1
|
Yun SD, Scott E, Chang JY, Bahramimoghaddam H, Lynn M, Lantz C, Russell DH, Laganowsky A. Capturing RAS oligomerization on a membrane. Proc Natl Acad Sci U S A 2024; 121:e2405986121. [PMID: 39145928 PMCID: PMC11348296 DOI: 10.1073/pnas.2405986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.
Collapse
Affiliation(s)
- Sangho D. Yun
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | | | - Michael Lynn
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| |
Collapse
|
2
|
Smith SF, Islam AFMT, Alimukhamedov S, Weiss ET, Charest PG. Molecular determinants of Ras-mTORC2 signaling. J Biol Chem 2024; 300:107423. [PMID: 38815864 PMCID: PMC11255897 DOI: 10.1016/j.jbc.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Collapse
Affiliation(s)
- Stephen F Smith
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - A F M Tariqul Islam
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Ethan T Weiss
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Pascale G Charest
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA; University of Arizona Cancer Center, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Zhou C, Li J, Sun X, Zhao L, Zhan H, Liang H, Fang P, Zhang T, He Q, Du J, Zeng H. Targeting HMGCS1 restores chemotherapy sensitivity in acute myeloid leukemia. BLOOD SCIENCE 2024; 6:e00192. [PMID: 38994525 PMCID: PMC11239175 DOI: 10.1097/bs9.0000000000000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 07/13/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common hematological malignancy with overall poor prognosis. Exploring novel targets is urgent and necessary to improve the clinical outcome of relapsed and refractory (RR) AML patients. Through clinical specimens, animal models and cell-level studies, we explored the specific mechanism of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1) in AML and the mechanism of targeting HMGCS1 to attenuate cell proliferation, increase chemotherapy sensitivity and improve the occurrence and development of AML. Here, we reveal that HMGCS1 is overexpressed in RR patients and negatively related to overall survival (OS). Knocking out HMGCS1 in AML cells attenuated cell proliferation and increased chemotherapy sensitivity, while stable overexpression of HMGCS1 had the opposite effects. Mechanistically, we identified that knockout of HMGCS1 suppressed mitogen-activated protein kinase (MAPK) pathway activity, while overexpression of HMGCS1 could remarkably enhance the pathway. U0126, a MEK1 inhibitor, offset the effects of HMGCS1 overexpression, indicating that HMGCS1 promotes RR AML through the MAPK pathway. Further, we verified that hymeglusin, a specific inhibitor of HMGCS1, decreases cell growth both in AML cell lines and primary bone marrow cells of AML patients. Furthermore, combination of hymeglusin and the common chemotherapeutic drug cytarabine and adriamycin (ADR) had synergistic toxic effects on AML cells. Our study demonstrates the important role of HMGCS1 in AML, and targeting this protein is promising for the treatment of RR AML.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jue Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaofan Sun
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tuo Zhang
- Genomic Core, Weill Cornell Medical College, New York, NY 10021, USA
| | - Qiongzhi He
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
4
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Liu C, Jiao B, Wang P, Zhang B, Gao J, Li D, Xie X, Yao Y, Yan L, Qin Z, Liu P, Ren R. GOLGA7 is essential for NRAS trafficking from the Golgi to the plasma membrane but not for its palmitoylation. Cell Commun Signal 2024; 22:98. [PMID: 38317235 PMCID: PMC10845536 DOI: 10.1186/s12964-024-01498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.
Collapse
Affiliation(s)
- Chenxuan Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihong Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Gao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Xie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunying Yao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghong Qin
- Laboratory of Aging and Nervous Diseases, Department of Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical College, Haikou, Hainan Province, China.
| |
Collapse
|
6
|
D'Ippolito RA, Scheidemantle GM, Smith BP, Powell K, Eury S, Neish A, Mehalko J, Beaumont L, Fer N, Wall V, Burgan W, Maciag AE, Esposito D, DeHart CJ. FLAG-KRAS4B as a Model System for KRAS4B Proteoform and PTM Evaluation by Mass Spectrometry. Methods Mol Biol 2024; 2797:299-322. [PMID: 38570469 DOI: 10.1007/978-1-0716-3822-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Prior analysis of intact and modified protein forms (proteoforms) of KRAS4B isolated from cell lines and tumor samples by top-down mass spectrometry revealed the presence of novel posttranslational modifications (PTMs) and potential evidence of context-specific KRAS4B modifications. However, low endogenous proteoform signal resulted in ineffective characterization, making it difficult to visualize less abundant PTMs or perform follow-up PTM validation using standard proteomic workflows. The NCI RAS Initiative has developed a model system, whereby KRAS4B bearing an N-terminal FLAG tag can be stably expressed within a panel of cancer cell lines. Herein, we present a method for combining immunoprecipitation with complementary proteomic methods to directly analyze N-terminally FLAG-tagged KRAS4B proteoforms and PTMs. We provide detailed protocols for FLAG-KRAS4B purification, proteoform analysis by targeted top-down LC-MS/MS, and validation of abundant PTMs by bottom-up LC-MS/MS with example results.
Collapse
Affiliation(s)
- Robert A D'Ippolito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Grace M Scheidemantle
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brian P Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Katie Powell
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott Eury
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abigail Neish
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Mehalko
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lauren Beaumont
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Fer
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vanessa Wall
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William Burgan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline J DeHart
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
8
|
Park E, Rawson S, Schmoker A, Kim BW, Oh S, Song K, Jeon H, Eck MJ. Cryo-EM structure of a RAS/RAF recruitment complex. Nat Commun 2023; 14:4580. [PMID: 37516774 PMCID: PMC10387098 DOI: 10.1038/s41467-023-40299-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023] Open
Abstract
RAF-family kinases are activated by recruitment to the plasma membrane by GTP-bound RAS, whereupon they initiate signaling through the MAP kinase cascade. Prior structural studies of KRAS with RAF have focused on the isolated RAS-binding and cysteine-rich domains of RAF (RBD and CRD, respectively), which interact directly with RAS. Here we describe cryo-EM structures of a KRAS bound to intact BRAF in an autoinhibited state with MEK1 and a 14-3-3 dimer. Analysis of this KRAS/BRAF/MEK1/14-3-3 complex reveals KRAS bound to the RAS-binding domain of BRAF, captured in two orientations. Core autoinhibitory interactions in the complex are unperturbed by binding of KRAS and in vitro activation studies confirm that KRAS binding is insufficient to activate BRAF, absent membrane recruitment. These structures illustrate the separability of binding and activation of BRAF by RAS and suggest stabilization of this pre-activation intermediate as an alternative therapeutic strategy to blocking binding of KRAS.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Pfizer R&D Center, 3200 Walnut St, Boulder, CO, 80301, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Byeong-Won Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sehee Oh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Kim JH, Hildebrandt ER, Sarkar A, Yeung W, Waldon LRA, Kannan N, Schmidt WK. A comprehensive in vivo screen of yeast farnesyltransferase activity reveals broad reactivity across a majority of CXXX sequences. G3 (BETHESDA, MD.) 2023; 13:jkad094. [PMID: 37119806 PMCID: PMC10320760 DOI: 10.1093/g3journal/jkad094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
The current understanding of farnesyltransferase (FTase) specificity was pioneered through investigations of reporters like Ras and Ras-related proteins that possess a C-terminal CaaX motif that consists of 4 amino acid residues: cysteine-aliphatic1-aliphatic2-variable (X). These studies led to the finding that proteins with the CaaX motif are subject to a 3-step post-translational modification pathway involving farnesylation, proteolysis, and carboxylmethylation. Emerging evidence indicates, however, that FTase can farnesylate sequences outside the CaaX motif and that these sequences do not undergo the canonical 3-step pathway. In this work, we report a comprehensive evaluation of all possible CXXX sequences as FTase targets using the reporter Ydj1, an Hsp40 chaperone that only requires farnesylation for its activity. Our genetic and high-throughput sequencing approach reveals an unprecedented profile of sequences that yeast FTase can recognize in vivo, which effectively expands the potential target space of FTase within the yeast proteome. We also document that yeast FTase specificity is majorly influenced by restrictive amino acids at a2 and X positions as opposed to the resemblance of CaaX motif as previously regarded. This first complete evaluation of CXXX space expands the complexity of protein isoprenylation and marks a key step forward in understanding the potential scope of targets for this isoprenylation pathway.
Collapse
Affiliation(s)
- June H Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily R Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Anushka Sarkar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - La Ryel A Waldon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Walter K Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
11
|
Hagemann A, Altrogge PK, Kehrenberg MCA, Diehl D, Jung D, Weber L, Bachmann HS. Analyzing the postulated inhibitory effect of Manumycin A on farnesyltransferase. Front Chem 2022; 10:967947. [PMID: 36561140 PMCID: PMC9763582 DOI: 10.3389/fchem.2022.967947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Manumycin A is postulated to be a specific inhibitor against the farnesyltransferase (FTase) since this effect has been shown in 1993 for yeast FTase. Since then, plenty of studies investigated Manumycin A in human cells as well as in model organisms like Caenorhabditis elegans. Some studies pointed to additional targets and pathways involved in Manumycin A effects like apoptosis. Therefore, these studies created doubt whether the main mechanism of action of Manumycin A is FTase inhibition. For some of these alternative targets half maximal inhibitory concentrations (IC50) of Manumycin A are available, but not for human and C. elegans FTase. So, we aimed to 1) characterize missing C. elegans FTase kinetics, 2) elucidate the IC50 and Ki values of Manumycin A on purified human and C. elegans FTase 3) investigate Manumycin A dependent expression of FTase and apoptosis genes in C. elegans. C. elegans FTase has its temperature optimum at 40°C with KM of 1.3 µM (farnesylpyrophosphate) and 1.7 µM (protein derivate). Whilst other targets are inhibitable by Manumycin A at the nanomolar level, we found that Manumycin A inhibits cell-free FTase in micromolar concentrations (Ki human 4.15 μM; Ki C. elegans 3.16 μM). Furthermore, our gene expression results correlate with other studies indicating that thioredoxin reductase 1 is the main target of Manumycin A. According to our results, the ability of Manumycin A to inhibit the FTase at the micromolar level is rather neglectable for its cellular effects, so we postulate that the classification as a specific FTase inhibitor is no longer valid.
Collapse
|
12
|
Adams LM, DeHart CJ, Drown BS, Anderson LC, Bocik W, Boja ES, Hiltke TM, Hendrickson CL, Rodriguez H, Caldwell M, Vafabakhsh R, Kelleher NL. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J Biol Chem 2022; 299:102768. [PMID: 36470426 PMCID: PMC9808003 DOI: 10.1016/j.jbc.2022.102768] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
The KRAS gene is one of the most frequently mutated oncogenes in human cancer and gives rise to two isoforms, KRAS4A and KRAS4B. KRAS post-translational modifications (PTMs) have the potential to influence downstream signaling. However, the relationship between KRAS PTMs and oncogenic mutations remains unclear, and the extent of isoform-specific modification is unknown. Here, we present the first top-down proteomics study evaluating both KRAS4A and KRAS4B, resulting in 39 completely characterized proteoforms across colorectal cancer cell lines and primary tumor samples. We determined which KRAS PTMs are present, along with their relative abundance, and that proteoforms of KRAS4A versus KRAS4B are differentially modified. Moreover, we identified a subset of KRAS4B proteoforms lacking the C185 residue and associated C-terminal PTMs. By confocal microscopy, we confirmed that this truncated GFP-KRAS4BC185∗ proteoform is unable to associate with the plasma membrane, resulting in a decrease in mitogen-activated protein kinase signaling pathway activation. Collectively, our study provides a reference set of functionally distinct KRAS proteoforms and the colorectal cancer contexts in which they are present.
Collapse
Affiliation(s)
- Lauren M. Adams
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline J. DeHart
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bryon S. Drown
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Lissa C. Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - William Bocik
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Emily S. Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | - Tara M. Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | | | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda Maryland, USA
| | - Michael Caldwell
- Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA,Department of Chemistry, Northwestern University, Evanston, Illinois, USA,Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA,For correspondence: Neil L. Kelleher
| |
Collapse
|
13
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
14
|
Nuevo-Tapioles C, Philips MR. The role of KRAS splice variants in cancer biology. Front Cell Dev Biol 2022; 10:1033348. [PMID: 36393833 PMCID: PMC9663995 DOI: 10.3389/fcell.2022.1033348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.
Collapse
|
15
|
Impact of a conserved N-terminal proline-rich region of the α-subunit of CAAX-prenyltransferases on their enzyme properties. Cell Commun Signal 2022; 20:118. [PMID: 35941619 PMCID: PMC9358863 DOI: 10.1186/s12964-022-00929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CAAX-prenyltransferases farnesyltransferase (FTase) and geranylgeranyltransferase I (GGTase I) are heterodimers with a common α- (FTα) and unique β-subunits. Recently, α-subunits of species (e.g., human) that harbour an N-terminal proline-rich region (PRR) showed different dimerization behaviours than α-subunits without PRR (e.g., yeast). However, the specific function of the PRR has not been elucidated so far. METHODS To determine whether the PRR is a conserved motif throughout eukaryotes, we performed phylogenetics. Elucidating the impact of the PRR on enzyme properties, we cloned human as well as rat PRR deficient FTα, expressed them heterologously and compared protein-protein interaction by pull-down as well as crosslinking experiments. Substrate binding, enzyme activity and sensitivity towards common FTase inhibitors of full length and PRR-deletion α-subunits and their physiological partners was determined by continuous fluorescence assays. RESULTS The PRR is highly conserved in mammals, with an exception for marsupials harbouring a poly-alanine region instead. The PRR shows similarities to canonical SH3-binding domains and to profilin-binding domains. Independent of the PRR, the α-subunits were able to dimerize with the different physiological β-subunits in in vitro as well as in yeast two-hybrid experiments. FTase and GGTase I with truncated FTα were active. The KM values for both substrates are in the single-digit µM range and show no significant differences between enzymes with full length and PRR deficient α-subunits within the species. CONCLUSIONS Our data demonstrate that an N-terminal PRR of FTα is highly conserved in mammals. We could show that the activity and inhibitability is not influenced by the truncation of the N-terminal region. Nevertheless, this region shows common binding motifs for other proteins involved in cell-signalling, trafficking and phosphorylation, suggesting that this PRR might have other or additional functions in mammals. Our results provide new starting points due to the relevant but only partly understood role of FTα in eukaryotic FTase and GGTase I. Video Abstract.
Collapse
|
16
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
17
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
18
|
Seguin L. KRAS Addiction Promotes Cancer Cell Adaptation in Harsh Microenvironment Through Macropinocytosis. Subcell Biochem 2022; 98:189-204. [PMID: 35378709 DOI: 10.1007/978-3-030-94004-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
KRAS is the most frequently mutated oncogene in cancer and despite intensive studies, attempts to develop effective therapies targeting KRAS or its downstream signaling have failed mostly due to the complexity of KRAS activation and function in cancer initiation and progression. Over the years, KRAS has been involved in several biological processes including cell survival, proliferation, and metabolism by promoting not only a favorable tumor environment but also a cell-microenvironment dialog to allow cancer cells to adapt to tumor microenvironment scarcity. One of the mechanisms involved in this adaption is KRAS-mediated macropinocytosis. Macropinocytosis is an evolutionarily conserved, large-scale, and nonselective form of endocytosis involving actin-driven cell membrane remodeling to engulf large amounts of extracellular fluids and proteins from the local environment. While macropinocytosis process has been known for decades, recent gain interest due to its regulation of KRAS-driven tumor growth in adverse microenvironments. By promoting extracellular protein and other macromolecules internalization, macropinocytosis provides a survival mechanism under nutrient scarce conditions and the potential for unrestricted tumor growth. Thus, a better understanding of macropinocytotic process is needed to develop alternative therapeutic strategies.
Collapse
|
19
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
20
|
Abstract
Activating mutations in RAS genes are the most common genetic driver of human cancers. Yet, drugging this small GTPase has proven extremely challenging and therapeutic strategies targeting these recurrent alterations have long had limited success. To circumvent this difficulty, research has focused on the molecular dissection of the RAS pathway to gain a more-precise mechanistic understanding of its regulation, with the hope to identify new pharmacological approaches. Here, we review the current knowledge on the (dys)regulation of the RAS pathway, using melanoma as a paradigm. We first present a map of the main proteins involved in the RAS pathway, highlighting recent insights into their molecular roles and diverse mechanisms of regulation. We then overview genetic data pertaining to RAS pathway alterations in melanoma, along with insight into other cancers, that inform the biological function of members of the pathway. Finally, we describe the clinical implications of RAS pathway dysregulation in melanoma, discuss past and current approaches aimed at drugging the RAS pathway, and outline future opportunities for therapeutic development. Summary: This Review describes the molecular regulation of the RAS pathway, presents the clinical consequences of its pathological activation in human cancer, and highlights recent advances towards its therapeutic inhibition, using melanoma as an example.
Collapse
Affiliation(s)
- Amira Al Mahi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| |
Collapse
|
21
|
Ingólfsson HI, Neale C, Carpenter TS, Shrestha R, López CA, Tran TH, Oppelstrup T, Bhatia H, Stanton LG, Zhang X, Sundram S, Di Natale F, Agarwal A, Dharuman G, Kokkila Schumacher SIL, Turbyville T, Gulten G, Van QN, Goswami D, Jean-Francois F, Agamasu C, Chen D, Hettige JJ, Travers T, Sarkar S, Surh MP, Yang Y, Moody A, Liu S, Van Essen BC, Voter AF, Ramanathan A, Hengartner NW, Simanshu DK, Stephen AG, Bremer PT, Gnanakaran S, Glosli JN, Lightstone FC, McCormick F, Nissley DV, Streitz FH. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc Natl Acad Sci U S A 2022; 119:e2113297119. [PMID: 34983849 PMCID: PMC8740753 DOI: 10.1073/pnas.2113297119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy H Tran
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Liam G Stanton
- Department of Mathematics and Statistics, San José State University, San José, CA 95192
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shiv Sundram
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Gautham Dharuman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | - Thomas Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Debanjan Goswami
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Frantz Jean-Francois
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Jeevapani J Hettige
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Sumantra Sarkar
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Michael P Surh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Yue Yang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Adam Moody
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shusen Liu
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Brian C Van Essen
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Arthur F Voter
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Arvind Ramanathan
- Computing, Environment & Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Dhirendra K Simanshu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Peer-Timo Bremer
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Frank McCormick
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
| |
Collapse
|
22
|
Gora RJ, de Jong B, van Hage P, Rhiemus MA, van Steenis F, van Noort J, Schmidt T, Schaaf MJM. Analysis of the H-Ras mobility pattern in vivo shows cellular heterogeneity inside epidermal tissue. Dis Model Mech 2021; 15:274496. [PMID: 34927194 PMCID: PMC8891639 DOI: 10.1242/dmm.049099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper. Summary: Single-molecule microscopy analysis of factors altering the in vivo dynamics of H-Ras proteins in epidermal cells in living zebrafish embryos revealed that cell architecture and protein activation state determine protein mobility.
Collapse
Affiliation(s)
- Radoslaw J Gora
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Babette de Jong
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Patrick van Hage
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Mary Ann Rhiemus
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Fjodor van Steenis
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - John van Noort
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Thomas Schmidt
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Marcel J M Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| |
Collapse
|
23
|
Seong BKA, Dharia NV, Lin S, Donovan KA, Chong S, Robichaud A, Conway A, Hamze A, Ross L, Alexe G, Adane B, Nabet B, Ferguson FM, Stolte B, Wang EJ, Sun J, Darzacq X, Piccioni F, Gray NS, Fischer ES, Stegmaier K. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 2021; 39:1262-1278.e7. [PMID: 34329586 PMCID: PMC8443273 DOI: 10.1016/j.ccell.2021.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/24/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.
Collapse
Affiliation(s)
- Bo Kyung A Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shasha Chong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Amanda Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amanda Hamze
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Dr.von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jialin Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | | | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2021; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA; VA Northern California Health Care System, Mather, California, USA.
| |
Collapse
|
25
|
Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends Biochem Sci 2021; 46:535-549. [PMID: 33579564 DOI: 10.1016/j.tibs.2021.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Collapse
Affiliation(s)
- Danfeng Cai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
26
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
27
|
Henkels KM, Rehl KM, Cho KJ. Blocking K-Ras Interaction With the Plasma Membrane Is a Tractable Therapeutic Approach to Inhibit Oncogenic K-Ras Activity. Front Mol Biosci 2021; 8:673096. [PMID: 34222333 PMCID: PMC8244928 DOI: 10.3389/fmolb.2021.673096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are membrane-bound small GTPases that promote cell proliferation, differentiation, and apoptosis. Consistent with this key regulatory role, activating mutations of Ras are present in ∼19% of new cancer cases in the United States per year. K-Ras is one of the three ubiquitously expressed isoforms in mammalian cells, and oncogenic mutations in this isoform account for ∼75% of Ras-driven cancers. Therefore, pharmacological agents that block oncogenic K-Ras activity would have great clinical utility. Most efforts to block oncogenic Ras activity have focused on Ras downstream effectors, but these inhibitors only show limited clinical benefits in Ras-driven cancers due to the highly divergent signals arising from Ras activation. Currently, four major approaches are being extensively studied to target K-Ras–driven cancers. One strategy is to block K-Ras binding to the plasma membrane (PM) since K-Ras requires the PM binding for its signal transduction. Here, we summarize recently identified molecular mechanisms that regulate K-Ras–PM interaction. Perturbing these mechanisms using pharmacological agents blocks K-Ras–PM binding and inhibits K-Ras signaling and growth of K-Ras–driven cancer cells. Together, these studies propose that blocking K-Ras–PM binding is a tractable strategy for developing anti–K-Ras therapies.
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
28
|
Fhu CW, Ali A. Protein Lipidation by Palmitoylation and Myristoylation in Cancer. Front Cell Dev Biol 2021; 9:673647. [PMID: 34095144 PMCID: PMC8173174 DOI: 10.3389/fcell.2021.673647] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
Posttranslational modification of proteins with lipid moieties is known as protein lipidation. The attachment of a lipid molecule to proteins endows distinct properties, which affect their hydrophobicity, structural stability, localization, trafficking between membrane compartments, and influences its interaction with effectors. Lipids or lipid metabolites can serve as substrates for lipidation, and the availability of these lipid substrates are tightly regulated by cellular metabolism. Palmitoylation and myristoylation represent the two most common protein lipid modifications, and dysregulation of protein lipidation is strongly linked to various diseases such as metabolic syndromes and cancers. In this review, we present recent developments in our understanding on the roles of palmitoylation and myristoylation, and their significance in modulating cancer metabolism toward cancer initiation and progression.
Collapse
Affiliation(s)
- Chee Wai Fhu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
29
|
Tulpule A, Guan J, Neel DS, Allegakoen HR, Lin YP, Brown D, Chou YT, Heslin A, Chatterjee N, Perati S, Menon S, Nguyen TA, Debnath J, Ramirez AD, Shi X, Yang B, Feng S, Makhija S, Huang B, Bivona TG. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell 2021; 184:2649-2664.e18. [PMID: 33848463 PMCID: PMC8127962 DOI: 10.1016/j.cell.2021.03.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/14/2020] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.
Collapse
Affiliation(s)
- Asmin Tulpule
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Juan Guan
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA; Department of Physics, University of Florida, Gainesville, FL 32611, USA
| | - Dana S Neel
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Hannah R Allegakoen
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Yone Phar Lin
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - David Brown
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Ann Heslin
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Nilanjana Chatterjee
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA
| | - Shriya Perati
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Shruti Menon
- Division of Pediatric Hematology/Oncology, UCSF, San Francisco, CA 94143, USA
| | - Tan A Nguyen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | | | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Bin Yang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA
| | - Siyu Feng
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF, San Francisco, CA 94143, USA
| | - Suraj Makhija
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
31
|
Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules 2021; 11:377. [PMID: 33802474 PMCID: PMC8000715 DOI: 10.3390/biom11030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, National Cancer Institute RAS Initiative, Inc., Frederick, MD 21702, USA; (Q.N.V.); (P.P.); (R.S.); (T.E.B.); (T.J.T.)
| |
Collapse
|
32
|
Gorfe AA, Cho KJ. Approaches to inhibiting oncogenic K-Ras. Small GTPases 2021; 12:96-105. [PMID: 31438765 PMCID: PMC7849769 DOI: 10.1080/21541248.2019.1655883] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Activating somatic K-Ras mutations are associated with >15% all human tumors and up to 90% of specific tumor types such as pancreatic cancer. Successfully inhibiting abnormal K-Ras signaling would therefore be a game changer in cancer therapy. However, K-Ras has long been considered an undruggable target for various reasons. This view is now changing by the discovery of allosteric inhibitors that directly target K-Ras and inhibit its functions, and by the identification of new mechanisms to dislodge it from the plasma membrane and thereby abrogate its cellular activities. In this review, we will discuss recent progresses and challenges to inhibiting aberrant K-Ras functions by these two approaches. We will also provide a broad overview of other approaches such as inhibition of K-Ras effectors, and offer a brief perspective on the way forward.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Programs of Biochemistry & Cell and Therapeutics & Pharmacology, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
33
|
Ahearn IM, Court HR, Siddiqui F, Abankwa D, Philips MR. NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane. Life Sci Alliance 2021; 4:4/5/e202000972. [PMID: 33579760 PMCID: PMC7893820 DOI: 10.26508/lsa.202000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Among the RAS isoforms, NRAS uniquely requires carboxyl methylation by ICMT for delivery to the plasma membrane because of having only a single palmitoylation as a second targeting signal. Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.
Collapse
Affiliation(s)
- Ian M Ahearn
- The Ronald O Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA .,The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY, USA
| | - Helen R Court
- The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Farid Siddiqui
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mark R Philips
- The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Adams LM, DeHart CJ, Kelleher NL. Precise Characterization of KRAS4B Proteoforms by Combining Immunoprecipitation with Top-Down Mass Spectrometry. Methods Mol Biol 2021; 2262:47-64. [PMID: 33977470 PMCID: PMC8543976 DOI: 10.1007/978-1-0716-1190-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The characterization of biologically relevant post-translational modifications (PTMs) on KRAS4B has historically been carried out through methodologies such as immunoblotting with PTM-specific antibodies or peptide-based proteomic methods. While these methods have the potential to identify a given PTM on KRAS4B, they are incapable of characterizing or distinguishing the different molecular forms or proteoforms of KRAS4B from those of related RAS isoforms. We present a method that combines immunoprecipitation of KRAS4B with top-down mass spectrometry (IP-TDMS), thus enabling the precise characterization of intact KRAS4B proteoforms. We provide detailed protocols for the IP, LC-MS/MS, and data analysis comprising a successful IP-TDMS assay in the contexts of cancer cell lines and tissue samples.
Collapse
Affiliation(s)
- Lauren M Adams
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Caroline J DeHart
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
35
|
Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proc Natl Acad Sci U S A 2020; 117:31914-31922. [PMID: 33257571 DOI: 10.1073/pnas.2005712117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
Collapse
|
36
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
37
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ben J Eves
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ningdi F Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
38
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
39
|
Abstract
Activating KRAS mutations are present in 25% of human cancer. Although oncogenic Ras was deemed “undruggable” in the past, recent efforts led to the development of pharmacological inhibitors targeting the KRASG12C mutant, which have shown promise in early clinical trials. The development of allele-specific K-RasG12C inhibitors marked a new chapter in targeting oncogenic KRAS mutant in cancer. However, drug resistance against these new drugs will likely limit their efficacy in the clinic. Genome-wide approaches have been used to interrogate the mechanisms of resistance to K-RasG12C inhibitors, which would facilitate the development of therapeutics overcoming drug resistance. This article reviews the latest progress in resistance to K-RasG12C-targeted therapies and aims to provide insight in future research targeting drug resistance in cancer. Clinical grade K-RasG12C inhibitor marks a new chapter in targeted drug discovery Resistance to K-RasG12C inhibitors is driven by intrinsic or acquired mechanisms Co-targeting vertical Ras signaling overcomes resistance to K-RasG12C inhibition Standard-of-care chemo- and immunotherapies synergize with K-RasG12C inhibition
Collapse
Affiliation(s)
- Delong Jiao
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Analysis of RAS protein interactions in living cells reveals a mechanism for pan-RAS depletion by membrane-targeted RAS binders. Proc Natl Acad Sci U S A 2020; 117:12121-12130. [PMID: 32424096 DOI: 10.1073/pnas.2000848117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay. RAS protein coclustering is mainly mediated by membrane association-facilitated interactions (MAFIs). Using the RAS-RBD (CRAF RAS binding domain) interaction as a model system, we showed that MAFI alone is not sufficient to induce RBD-mediated RAS inhibition. Surprisingly, we discovered that high-affinity membrane-targeted RAS binding proteins inhibit RAS activity and deplete RAS proteins through an autophagosome-lysosome-mediated degradation pathway. Our results provide a mechanism for regulating RAS activity and protein levels, a more detailed understanding of which should lead to therapeutic strategies for inhibiting and depleting oncogenic RAS proteins.
Collapse
|
41
|
Chalcones bearing a 3,4,5-trimethoxyphenyl motif are capable of selectively inhibiting oncogenic K-Ras signaling. Bioorg Med Chem Lett 2020; 30:127144. [PMID: 32276831 DOI: 10.1016/j.bmcl.2020.127144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Ras proteins are small GTPases which regulate cellular proliferation, differentiation, and apoptosis. Constitutively active mutant Ras are expressed in ~15-20% human cancers, and K-Ras mutations account for ~85% of all Ras mutations. Despite the significance of Ras proteins in refractory cancers, there is no anti-Ras drug available in clinic. Since K-Ras must interact with the plasma membrane (PM) for biological activity, inhibition of the K-Ras/PM interaction is a tractable approach to block oncogenic K-Ras activity. Here, we discovered chalcones 1 and 8 exhibit anti-K-Ras activity, and show that the compounds mislocalize K-Ras from the PM and block oncogenic K-Ras signal output. Also, 1 inhibits the growth of K-Ras-driven human cancer cells. Our data suggest that 1 could be a promising starting point for developing anti-K-Ras cancer drug.
Collapse
|
42
|
Neale C, García AE. The Plasma Membrane as a Competitive Inhibitor and Positive Allosteric Modulator of KRas4B Signaling. Biophys J 2020; 118:1129-1141. [PMID: 32027820 PMCID: PMC7063485 DOI: 10.1016/j.bpj.2019.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Mutant Ras proteins are important drivers of human cancers, yet no approved drugs act directly on this difficult target. Over the last decade, the idea has emerged that oncogenic signaling can be diminished by molecules that drive Ras into orientations in which effector-binding interfaces are occluded by the cell membrane. To support this approach to drug discovery, we characterize the orientational preferences of membrane-bound K-Ras4B in 1.45-ms aggregate time of atomistic molecular dynamics simulations. Individual simulations probe active or inactive states of Ras on membranes with or without anionic lipids. We find that the membrane orientation of Ras is relatively insensitive to its bound guanine nucleotide and activation state but depends strongly on interactions with anionic phosphatidylserine lipids. These lipids slow Ras' translational and orientational diffusion and promote a discrete population in which small changes in orientation control Ras' competence to bind multiple regulator and effector proteins. Our results suggest that compound-directed conversion of constitutively active mutant Ras into functionally inactive forms may be accessible via subtle perturbations of Ras' orientational preferences at the membrane surface.
Collapse
Affiliation(s)
- Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
43
|
Oechsle CM, Showalter LE, Novak CM, Czerniecki BJ, Koski GK. Statin Drugs Plus Th1 Cytokines Potentiate Apoptosis and Ras Delocalization in Human Breast Cancer Lines and Combine with Dendritic Cell-Based Immunotherapy to Suppress Tumor Growth in a Mouse Model of HER-2 pos Disease. Vaccines (Basel) 2020; 8:vaccines8010072. [PMID: 32041347 PMCID: PMC7157728 DOI: 10.3390/vaccines8010072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
A dendritic cell-based, Type 1 Helper T cell (Th1)-polarizing anti-Human Epidermal Growth Factor Receptor-2 (HER-2) vaccine supplied in the neoadjuvant setting eliminates disease in up to 30% of recipients with HER-2-positive (HER-2pos) ductal carcinoma in situ (DCIS). We hypothesized that drugs with low toxicity profiles that target signaling pathways critical for oncogenesis may work in conjunction with vaccine-induced immune effector mechanisms to improve efficacy while minimizing side effects. In this study, a panel of four phenotypically diverse human breast cancer lines were exposed in vitro to the combination of Th1 cytokines Interferon-gamma (IFN-γ) and Tumor Necrosis Factor-alpha (TNF-α) and lipophilic statins. This combination was shown to potentiate multiple markers of apoptotic cell death. The combination of statin drugs and Th1 cytokines minimized membrane K-Ras localization while maximizing levels in the cytoplasm, suggesting a possible means by which cytokines and statin drugs might cooperate to maximize cell death. A combined therapy was also tested in vivo through an orthotopic murine model using the neu-transgenic TUBO mammary carcinoma line. We showed that the combination of HER-2 peptide-pulsed dendritic cell (DC)-based immunotherapy and simvastatin, but not single agents, significantly suppressed tumor growth. Consistent with a Th1 cytokine-dependent mechanism, parenterally administered recombinant IFN-γ could substitute for DC-based immunotherapy, likewise inhibiting tumor growth when combined with simvastatin. These studies show that statin drugs can amplify a DC-induced effector mechanism to improve anti-tumor activity.
Collapse
Affiliation(s)
- Crystal M. Oechsle
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA; (C.M.O.); (C.M.N.)
- Ohio Attorney General’s Center for the Future of Forensic Science, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Loral E. Showalter
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA;
| | - Colleen M. Novak
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA; (C.M.O.); (C.M.N.)
| | | | - Gary K. Koski
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA; (C.M.O.); (C.M.N.)
- Correspondence: ; Tel.: +1-330-701-7775
| |
Collapse
|
44
|
Therapeutic targeting of protein S-acylation for the treatment of disease. Biochem Soc Trans 2019; 48:281-290. [DOI: 10.1042/bst20190707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.
Collapse
|
45
|
Ye N, Xu Q, Li W, Wang P, Zhou J. Recent Advances in Developing K-Ras Plasma Membrane Localization Inhibitors. Curr Top Med Chem 2019; 19:2114-2127. [PMID: 31475899 DOI: 10.2174/1568026619666190902145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
The Ras proteins play an important role in cell growth, differentiation, proliferation and survival by regulating diverse signaling pathways. Oncogenic mutant K-Ras is the most frequently mutated class of Ras superfamily that is highly prevalent in many human cancers. Despite intensive efforts to combat various K-Ras-mutant-driven cancers, no effective K-Ras-specific inhibitors have yet been approved for clinical use to date. Since K-Ras proteins must be associated to the plasma membrane for their function, targeting K-Ras plasma membrane localization represents a logical and potentially tractable therapeutic approach. Here, we summarize the recent advances in the development of K-Ras plasma membrane localization inhibitors including natural product-based inhibitors achieved from high throughput screening, fragment-based drug design, virtual screening, and drug repurposing as well as hit-to-lead optimizations.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.,Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Qingfeng Xu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wanwan Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
46
|
Arner EN, Du W, Brekken RA. Behind the Wheel of Epithelial Plasticity in KRAS-Driven Cancers. Front Oncol 2019; 9:1049. [PMID: 31681587 PMCID: PMC6798880 DOI: 10.3389/fonc.2019.01049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular plasticity, a feature associated with epithelial-to-mesenchymal transition (EMT), contributes to tumor cell survival, migration, invasion, and therapy resistance. Phenotypic plasticity of the epithelium is a critical feature in multiple phases of human cancer in an oncogene- and tissue-specific context. Many factors can drive epithelial plasticity, including activating mutations in KRAS, which are found in an estimated 30% of all cancers. In this review, we will introduce cellular plasticity and its effect on cancer progression and therapy resistance and then summarize the drivers of EMT with an emphasis on KRAS effector signaling. Lastly, we will discuss the contribution of cellular plasticity to metastasis and its potential clinical implications. Understanding oncogenic KRAS cellular reprogramming has the potential to reveal novel strategies to control metastasis in KRAS-driven cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wenting Du
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rolf A Brekken
- Cancer Biology Graduate Program, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
47
|
Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells. Nutrients 2019; 11:nu11092113. [PMID: 31491956 PMCID: PMC6770769 DOI: 10.3390/nu11092113] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the oncogenic phenotype of cancer cells by acting as signaling molecules for inducing proliferation. ROS are known to activate the epidermal growth factor receptor (EGFR), which causes the activation of the Ras/mitogen-activated protein kinases (MAPKs) pathway. The Ras-dependent pathway promotes the activation of nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB), a transcriptional modulator of cyclooxygenase-2 (COX-2) that induces cell proliferation. Lycopene is a potent antioxidant carotenoid and is responsible for the red color of fruits and vegetables. This study aims to investigate whether lycopene inhibits proliferation and induces apoptosis in gastric cancer AGS cells by suppressing the EGFR/Ras/MAPK and NF-κB-COX-2 signaling axis. Lycopene decreased cell viability and increased apoptotic indices (DNA fragmentation, apoptosis inducing factor, cleavage of caspase-3 and caspase-9, Bax/Bcl-2 ratio). Lycopene reduced the level of intracellular and mitochondrial ROS and decreased the activation of the ROS-mediated EGFR/Ras/extracellular signal-regulated kinase (ERK) and p38 MAPK pathways, thus leading to attenuation of the DNA-binding activity of NF-κB p50/p50 and the level of COX-2 gene expression. These results show that lycopene-induced apoptosis and inhibition of proliferation occur via inhibition of ROS-activated EGFR/Ras/ERK and p38 MAPK pathways and NF-κB-mediated COX-2 gene expression in AGS cells. In conclusion, consumption of lycopene-enriched foods could decrease the incidence of gastric cancer.
Collapse
|
48
|
Miller TE, Henkels KM, Huddleston M, Salisbury R, Hussain SM, Sasaki AT, Cho KJ. Depletion of phosphatidylinositol 4-phosphate at the Golgi translocates K-Ras to mitochondria. J Cell Sci 2019; 132:jcs.231886. [PMID: 31331963 DOI: 10.1242/jcs.231886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/12/2019] [Indexed: 01/05/2023] Open
Abstract
Ras proteins are small GTPases localized to the plasma membrane (PM), which regulate cellular proliferation, apoptosis and differentiation. After a series of post-translational modifications, H-Ras and N-Ras traffic to the PM from the Golgi via the classical exocytic pathway, but the exact mechanism of K-Ras trafficking to the PM from the ER is not fully characterized. ATP5G1 (also known as ATP5MC1) is one of the three proteins that comprise subunit c of the F 0 complex of the mitochondrial ATP synthase. In this study, we show that overexpression of the mitochondrial targeting sequence of ATP5G1 perturbs glucose metabolism, inhibits oncogenic K-Ras signaling, and redistributes phosphatidylserine (PtdSer) to mitochondria and other endomembranes, resulting in K-Ras translocation to mitochondria. Also, it depletes phosphatidylinositol 4-phosphate (PI4P) at the Golgi. Glucose supplementation restores PtdSer and K-Ras PM localization and PI4P at the Golgi. We further show that inhibition of the Golgi-localized PI4-kinases (PI4Ks) translocates K-Ras, and PtdSer to mitochondria and endomembranes, respectively. We conclude that PI4P at the Golgi regulates the PM localization of PtdSer and K-Ras.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Taylor E Miller
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| | - Mary Huddleston
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Richard Salisbury
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Saber M Hussain
- Human Signatures Branch, Human-Centered ISR Division, Airman Systems Directorate, 711 Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, OH 45435, USA
| |
Collapse
|
49
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|
50
|
Tseng YT, Kumar R, Wang HC. LvRas and LvRap are both important for WSSV replication in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 88:150-160. [PMID: 30794934 DOI: 10.1016/j.fsi.2019.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The white Spot Syndrome Virus (WSSV) is a pathogen that causes huge economic losses in the shrimp-farming industry globally. At the WSSV genome replication stage (12 hpi) in WSSV-infected shrimp hemocytes, activation of the PI3K-Akt-mTOR pathway triggers metabolic changes that resemble the Warburg effect. In shrimp, the upstream regulators of this pathway are still unknown, and in the present study, we isolate, characterize and investigate two candidate factors, i.e. the shrimp Ras GTPase isoforms LvRas and LvRap, both of which are upregulated after WSSV infection. dsRNA silencing experiments show that virus replication is significantly reduced when expression of either of these genes is suppressed. Pretreatment with the Ras inhibitor Salirasib further suggests that LvRas, which is a homolog to a commonly overexpressed human oncoprotein, may be involved in regulating the WSSV-induced Warburg effect. We also show that while both the PI3K-Akt-mTOR and Raf-MEK-ERK pathways are activated by WSSV infection, LvRas appears to be involved only in the regulation of the mTOR pathway.
Collapse
Affiliation(s)
- Yi-Ting Tseng
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|