birds show 'fixed direction' responses to the magnetic field, which originate in the receptors in the beak. Together, these findings point out that there are magnetite-based magnetoreceptors located in the upper beak close to the skin. Their natural function appears to be recording magnetic intensity and thus providing one component of the multi-factorial 'navigational map' of birds.
Collapse
Affiliation(s)
- R Wiltschko
- FB Biowissenschaften, J.W.Goethe-Universität Frankfurt, Siesmayerstraße 70, 60054, Frankfurt a.M, Germany
| | | |
Collapse
|
15
|
Hsieh V, Jasanoff A. Bioengineered probes for molecular magnetic resonance imaging in the nervous system. ACS Chem Neurosci 2012; 3:593-602. [PMID: 22896803 DOI: 10.1021/cn300059r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 01/20/2023] Open
Abstract
The development of molecular imaging probes has changed the nature of neurobiological research. Some of the most notable successes have involved the use of biological engineering techniques for the creation of fluorescent protein derivatives for optical imaging, but recent work has also led to a number of bioengineered probes for magnetic resonance imaging (MRI), the preeminent technique for noninvasive investigation of brain structure and function. Molecular MRI agents are beginning to be applied for experiments in the nervous system, where they have the potential to bridge from molecular to systems or organismic levels of analysis. Compared with canonical synthetic small molecule agents, biomolecular or semibiosynthetic MRI contrast agents offer special advantages due to their amenability to molecular engineering approaches, their properties in some cases as catalysts, and their specificity in targeting and ligand binding. Here, we discuss an expanding list of instances where biological engineering techniques have aided in the design of MRI contrast agents and reporter systems, examining both advantages and limitations of these types of probes for studies in the central nervous system.
Collapse
Affiliation(s)
- Vivian Hsieh
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| | - Alan Jasanoff
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Hellinger J, Hoffmann KP. Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:593-605. [PMID: 22592858 DOI: 10.1007/s00359-012-0732-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we demonstrate the role of the trigeminal system in the perception process of different magnetic field parameters by heartbeat conditioning, i.e. a significantly longer interval between two consecutive heartbeats after magnetic stimulus onset in the salmonid fish Oncorhynchus mykiss. The electrocardiogram was recorded with subcutaneous silver wire electrodes in freely swimming fish. Inactivation of the ophthalmic branch of the trigeminal nerve by local anaesthesia revealed its role in the perception of intensity/inclination of the magnetic field by abolishing the conditioned response (CR). In contrast, experiments with 90° direction shifts clearly showed the normal conditioning effect during trigeminal inactivation. In experiments under red light and in darkness, CR occurred in case of both the intensity/inclination stimulation and 90° direction shifts, respectively. With regard to the data obtained, we propose the trigeminal system to perceive the intensity/inclination of the magnetic field in rainbow trouts and suggest the existence of another light-independent sensory structure that enables fish to detect the magnetic field direction.
Collapse
Affiliation(s)
- Jens Hellinger
- Lehrstuhl für Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
17
|
Multifunctional Merkel cells: Their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form. Med Hypotheses 2010; 75:162-8. [DOI: 10.1016/j.mehy.2010.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/20/2023]
|
18
|
Beason RC. Use of an Inclination Compass during Migratory Orientation by the Bobolink (Dolichonyx oryzivorus). Ethology 2010. [DOI: 10.1111/j.1439-0310.1989.tb00775.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wiltschko R, Stapput K, Thalau P, Wiltschko W. Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 2010; 7 Suppl 2:S163-77. [PMID: 19864263 PMCID: PMC2843996 DOI: 10.1098/rsif.2009.0367.focus] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/07/2009] [Indexed: 11/12/2022] Open
Abstract
This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under 'white' and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) 'Fixed direction' responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is 'fixed' in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, J.W.Goethe-Universität Frankfurt, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
20
|
Cadiou H, McNaughton PA. Avian magnetite-based magnetoreception: a physiologist's perspective. J R Soc Interface 2010; 7 Suppl 2:S193-205. [PMID: 20106875 DOI: 10.1098/rsif.2009.0423.focus] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is now well established that animals use the Earth's magnetic field to perform long-distance migration and other navigational tasks. However, the transduction mechanisms that allow the conversion of magnetic field variations into an electric signal by specialized sensory cells remain largely unknown. Among the species that have been shown to sense Earth-strength magnetic fields, birds have been a model of choice since behavioural tests show that their direction-finding abilities are strongly influenced by magnetic fields. Magnetite, a ferromagnetic mineral, has been found in a wide range of organisms, from bacteria to vertebrates. In birds, both superparamagnetic (SPM) and single-domain magnetite have been found to be associated with the trigeminal nerve. Electrophysiological recordings from cells in the trigeminal ganglion have shown an increase in action potential firing in response to magnetic field changes. More recently, histological evidence has demonstrated the presence of SPM magnetite in the subcutis of the pigeon's upper beak. The aims of the present review are to review the evidence for a magnetite-based mechanism in birds and to introduce physiological concepts in order to refine the proposed models.
Collapse
Affiliation(s)
- Hervé Cadiou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
21
|
Jensen KK. Light-dependent orientation responses in animals can be explained by a model of compass cue integration. J Theor Biol 2010; 262:129-41. [DOI: 10.1016/j.jtbi.2009.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 09/02/2009] [Accepted: 09/08/2009] [Indexed: 11/29/2022]
|
22
|
Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof HJ. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Front Zool 2009; 6:25. [PMID: 19852792 PMCID: PMC2774300 DOI: 10.1186/1742-9994-6-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 10/23/2009] [Indexed: 11/14/2022] Open
Abstract
Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz) was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results indicate that zebra finches use a receptor that bases on radical pair processes for sensing the direction of the earth magnetic field in this short distance orientation behavior.
Collapse
Affiliation(s)
- Nina Keary
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Tim Ruploh
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Joe Voss
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Peter Thalau
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Roswitha Wiltschko
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, J. W. Goethe-Universität, Siesmayerstr. 70, D-60054 Frankfurt/Main, Germany
| | - Hans-Joachim Bischof
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
23
|
Wiltschko R, Schiffner I, Wiltschko W. A strong magnetic anomaly affects pigeon navigation. J Exp Biol 2009; 212:2983-90. [PMID: 19717681 DOI: 10.1242/jeb.032722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Pigeons were released in a strong magnetic anomaly with fast changes in intensity and gradients directions, about 60 km from their loft, and, for comparison, at the border of the anomaly and at a control site. The vanishing bearings were found to be closely related to the home direction, but unrelated to the local gradient directions. The vector lengths and the vanishing intervals, however, were significantly correlated with the maximum difference in intensity within a 2.5 km radius around the release site. This correlation was negative for the vector lengths and positive for the vanishing intervals,indicating that steep local gradients increase scatter between pigeons and delay their departure. These findings suggest that an irregular, fast changing magnetic field as found in the anomaly leads to confusion during the navigational processes. This, in turn, implies that pigeons can sense the respective changes in magnetic intensity. Magnetic cues seem to be included in the normal navigational processes that determine the departure direction.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- Fachbereich Biowissenschaften der J. W. Goethe-Universität Frankfurt, Siesmayerstraße 70, D-60054 Frankfurt am Main, Germany
| | - Ingo Schiffner
- Fachbereich Biowissenschaften der J. W. Goethe-Universität Frankfurt, Siesmayerstraße 70, D-60054 Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- Fachbereich Biowissenschaften der J. W. Goethe-Universität Frankfurt, Siesmayerstraße 70, D-60054 Frankfurt am Main, Germany
| |
Collapse
|
24
|
McKay BE, Persinger MA. COMPLEX MAGNETIC FIELDS ENABLE STATIC MAGNETIC FIELD CUE USE FOR RATS IN RADIAL MAZE TASKS. Int J Neurosci 2009; 115:625-48. [PMID: 15823929 DOI: 10.1080/00207450590523945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Male Wistar rats were trained in an eight-arm radial maze task (two sessions per day, delayed-non-matching-to-sample) that included an intramaze static magnetic field "cue" (185 microT) specific to the entrance point of one of the arms. Rats were exposed daily for 60 min to a complex magnetic field waveform (theta-burst pattern, 200-500 nT), presented with several different interstimulus intervals (ISIs), either immediately following training sessions or immediately preceding testing sessions. Application of the theta-burst stimulus with a 4000 ms ISI significantly improved the rats' memory for the arm of the radial maze whose position was indicated by the presence of a static magnetic field cue. Reference memory errors were homogeneously distributed among all eight arms of the maze for sham-exposed rats, and among the other seven arms of the maze for complex magnetic field-treated rats. These results suggest that static magnetic field cues may be salient orienting cues even in a microenvironment such as a radial maze, but their use as a cue during maze learning in rats is dependent on whole-body application of a specific time-varying complex magnetic field.
Collapse
Affiliation(s)
- B E McKay
- Behavioral Neuroscience Laboratory, Laurentian University, Sudbury, Ontario, Canada
| | | |
Collapse
|
25
|
Wiltschko W, Munro U, Ford H, Wiltschko R. Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc Biol Sci 2009; 276:2227-32. [PMID: 19324756 DOI: 10.1098/rspb.2009.0050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Migratory silvereyes treated with a strong magnetic pulse shift their headings by approximately 90 degrees , indicating an involvement of magnetite-based receptors in the orientation process. Structures containing superparamagnetic magnetite have been described in the inner skin at the edges of the upper beak of birds, while single-domain magnetite particles are indicated in the nasal cavity. To test which of these structures mediate the pulse effect, we subjected migratory silvereyes, Zosterops l. lateralis, to a strong pulse, and then tested their orientation, while the skin of their upper beak was anaesthetized with a local anaesthetic to temporarily deactivate the magnetite-containing structures there. After the pulse, birds without anaesthesia showed the typical shift, whereas when their beak was anaesthetized, they maintained their original headings. This indicates that the superparamagnetic magnetite-containing structures in the skin of the upper beak are most likely the magnetoreceptors that cause the change in headings observed after pulse treatment.
Collapse
Affiliation(s)
- Wolfgang Wiltschko
- Fachbereich Biowissenschaften der J.W. Goethe-Universität, 60054 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
26
|
Lohmann KJ. Geomagnetic field detection by the western Atlantic spiny lobster,Panulirus argus. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/10236248509378629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Wang Y, Pan Y, Parsons S, Walker M, Zhang S. Bats respond to polarity of a magnetic field. Proc Biol Sci 2008; 274:2901-5. [PMID: 17848365 PMCID: PMC2288691 DOI: 10.1098/rspb.2007.0904] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bats have been shown to use information from the Earth's magnetic field during orientation. However, the mechanism underlying this ability remains unknown. In this study we investigated whether bats possess a polarity- or inclination-based compass that could be used in orientation. We monitored the hanging position of adult Nyctalus plancyi in the laboratory in the presence of an induced magnetic field of twice Earth-strength. When under the influence of a normally aligned induced field the bats showed a significant preference for hanging at the northern end of their roosting basket. When the vertical component of the field was reversed, the bats remained at the northern end of the basket. However, when the horizontal component of the field was reversed, the bats changed their positions and hung at the southern end of the basket. Based on these results, we conclude that N. plancyi, unlike all other non-mammalian vertebrates tested to date, uses a polarity-based compass during orientation in the roost, and that the same compass is also likely to underlie bats' long-distance navigation abilities.
Collapse
Affiliation(s)
- Yinan Wang
- Institute of Zoology, Chinese Academy of SciencesBeijing 100080, China
- Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
- Graduate School of the Chinese Academy of SciencesBeijing 100039, China
| | - Yongxin Pan
- Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing 100029, China
| | - Stuart Parsons
- School of Biological Sciences, University of AucklandPrivate Bag 92019, Auckland, New Zealand
| | - Michael Walker
- School of Biological Sciences, University of AucklandPrivate Bag 92019, Auckland, New Zealand
| | - Shuyi Zhang
- School of Life Science, East China Normal UniversityShanghai 200062, China
- Author for correspondence ()
| |
Collapse
|
28
|
Thalau P, Holtkamp-Rötzler E, Fleissner G, Wiltschko W. Homing pigeons (Columba livia f. domestica) can use magnetic cues for locating food. Naturwissenschaften 2007; 94:813-9. [PMID: 17492419 DOI: 10.1007/s00114-007-0259-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 03/13/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
An experimental group of homing pigeons (Columba livia f. domestica) learned to associate food with a magnetic anomaly produced by bar magnets that were fixed to the bowl in which they received their daily food ration in their home loft; the control group lacked this experience. Both groups were trained to search for two hidden food depots in a rectangular sand-filled arena without obvious visual cues; for the experimental birds, these depots were also marked with three 1.15 x 10(6) muT bar magnets. During the tests, there were two food depots, one marked with the magnets, the other unmarked; their position within the arena was changed from test to test. The experimental birds searched within 10 cm of the magnetically marked depot in 49% of the test sessions, whereas the control birds searched there in only 11% of the sessions. Both groups searched near the control depot in 11 and 13% of the sessions, respectively. The significant preference of the magnetically marked food depot by the experimental birds shows that homing pigeons cannot only detect a magnetic anomaly but can also use it as a cue for locating hidden food in an open arena.
Collapse
Affiliation(s)
- Peter Thalau
- Fachbereich Biowissenschaften, J.W.Goethe-Universität Frankfurt, Siesmayerstr. 70, 61231 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
29
|
Solov'yov IA, Greiner W. Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophys J 2007; 93:1493-509. [PMID: 17496012 PMCID: PMC1948037 DOI: 10.1529/biophysj.107.105098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing the magnetic field has been established as an essential part of navigation and orientation of various animals for many years. Only recently has the first detailed receptor concept for magnetoreception been published based on histological and physical results. The considered mechanism involves two types of iron minerals (magnetite and maghemite) that were found in subcellular compartments within sensory dendrites of the upper beak of several bird species. But so far a quantitative evaluation of the proposed receptor is missing. In this article, we develop a theoretical model to quantitatively and qualitatively describe the magnetic field effects among particles containing iron minerals. The analysis of forces acting between these subcellular compartments shows a particular dependence on the orientation of the external magnetic field. The iron minerals in the beak are found in the form of crystalline maghemite platelets and assemblies of magnetite nanoparticles. We demonstrate that the pull or push to the magnetite assemblies, which are connected to the cell membrane, may reach a value of 0.2 pN -- sufficient to excite specific mechanoreceptive membrane channels in the nerve cell. The theoretical analysis of the assumed magnetoreceptor system in the avian beak skin clearly shows that it might indeed be a sensitive biological magnetometer providing an essential part of the magnetic map for navigation.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
30
|
Solov'yov IA, Chandler DE, Schulten K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys J 2007; 92:2711-26. [PMID: 17259272 PMCID: PMC1831705 DOI: 10.1529/biophysj.106.097139] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/04/2007] [Indexed: 11/18/2022] Open
Abstract
The ability of some animals, most notably migratory birds, to sense magnetic fields is still poorly understood. It has been suggested that this "magnetic sense" may be mediated by the blue light receptor protein cryptochrome, which is known to be localized in the retinas of migratory birds. Cryptochromes are a class of photoreceptor signaling proteins that are found in a wide variety of organisms and that primarily perform regulatory functions, such as the entrainment of circadian rhythm in mammals and the inhibition of hypocotyl growth in plants. Recent experiments have shown that the activity of cryptochrome-1 in Arabidopsis thaliana is enhanced by the presence of a weak external magnetic field, confirming the ability of cryptochrome to mediate magnetic field responses. Cryptochrome's signaling is tied to the photoreduction of an internally bound chromophore, flavin adenine dinucleotide. The spin chemistry of this photoreduction process, which involves electron transfer from a chain of three tryptophans, can be modulated by the presence of a magnetic field in an effect known as the radical-pair mechanism. Here we present and analyze a model of the flavin-adenine-dinucleotide-tryptophan chain system that incorporates realistic hyperfine coupling constants and reaction rate constants. Our calculations show that the radical-pair mechanism in cryptochrome can produce an increase in the protein's signaling activity of approximately 10% for magnetic fields on the order of 5 G, which is consistent with experimental results. These calculations, in view of the similarity between bird and plant cryptochromes, provide further support for a cryptochrome-based model of avian magnetoreception.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
31
|
Wiltschko R, Stapput K, Ritz T, Thalau P, Wiltschko W. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP JOURNAL 2007; 1:41-8. [PMID: 19404459 DOI: 10.2976/1.2714294/10.2976/1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/08/2007] [Indexed: 11/19/2022]
Abstract
Migratory orientation in birds involves an inclination compass based on radical-pair processes. Under certain light regimes, however, "fixed-direction" responses are observed that do not undergo the seasonal change between spring and autumn typical for migratory orientation. To identify the underlying transduction mechanisms, we analyzed a fixed-direction response under a combination of 502 nm turquoise and 590 nm yellow light, with migratory orientation under 565 nm green light serving as the control. High-frequency fields, diagnostic for a radical-pair mechanism, disrupted migratory orientation without affecting fixed-direction responses. Local anaesthesia of the upper beak where magnetite is found in birds, in contrast, disrupted the fixed-direction response without affecting migratory orientation. The two types of responses are thus based on different physical principles, with the compass response based on a radical pair mechanism and the fixed-direction responses probably originating in magnetite-based receptors in the upper beak. Directional input from these receptors seems to affect the behavior only when the regular inclination compass does not work properly. Evolutionary considerations suggest that magnetite-based receptors may represent an ancient mechanism that, in birds, has been replaced by the modern inclination compass based on radical-pair processes now used for directional orientation.
Collapse
|
32
|
Freake MJ, Muheim R, Phillips JB. Magnetic maps in animals: a theory comes of age? QUARTERLY REVIEW OF BIOLOGY 2007; 81:327-47. [PMID: 17240727 DOI: 10.1086/511528] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The magnetic map hypothesis proposes that animals can use spatial gradients in the Earth's magnetic field to help determine geographic location. This ability would permit true navigation--reaching a goal from an entirely unfamiliar site with no goal-emanating cues to assist. It is a highly contentious hypothesis since the geomagnetic field fluctuates in time and spatial gradients may be disturbed by geological anomalies. Nevertheless, a substantial body of evidence offers support for the hypothesis. Much of the evidence has been indirect in nature, such as the identification of avian magnetoreceptor mechanisms with functional properties that are consistent with those of a putative map detector or the patterns of orientation of animals exposed to temporal and/or spatial geomagnetic anomalies. However; the most important advances have been made in conducting direct tests of the magnetic map hypothesis by exposing experienced migrants to specific geomagnetic values representing simulated displacements. Appropriate shifts in the direction of orientation, which compensate for the simulated displacements, have been observed in newts, birds, sea turtles, and lobsters, and provide the strongest evidence to date for magnetic map navigation. Careful experimental design and interpretation of orientation data will be essential in the future to determine which components of the magnetic field are used to derive geographic position.
Collapse
Affiliation(s)
- Michael J Freake
- Department of Natural Sciences and Mathematics, Lee University Cleveland, Tennessee 37311, USA.
| | | | | |
Collapse
|
33
|
Wiltschko W, Ford H, Munro U, Winklhofer M, Wiltschko R. Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:515-22. [PMID: 17318656 DOI: 10.1007/s00359-006-0207-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 12/27/2006] [Accepted: 12/28/2006] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that a magnetic pulse affected the orientation of passerine migrants for a short period only: for about 3 days, the birds' headings were deflected eastward from their migratory direction, followed by a phase of disorientation, with the birds returning to their normal migratory direction after about 10 days. To analyze the processes involved in the fading of the pulse effect, migratory birds were subjected to a second, identical pulse 16 days after the first pulse, when the effect of that pulse had disappeared. This second pulse affected the birds' behavior in a different way: it caused an increase in the scatter of the birds' headings for 2 days, after which the birds showed normal migratory orientation again. These observations are at variance with the hypothesis that the magnetite-based receptor had been fully restored, but also with the hypothesis that the input of this receptor was ignored. They rather indicate dynamic processes, which include changes in the affected receptor, but at the same time cause the birds to weigh and rate the altered input differently. The bearing of these findings on the question of whether single domains or superparamagnetic particles are involved in the magnetite-based receptors is discussed.
Collapse
Affiliation(s)
- Wolfgang Wiltschko
- Fachbereich Biowissenschaften der J.W. Goethe-Universität, Siesmayerstrasse 70, D-60054, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
34
|
Abstract
OBJECTIVES To study the relation between the risk of acute myocardial infarctions (AMI) and meteorological variables and the geomagnetic field, and to make a literature survey of the relation between environmental variables and the occurrence of disease. STUDY DESIGN Register study and literature search. METHODS Register data on AMI were analysed together with data on temperature, relative humidity, barometric pressure, the Arctic Oscillation, the earth's magnetic field, and changes in these variables. A PubMed search for studies on environmental variables and the occurrence of other diseases was done. RESULTS There was no correlation between "static" weather variables and the number of AMIs. A temperature rise of one degree C was associated with an increase in the number of non-fatal AMIs by 1.5%. There was a strong correlation between the AO and the number of AMIs--a one unit increase in AO caused an increase in the number of surviving AMIs by 3.4%, fatal AMIs by 5.1% and the number of sudden cardiac deaths by 8.3%. There was no association between the geomagnetic field and the number of AMIs. The literature study revealed that several other disease states were related to extremes of or changes in weather situations. CONCLUSIONS A change in weather, rather than weather extremes, was associated with an increase in the number of AMIs. The environment surrounding us is capable of causing both disease and symptoms. The triggering mechanisms are not known, though.
Collapse
Affiliation(s)
- Torbjörn Messner
- Department of Internal Medicine, Kiruna District Hospital, Sweden.
| |
Collapse
|
35
|
Abstract
The vector of the geomagnetic field provides animals with directional information, while intensity and/or inclination provide them with positional information. For magnetoreception, two hypotheses are currently discussed: one proposing magnetite-based mechanisms, the other suggesting radical pair processes involving photopigments. Behavioral studies indicate that birds use both mechanisms: they responded to a short, strong magnetic pulse designed to change the magnetization of magnetite particles, while, at the same time, their orientation was found to be light-dependent and could be disrupted by high-frequency magnetic fields in the MHz range, which is diagnostic for radical pair processes. Details of these findings, together with electrophysiological and histological studies, suggest that, in birds, a radical pair mechanism located in the right eye provides directional information for a compass, while a magnetite-based mechanism located in the upper beak records magnetic intensity, thus providing positional information. The mechanisms of magnetoreception in other animals have not yet been analyzed in detail.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- Fachbereich Biowissenschaften der J.W. Goethe-Universität Frankfurt am Main, Germany
| | | |
Collapse
|
36
|
Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:675-93. [PMID: 15886990 DOI: 10.1007/s00359-005-0627-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 03/04/2005] [Accepted: 03/05/2005] [Indexed: 10/25/2022]
Abstract
Animals use the geomagnetic field in many ways: the magnetic vector provides a compass; magnetic intensity and/or inclination play a role as a component of the navigational 'map', and magnetic conditions of certain regions act as 'sign posts' or triggers, eliciting specific responses. A magnetic compass is widespread among animals, magnetic navigation is indicated e.g. in birds, marine turtles and spiny lobsters and the use of magnetic 'sign posts' has been described for birds and marine turtles. For magnetoreception, two hypotheses are currently discussed, one proposing a chemical compass based on a radical pair mechanism, the other postulating processes involving magnetite particles. The available evidence suggests that birds use both mechanisms, with the radical pair mechanism in the right eye providing directional information and a magnetite-based mechanism in the upper beak providing information on position as component of the 'map'. Behavioral data from other animals indicate a light-dependent compass probably based on a radical pair mechanism in amphibians and a possibly magnetite-based mechanism in mammals. Histological and electrophysiological data suggest a magnetite-based mechanism in the nasal cavities of salmonid fish. Little is known about the parts of the brain where the respective information is processed.
Collapse
Affiliation(s)
- Wolfgang Wiltschko
- Zoologisches Institut der J.W.Goethe-Universität Frankfurt, Siesmayerstr. 70, 60054 Frankfurt am Main, Germany.
| | | |
Collapse
|
37
|
Katz E, Lioubashevski O, Willner I. Magnetic Field Effects on Cytochrome c-Mediated Bioelectrocatalytic Transformations. J Am Chem Soc 2004; 126:11088-92. [PMID: 15339195 DOI: 10.1021/ja048699m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Constant magnetic fields affect many biological transformations, but we lack mechanistic understanding of the processes. The magnetohydrodynamic effect may account for the enhancement of bioelectrocatalytic transformations at interfaces. This is exemplified by the bioelectrocatalyzed cytochrome c-mediated reduction of oxygen and oxidation of lactate in the presence of cytochrome oxidase and lactate dehydrogenase, respectively. We observe significant magnetic field effects on the rates of bioelectrochemical transformations (ca. 3-fold increase) at the functionalized interfaces at field strengths, B, up to 1 T. We show that the limiting current is proportional to the B(1/3)C*(4/3), where C is the concentration of electroactive species. The results may have important implications on the understanding of the magnetic field effects on natural biocatalytic processes at membranes and on the enhancement of biotransformations in biotechnology.
Collapse
Affiliation(s)
- Eugenii Katz
- Contribution from the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
38
|
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004; 429:177-80. [PMID: 15141211 DOI: 10.1038/nature02534] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 03/30/2004] [Indexed: 11/08/2022]
Abstract
Migratory birds are known to use the geomagnetic field as a source of compass information. There are two competing hypotheses for the primary process underlying the avian magnetic compass, one involving magnetite, the other a magnetically sensitive chemical reaction. Here we show that oscillating magnetic fields disrupt the magnetic orientation behaviour of migratory birds. Robins were disoriented when exposed to a vertically aligned broadband (0.1-10 MHz) or a single-frequency (7-MHz) field in addition to the geomagnetic field. Moreover, in the 7-MHz oscillating field, this effect depended on the angle between the oscillating and the geomagnetic fields. The birds exhibited seasonally appropriate migratory orientation when the oscillating field was parallel to the geomagnetic field, but were disoriented when it was presented at a 24 degrees or 48 degrees angle. These results are consistent with a resonance effect on singlet-triplet transitions and suggest a magnetic compass based on a radical-pair mechanism.
Collapse
Affiliation(s)
- Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA.
| | | | | | | | | |
Collapse
|
39
|
Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 2003; 458:350-60. [PMID: 12619070 DOI: 10.1002/cne.10579] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the use of different light and electron microscopic methods, we investigated the subcellular organization of afferent trigeminal terminals in the upper beak of the homing pigeon, Columba livia, which are about 5 microm in diameter and contain superparamagnetic magnetite (SPM) crystals. The SPM nanocrystals are assembled in clusters (diameter, approximately 1-2 microm). About 10 to 15 of these clusters occur inside one nerve terminal, arranged along the cell membrane. Each SPM cluster is embedded in a solid fibrous cup, open towards the cell surface, to which the cluster adheres by delicate fiber strands. In addition to the SPM clusters, a second inorganic iron compound has been identified: noncrystalline platelets of iron phosphate (about 500 nm wide and long and maximally 100 nm thick) that occur along a fibrous core of the terminal. The anatomic features suggested that these nerve endings could detect small intensity changes of the geomagnetic field. Such stimuli can induce deformations of the SPM clusters, which could be transduced into primary receptor potentials by mechanosensitive membrane receptor channels. The subepidermal fat cells surrounding the nerve endings prevent the inside from external mechanical stimuli. These structural findings corresponded to conclusions inferred from rock magnetic measurements, theoretical calculations, model experiments, and behavioral data, which also matched previous electrophysiologic recordings from migratory birds.
Collapse
Affiliation(s)
- Gerta Fleissner
- Zoologisches Institut, J. W. Goethe-Universität Frankfurt am Main, Siesmayerstrasse 70, D-60054 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wiltschko W, Munro U, Wiltschko R, Kirschvink JL. Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J Exp Biol 2002; 205:3031-7. [PMID: 12200406 DOI: 10.1242/jeb.205.19.3031] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
To test the hypothesis that single domain magnetite is involved in magnetoreception, we treated Australian silvereyes Zosterops l. lateralis with a strong, brief pulse designed to alter the magnetization of single domain particles. This pulse was administered in the presence of a 1 mT biasing field, either parallel to the direction of the biasing field (PAR group) or antiparallel (ANTI group). In the case of magnetoreceptors based on freely moving single domain particles, the PAR treatment should have little effect, whereas the ANTI treatment should cause remagnetization of the magnetite particles involved in a receptor and could produce a maximum change in that receptor's output for some receptor configurations. Migratory orientation was used as a criterion to assess the effect on the receptor. Before treatment, both groups preferred their normal northerly migratory direction. Exposure to the biasing field alone did not affect their behavior. Treatment with the pulse in the presence of the biasing field caused both the PAR and the ANTI birds to show an axial preference for the east—west axis, with no difference between the two groups. Although these results are in accordance with magnetite-based magnetoreceptors playing a role in migratory orientation, they do not support the hypothesis that single domains in polarity-sensitive receptors are free to move through all solid angles. Possible interpretations, including other arrangements of single domains and superparamagnetic crystals, are discussed.
Collapse
Affiliation(s)
- Wolfgang Wiltschko
- Fachbereich Biologie und Informatik, Zoologie, J. W. Goethe-Universität Frankfurt am Main, Siesmayerstrasse 70, D 60054 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
41
|
Williams MN, Wild JM. Trigeminally innervated iron-containing structures in the beak of homing pigeons, and other birds. Brain Res 2001; 889:243-6. [PMID: 11166712 DOI: 10.1016/s0006-8993(00)03114-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ophthalmic nerve in the upper beak was labelled with cholera toxin B-chain, and iron was identified using the Prussian Blue reaction. Iron deposits were found in the caudal part of the beak, and some were concentrated in cells that clustered in encapsulated structures densely innervated by ophthalmic nerve fibres. Such structures could form the anatomical basis of a type of mechanoreceptor that transmits magnetic sense information to the brain.
Collapse
Affiliation(s)
- M N Williams
- Division of Anatomy, School of Medical and Health Sciences, University of Auckland, 92019, Auckland, New Zealand
| | | |
Collapse
|
42
|
Weaver JC, Vaughan TE, Astumian RD. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 2000; 405:707-9. [PMID: 10864331 DOI: 10.1038/35015128] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is evidence that animals can detect small changes in the Earth's magnetic field by two distinct mechanisms, one using the mineral magnetite as the primary sensor and one using magnetically sensitive chemical reactions. Magnetite responds by physically twisting, or even reorienting the whole organism in the case of some bacteria, but the magnetic dipoles of individual molecules are too small to respond in the same way. Here we assess whether reactions whose rates are affected by the orientation of reactants in magnetic fields could form the basis of a biological compass. We use a general model, incorporating biological components and design criteria, to calculate realistic constraints for such a compass. This model compares a chemical signal produced owing to magnetic field effects with stochastic noise and with changes due to physiological temperature variation. Our analysis shows that a chemically based biological compass is feasible with its size, for any given detection limit, being dependent on the magnetic sensitivity of the rate constant of the chemical reaction.
Collapse
Affiliation(s)
- J C Weaver
- Harvard-M.I.T. Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
43
|
Abstract
Diverse vertebrate animals can sense the earth's magnetic field, but little is known about the physiological mechanisms that underlie this sensory ability. Three major hypotheses of magnetic-field detection have been proposed. Electrosensitive marine fish might sense the geomagnetic field through electromagnetic induction, although definitive evidence that such fish actually do so has not yet been obtained. Studies with other vertebrates have provided evidence consistent with two different mechanisms: biogenic magnetite and chemical reactions that are modulated by magnetic fields. Despite recent progress, however, primary magnetoreceptors have not yet been identified unambiguously in any animal.
Collapse
Affiliation(s)
- K J Lohmann
- Dept of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
44
|
Deutschlander ME, Phillips JB, Borland SC. The case for light-dependent magnetic orientation in animals. J Exp Biol 1999; 202 (Pt 8):891-908. [PMID: 10085262 DOI: 10.1242/jeb.202.8.891] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light-dependent models of magnetoreception have been proposed which involve an interaction between the magnetic field and either magnetite particles located within a photoreceptor or excited states of photopigment molecules. Consistent with a photoreceptor-based magnetic compass mechanism, magnetic orientation responses in salamanders, flies and birds have been shown to be affected by the wavelength of light. In birds and flies, it is unclear whether the effects of light on magnetic orientation are due to a direct effect on a magnetoreception system or to a nonspecific (e.g. motivational) effect of light on orientation behavior. Evidence from shoreward-orienting salamanders, however, demonstrates that salamanders perceive a 90 degrees counterclockwise shift in the direction of the magnetic field under long-wavelength (>=500 nm) light. A simple physiological model based on the antagonistic interaction between two magnetically sensitive spectral mechanisms suggests one possible way in which the wavelength-dependent effects of light on the salamander's magnetic compass response might arise. Assuming that the wavelength-dependent characteristics of the avian magnetic response can be attributed to an underlying magnetoreception system, we discuss several hypotheses attempting to resolve the differences observed in the wavelength-dependent effects of light on magnetic orientation in birds and salamanders. By considering the evidence in the context of photoreceptor- and non-photoreceptor-based mechanisms for magnetoreception, we hope to encourage future studies designed to distinguish between alternative hypotheses concerning the influence of light on magnetoreception.
Collapse
Affiliation(s)
- ME Deutschlander
- Indiana University, Department of Biology (and the Center for the Integrative Study of Animal Behavior), Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
45
|
Wiltschko R, Wiltschko W. Das Orientierungssystem der Vögel I. Kompaßmechanismen. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/bf02462086] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Ptitsyna N, Villoresi G, Dorman L, Iucci N, Tyasto MI. Natural and man-made low-frequency magnetic fields as a potential health hazard. ACTA ACUST UNITED AC 1998. [DOI: 10.3367/ufnr.0168.199807d.0767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
47
|
Magnetic particles in the lateral line of the Atlantic salmon (
Salmo salar
L.). Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1990.0145] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetization measurements with a superconducting quantum inference device magnetometer of various tissues of the Atlantic salmon (
Salmo salar
L.) have shown the presence of magnetic material associated with the lateral line. The data suggest that the material is magnetite and of a size suitable for magnetoreception. Magnetic particles were isolated from the lateral line and nerve tissue, which have characteristics suggesting that the material is magnetite and of biogenic origin. The magnetic particles and their association with the lateral line are discussed in relation to their possible role in allowing the salmon to orientate with respect to the geomagnetic field during the high-seas phase of their migration.
Collapse
|
48
|
|
49
|
Abstract
This article surveys three major areas of biomagnetic research: (a) the magneto-orientation effect; (b) the role of the geomagnetic field in bird orientation and navigation; and (c) the biological effects of extremely low-frequency magnetic fields. The magneto-orientation effect is caused by diamagnetic anisotropy of highly ordered biological structures, such as visual photoreceptor and chloroplast membranes, in a homogeneous magnetic field of about 10 kG. While it is not possible to orient the individual constituent molecules with such a field because of thermal fluctuation, these ordered structures can be oriented as a whole by virtue of summing the anisotropy over a large number of mutually oriented molecules. While the magneto-orientation effect seems to require the use of unphysiologically strong magnetic fields, certain birds apparently have highly sensitive sensors to detect the geomagnetic field for the purpose of orientation and navigation. However, the advances in this latter field were made mainly in the behavioral studies; the magneto-sensors the the neural mechanisms remain elusive. A number of candidates of the sensors are evaluated. We suggest that pecten oculi, which is unique to avian eyes, should not be overlooked for its possible role as a magneto-sensor based on the magneto-orientation effect. Birds primarily use a static (DC) magnetic field for orientation, but recent investigations indicate that weak alternating (AC) magnetic fields with extremely low frequency (ELF) may have hazardous health effects. Such reports are often received with skepticism, because the effects usually involve magnetic energies that are less than the kT energy. However, some of the in vitro studies yield experimental results that are too significant to be ignored. Here, we propose an argument to explain why low-level magnetic fields can be detected without being overshadowed by thermal noises. Relevance of biomagnetic research to the development of biosensors and novel computational paradigms is also discussed.
Collapse
Affiliation(s)
- F T Hong
- Department of Physiology, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
50
|
Affiliation(s)
- K P Able
- Department of Biology, State University of New York, Albany 12222
| |
Collapse
|