1
|
Roy C, Islam RNU, Banerjee S, Bandyopadhyay AK. Underlying features for the enhanced electrostatic strength of the extremophilic malate dehydrogenase interface salt-bridge compared to the mesophilic one. J Biomol Struct Dyn 2025; 43:2350-2365. [PMID: 38147414 DOI: 10.1080/07391102.2023.2295972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Malate dehydrogenase (MDH) exists in multimeric form in normal and extreme solvent conditions where residues of the interface are involved in specific interactions. The interface salt-bridge (ISB) and its microenvironment (ME) residues may have a crucial role in the stability and specificity of the interface. To gain insight into this, we have analyzed 218 ISBs from 42 interfaces of 15 crystal structures along with their sequences. Comparative analyses demonstrate that the ISB strength is ∼30 times greater in extremophilic cases than that of the normal one. To this end, the interface residue propensity, ISB design and pair selection, and ME-residue's types, i.e., type-I and type-II, are seen to be intrinsically involved. Although Type-I is a common type, Type-II appears to be extremophile-specific, where the net ME-residue count is much lower with an excessive net ME-energy contribution, which seems to be a novel interface compaction strategy. Furthermore, the interface strength can be enhanced by selecting the desired mutant from the net-energy profile of all possible mutations of an unfavorable ME-residue. The study that applies to other similar systems finds applications in protein-protein interaction and protein engineering.
Collapse
Affiliation(s)
- Chittran Roy
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
- Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sahini Banerjee
- Department of Biological Sciences, Indian Statistical Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
2
|
Ebrahimi Fana S, Fazaeli A, Aminian M. Directed evolution of cholesterol oxidase with improved thermostability using error-prone PCR. Biotechnol Lett 2023; 45:1159-1167. [PMID: 37289346 DOI: 10.1007/s10529-023-03401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Cholesterol oxidase is industrially important as it is frequently used as a biosensor in food and agriculture industries and measurement of cholesterol. Although, most natural enzymes show low thermostability, which limits their application. Here, we obtained an improved variant of Chromobacterium sp. DS1 cholesterol oxidase (ChOS) with enhanced thermostability by random mutant library applying two forms of error-prone PCR (serial dilution and single step). Wild-type ChOS indicated an optimal temperature and pH of 70 ºC and pH 7.5, respectively. The best mutant ChOS-M acquired three amino acid substitutions (S112T, I240V and A500S) and enhanced thermostability (at 50 °C for 5 h) by 30%. The optimum temperature and pH in the mutant were not changed. In comparison to wild type, circular dichroism disclosed no significant secondary structural alterations in mutants. These findings show that error-prone PCR is an effective method for enhancing enzyme characteristics and offers a platform for the practical use of ChOS as a thermal-resistance enzyme in industrial fields and clinical diagnosis.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran.
| |
Collapse
|
3
|
Jia Y, Fernandez A, Sampath J. PEGylation of Insulin and Lysozyme To Stabilize against Thermal Denaturation: A Molecular Dynamics Simulation Study. J Phys Chem B 2023; 127:6856-6866. [PMID: 37498538 DOI: 10.1021/acs.jpcb.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biologic drugs or "biologics" (proteins derived from living organisms) are one of the fastest-growing classes of FDA-approved therapeutics. These compounds are often fragile and require conjugation to polymers for stabilization, with many proteins too ephemeral for therapeutic use. During storage or administration, proteins tend to unravel and lose their secondary structure due to changes in solution temperature, pH, and other external stressors. To enhance their lifetime, protein drugs currently in the market are conjugated with polyethylene glycol (PEG), owing to its ability to increase the stability, solubility, and pharmacokinetics of protein drugs. Here, we perform all-atom molecular dynamics simulations to study the unfolding process of egg-white lysozyme and insulin at elevated temperatures. We test the validity of two force fields─CHARMM36 and Amber ff99SB-ILDN─in the unfolding process. By calculating global and local properties, we capture residues that deteriorate first─these are the "weak links" in the proteins. Next, we conjugate both proteins with PEG and find that PEG preserves the native structure of the proteins at elevated temperatures by blocking water molecules from entering the hydrophobic core, thereby causing the secondary structure to stabilize.
Collapse
Affiliation(s)
- Yinhao Jia
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Fernandez
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Janani Sampath
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Jiang F, Bian J, Liu H, Li S, Bai X, Zheng L, Jin S, Liu Z, Yang GY, Hong L. Creatinase: Using Increased Entropy to Improve the Activity and Thermostability. J Phys Chem B 2023; 127:2671-2682. [PMID: 36926920 DOI: 10.1021/acs.jpcb.2c08062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Improving protein thermostability in mutagenesis-based enzyme engineering was often achieved by enhancing interresidue interactions via mutation to increase the enthalpy penalty of unfolding. However, this approach may trade off the functional activity due to the loss of structural flexibility of the biomolecule. Here, by performing X-ray crystallography, enzymatic kinetic experiments, neutron scattering, and thermodynamical measurements, we compared the structures, catalytic behaviors, dynamics, and thermostability between a wild-type creatinase and its four-point mutant. We found that the mutant is an entropy-driven thermostable protein with higher structural flexibility, i.e., higher conformational entropy, in the folded state compared to the wild type. The increased conformational entropy of the mutant in the folded state can reduce the entropy gain during unfolding and thus renders it greater thermostability. Moreover, the increased structural flexibility, particularly around the catalytic site, can broaden the mutant's working temperature range and considerably improve its activity at ambient conditions, which is crucial for its application in diagnosing kidney diseases. Complementary all-atom molecular dynamics simulations indicated that the four mutations replaced several of the strong interresidue interactions (electrostatic interactions and hydrogen bonds) with weak hydrophobic interactions. These substitutions not only release the structural flexibility to promote the thermostability and enzymatic activity of the protein but they also preserve the protein structure from collapsing. Our findings may pave a route for the entropy-driven strategy to design proteins with high thermostability and activity.
Collapse
Affiliation(s)
- Fan Jiang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Bian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Jin
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
5
|
Hayashi Y, Nakamura M, Nakano S, Ito S, Asano Y, Sugimori D. Thermostability enhancement of l-glutamate oxidase from Streptomyces sp. NT1 by full consensus protein design. J Biosci Bioeng 2022; 133:309-315. [DOI: 10.1016/j.jbiosc.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023]
|
6
|
Improvement of thermostability of cholesterol oxidase from streptomyces Sp. SA-COO by random mutagenesis. Protein Expr Purif 2021; 191:106028. [PMID: 34863881 DOI: 10.1016/j.pep.2021.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
To enhance the thermal stability of Streptomyces Sp. SA-COO cholesterol oxidase, random mutagenesis was used. A random mutant library was generated using two types of error-prone PCR (single step and serial dilution) and two mutants (ChOA-M1 and ChOA-M2) with improved thermostability were obtained. The best mutant ChOA-M1 acquired three amino acid substitutions (G49T, W52K, and F62V) and improved thermostability (at 50 °C for 5 h) by 40% and increased the kcat/Km value by 23%. The optimum pH was desirably changed to encompass a broad range from alkali to acid and circular dichroism revealed no significant secondary structure changes in mutants against wild type. These findings indicated that random mutagenesis was an effective technique for optimizing cholesterol oxidase properties and make a foundation for practical applications of Cholesterol oxidase in clinical diagnosis and industrial fields.
Collapse
|
7
|
Banerjee S, Gupta PSS, Islam RNU, Bandyopadhyay AK. Intrinsic basis of thermostability of prolyl oligopeptidase from Pyrococcus furiosus. Sci Rep 2021; 11:11553. [PMID: 34078944 PMCID: PMC8172842 DOI: 10.1038/s41598-021-90723-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Salt-bridges play a key role in the thermostability of proteins adapted in stress environments whose intrinsic basis remains to be understood. We find that the higher hydrophilicity of PfP than that of HuP is due to the charged but not the polar residues. The primary role of these residues is to enhance the salt-bridges and their ME. Unlike HuP, PfP has made many changes in its intrinsic property to strengthen the salt-bridge. First, the desolvation energy is reduced by directing the salt-bridge towards the surface. Second, it has made bridge-energy more favorable by recruiting energetically advantageous partners with high helix-propensity among the six possible salt-bridge pairs. Third, ME-residues that perform intricate interactions have increased their energy contribution by making major changes in their binary properties. The use of salt-bridge partners as ME-residues, and ME-residues' overlapping usage, predominant in helices, and energetically favorable substitution are some of the favorable features of PfP compared to HuP. These changes in PfP reduce the unfavorable, increase the favorable ME-energy. Thus, the per salt-bridge stability of PfP is greater than that of HuP. Further, unfavorable target ME-residues can be identified whose mutation can increase the stability of salt-bridge. The study applies to other similar systems.
Collapse
Affiliation(s)
- Sahini Banerjee
- Department of Biological Sciences, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur , Orissa, India
| | | | | |
Collapse
|
8
|
General method to stabilize mesophilic proteins in hyperthermal water. iScience 2021; 24:102503. [PMID: 34113834 PMCID: PMC8169989 DOI: 10.1016/j.isci.2021.102503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
The stability of protein structures and biological functions at normal temperature is closely linked with the universal aqueous environment of organisms. Preserving bioactivities of proteins in hyperthermia water would expand their functional capabilities beyond those in native environments. However, only a limited number of proteins derived from hyperthermophiles are thermostable at elevated temperatures. Triggered by this, here we describe a general method to stabilize mesophilic proteins in hyperthermia water. The mesophilic proteins, protected by amphiphilic polymers with multiple binding sites, maintain their secondary and tertiary structures after incubation even in boiling water. This approach, outside the conventional environment for bioactivities of mesophilic proteins, provides a general strategy to dramatically increase the Tm (melting temperature) of mesophilic proteins without any changes to amino sequences of the native proteins. Current work offers a new insight with protein stability engineering for potential application, including vaccine storage and enzyme engineering. Preserving bioactivities of proteins in hyperthermia water is promising. Amphiphilic polymers could protect mesophilic proteins even in boiling water. Mesophilic proteins protected by amphiphilic polymers show dramatically increased Tm. The method offers application prospect for vaccine storage and enzyme engineering.
Collapse
|
9
|
Protein Engineering of a Metalloprotease in Order to Improve Organic Solvents Stability and Activity. Catal Letters 2019. [DOI: 10.1007/s10562-019-03044-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol 2019; 40:83-98. [DOI: 10.1080/07388551.2019.1682963] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhe Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Gong XM, Qin Z, Li FL, Zeng BB, Zheng GW, Xu JH. Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03382] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu-Min Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- State Key Laboratory of Bioreactor Engineering and R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Bu-Bing Zeng
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Badoei-Dalfard A, Goodarzi N, Dabirmanesh B, Khajeh K. Improve Salinivibrio zinc-metalloprotease function in less polar organic solvents by increasing surface hydrophobicity. Int J Biol Macromol 2018; 120:440-448. [PMID: 30031080 DOI: 10.1016/j.ijbiomac.2018.07.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/15/2022]
Abstract
Organic solvents tend to strip water from protein and thereby disrupt non-covalent forces and decrease enzyme activity and stability. In the present study, we have replaced the surface charge residues in Salinivibrio zinc-metalloprotease (SVP) with hydrophobic ones (E12V, D22I, D24A and D310I) in order to study the effects of surface hydrophobicity with hydrophobic strength of organic solvents. Compared to SVP, D24A exhibited an increase in kcat and catalytic efficiency and a reduction in thermal inactivation rate in aqueous solvent. Structural studies indicated that the replacement of surface charge residues with hydrophobic residues would not induce conformational changes. C50 value (the value of solvent concentration where 50% of enzyme activity remains), ki (irreversible thermoinactivation rate), and kinetic parameters of E12V, D22I, and D24A were higher in isopropanol and n-propanol. D24A is found to be the most efficient mutant for its remarkable decrease in ki value in the presence of isopropanol and n-propanol and a reduction in ki value in the presence of dimethylformamide (DMF) and methanol. C50 value in this variant was increased about 1.2% in DMF, 2% in methanol and isopropanol and 2.5% in n-propanol. Results revealed that, there was a correlation between surface hydrophobicity of SVP and hydrophobic strength of organic solvents.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Negar Goodarzi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Emruzi Z, Aminzadeh S, Karkhane AA, Alikhajeh J, Haghbeen K, Gholami D. Improving the thermostability of Serratia marcescens B4A chitinase via G191V site-directed mutagenesis. Int J Biol Macromol 2018; 116:64-70. [PMID: 29733926 DOI: 10.1016/j.ijbiomac.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022]
Abstract
Chitinases with high thermostability are important for many industrial and biotechnological applications. This study was conducted to enhance the stability of Serratia marcescens B4A chitinase by site directed mutagenesis of G191 V. Further characterization showed that the thermal stability of the mutant showed marked increase of about 5 and 15 fold at 50 and 60 °C respectively, while the optimum temperature and pH was retained. Kinetic analysis showed decreased Km and Vmax of the mutant in comparison with the wild type chitinase of about 1.3 and 3 fold, respectively. Based on structural prediction, it was speculated that this replacement shortened an important loop concomitant with the extension of adjacent β sheets. Accordingly, a higher thermostability of G191 V up to 90 °C supporting the decreased flexibility of unfolded state was also indicated. Finally, a practical proof of kinetic and thermal stabilization of chitinase was provided through decreased flexibility and entropic stabilization of its surface loops.
Collapse
Affiliation(s)
- Zeinab Emruzi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran.
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jahan Alikhajeh
- Departments of Physiology and Cellular Biophysics, Columbia University Medical Center, USA
| | - Kamahldin Haghbeen
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Dariush Gholami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| |
Collapse
|
14
|
Redondo RAF, de Vladar HP, Włodarski T, Bollback JP. Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. J R Soc Interface 2017; 14:20160139. [PMID: 28053111 PMCID: PMC5310724 DOI: 10.1098/rsif.2016.0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the ϕX174 phage family by first reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima.
Collapse
Affiliation(s)
| | - Harold P de Vladar
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Center for the Conceptual Foundations of Science, Parmenides Foundation, 82049 Pullach, Germany
| | - Tomasz Włodarski
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
15
|
Guinane CM, Kent RM, Norberg S, O'Connor PM, Cotter PD, Hill C, Fitzgerald GF, Stanton C, Ross RP. Generation of the antimicrobial peptide caseicin A from casein by hydrolysis with thermolysin enzymes. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Kim KT, Chiba Y, Arai H, Ishii M. Discovery of an intermolecular disulfide bond required for the thermostability of a heterodimeric protein from the thermophile Hydrogenobacter thermophilus. Biosci Biotechnol Biochem 2015; 80:232-40. [PMID: 26360333 DOI: 10.1080/09168451.2015.1079476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Factors that increase protein thermostability are of considerable interest in both scientific and industrial fields. Disulfide bonds are one of such factors that increase thermostability, but are rarely found in intracellular proteins because of the reducing environment of the cytosol. Here, we report the first example of an intermolecular disulfide bond between heteromeric subunits of a novel-type phosphoserine phosphatase from a thermophilic bacterium Hydrogenobacter thermophilus, which contributes to the protein thermostability at the physiological temperature. Comparison of remaining soluble proteins between wild-type and cysteine-deleted mutant using SDS-PAGE revealed that the disulfide bond increases the thermostability of the whole protein by tightly connecting a subunit with low solubility to the partner with higher solubility. Furthermore, it was strongly suggested that the disulfide bond is formed and contributes to the stability in vivo. This finding will open new avenues for the design of proteins with increased thermostability.
Collapse
Affiliation(s)
- Keug Tae Kim
- a Department of Biotechnology, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Yoko Chiba
- b Faculty of Life and Environmental Science , University of Tsukuba , Tsukuba , Japan
| | - Hiroyuki Arai
- a Department of Biotechnology, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Masaharu Ishii
- a Department of Biotechnology, Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| |
Collapse
|
17
|
Zhang X, Zhang Y, Yang G, Xie Y, Xu L, An J, Cui L, Feng Y. Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend. Enzyme Microb Technol 2015; 82:34-41. [PMID: 26672446 DOI: 10.1016/j.enzmictec.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Candida rugosa Lipase1 (LIP1) is widely used in industrial applications. Optimizing its catalytic performance is still a challenging goal for protein engineers. Mutagenesis of key residues in the active site of the enzyme may provide an effective strategy for enhancing stability and altering substrate specificity. In this study, multiple sequence alignment and structural analysis revealed that the acyl-binding residue, Gly414, of LIP1, which is located at a bend connecting α-helixes, was the non-conserved residue in five other isoenzymes. Using saturation mutagenesis, four mutants with improved stability (G414A, G414M, G414H and G414W) were obtained. Compared to the wild type, the best mutant (G414W) exhibited a remarkable 6.5-fold enhancement in half-life at 60 °C and a 14 °C higher T50(15). Its optimum temperature was increased by 15 °C. Simultaneously, G414W displayed a shift in substrate preference from medium-chain to short-chain pNP-ester. Modeling analysis showed that the multiple interactions formed by hydrophobic clusters and hydrogen bonds in the acyl-binding tunnel might lead to the observed thermostability improvement. Additionally, the bulky tryptophan substitution formed a strong steric hindrance to the accommodation of long-chain substrates in the tunnel. These results indicate that the key acyl-binding residues at the α-helix-connecting bend could mediate enzyme stability and catalytic substrate spectra.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lishi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiao An
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Yao K, Tan P, Luo Y, Feng L, Xu L, Liu Z, Li Y, Peng R. Graphene Oxide Selectively Enhances Thermostability of Trypsin. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12270-12277. [PMID: 25985836 DOI: 10.1021/acsami.5b03118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the past few years, graphene and its derivative, graphene oxide (GO), have been extensively studied for their applications in biotechnology. In our previous work, we reported certain PEGylated GOs (GO-PEGs) can selectively promote trypsin activity and enhance its thermostability. To further explore this, here we synthesized a series of GO-PEGs with varying PEGylation degrees. Enzymatic activity assay shows that both GO and GO-PEGs can protect trypsin, but not chymotrypsin, from thermal denaturation at high temperature. Surprisingly, the lower the PEGylation degree, the better the protection, and GO as well as the GO-PEG with the lowest PEGylation degree show the highest protection efficiency (∼70% retained activity at 70 °C). Fluorescence spectroscopy analysis shows that GO/GO-PEGs have strong interactions with trypsin. Molecular Dynamics (MD) simulation results reveal that trypsin is adsorbed onto the surface of GO through its cationic residues and hydrophilic residues. Different from chymotrypsin adsorbed on GO, the active site of trypsin is covered by GO. MD simulation at high temperature shows that, through such interaction with GO, trypsin's active site is therefore stabilized and protected by GO. Our work not only illustrates the promising potential of GO/GO-PEGs as efficient, selective modulators for trypsin, but also provides the interaction mechanism of GO with specific proteins at the nano-bio interface.
Collapse
|
19
|
Lee J, Ko JH, Lin EW, Wallace P, Ruch F, Maynard HD. Trehalose hydrogels for stabilization of enzymes to heat. Polym Chem 2015; 6:3443-3448. [PMID: 26005500 PMCID: PMC4436147 DOI: 10.1039/c5py00121h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes can catalyze various reactions with high selectivity and are involved in many important biological processes. However, the general instability of enzymes against high temperature often limits their application. To address this, we synthesized a trehalose-based hydrogel in two steps from commercial starting materials with minimal purification procedures. Mono- and multi-functional trehalose monomers were cross-linked by redox-initiated radical polymerization to form a hydrogel. Phytase, an important enzyme utilized in animal feedstock, was employed to study the effectiveness of the trehalose hydrogel to stabilize proteins against heat. Addition of the phytase solution to the hydrogel resulted in enzyme internalization as confirmed by confocal microscopy. The phytase in the hydrogel retained 100% activity upon heating at 90 °C compared to 39% when the hydrogel was absent. The enzyme could also be recovered from the hydrogel. The trehalose hydrogel synthesis reported herein should be readily scalable for thermal stabilization of a wide variety of enzymes.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - En-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Peter Wallace
- Phytex LLC, 214 S. Main Street, Sheridan, Indiana 46069
| | - Frank Ruch
- Phytex LLC, 214 S. Main Street, Sheridan, Indiana 46069
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|
20
|
Romero-Maraccini OC, Sadik NJ, Rosado-Lausell SL, Pugh CR, Niu XZ, Croué JP, Nguyen TH. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11004-12. [PMID: 23978054 DOI: 10.1021/es402285u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human rotavirus Wa and porcine rotavirus OSU solutions were irradiated with simulated solar UV and visible light in the presence of different photosensitizers dissolved in buffered solutions. For human rotavirus, the exogenous effects were greater than the endogenous effects under irradiation with full spectrum and UVA and visible light at 25 °C. For porcine rotavirus, the exogenous effects with UVA and visible light irradiation were only observed at high temperatures, >40 °C. The results from dark experiments conducted at different temperatures suggest that porcine rotavirus has higher thermostability than human rotavirus. Concentrations of 3'-MAP excited triplet states of 1.8 fM and above resulted in significant human rotavirus inactivation. The measured excited triplet state concentrations of ≤0.45 fM produced by UVA and visible light irradiation of natural dissolved organic matter solutions were likely not directly responsible for rotavirus inactivation. Instead, the linear correlation for human rotavirus inactivation rate constant (kobs) with the phenol degradation rate constant (kexp) found in both 1 mM NaHCO3 and 1 mM phosphate-buffered solutions suggested that OH radical was a major reactive species for the exogenous inactivation of rotaviruses. Linear correlations between rotavirus kobs and specific UV254 nm absorbance of two river-dissolved organic matter and two effluent organic matter isolates indicated that organic matter aromaticity may help predict formation of radicals responsible for rotavirus inactivation. The results from this study also suggested that the differences in rotavirus strains should be considered when predicting solar inactivation of rotavirus in sunlit surface waters.
Collapse
Affiliation(s)
- Ofelia C Romero-Maraccini
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , 205 North Mathews, 3230 Newmark Lab, Urbana, Illinois 61801, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Krüger DM, Rathi PC, Pfleger C, Gohlke H. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function. Nucleic Acids Res 2013; 41:W340-8. [PMID: 23609541 PMCID: PMC3692064 DOI: 10.1093/nar/gkt292] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Collapse
Affiliation(s)
- Dennis M Krüger
- Computational Pharmaceutical Chemistry Group, Department of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Liu X, Liu Y, Zhang Z, Huang F, Tao Q, Ma R, An Y, Shi L. Temperature-Responsive Mixed-Shell Polymeric Micelles for the Refolding of Thermally Denatured Proteins. Chemistry 2013; 19:7437-42. [DOI: 10.1002/chem.201300634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Indexed: 11/08/2022]
|
23
|
Gromiha MM, Pathak MC, Saraboji K, Ortlund EA, Gaucher EA. Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins 2013; 81:715-21. [PMID: 23319168 DOI: 10.1002/prot.24232] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 11/07/2022]
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India.
| | | | | | | | | |
Collapse
|
24
|
Asaoka Y, Hatayama K, Tsumoto K, Tomita M, Ide T. Engineering of recombinant human Fcγ receptor I by directed evolution. Protein Eng Des Sel 2012; 25:835-42. [PMID: 22967788 DOI: 10.1093/protein/gzs053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human FcγRI is a high-affinity receptor for human IgG. On the basis of its binding activity, recombinant human FcγRI (rhFcγRI) has several possible applications, including as a therapeutic reagent to treat immune complex-mediated disease and as a ligand in affinity chromatography for purification of human IgG. As the stability and production rate of rhFcγRI are low, it would need to be engineered for use in such applications. In this study, we demonstrated engineering of rhFcγRI by directed evolution through random mutagenesis and integration of mutations. Engineered rhFcγRI was expressed by Escherichia coli. Screening identified 19 amino acid mutations contributing to the thermal stability and production rate of rhFcγRI. By integration of these mutations, engineered rhFcγRI containing all 19 amino acid mutations (enFcRd) was constructed and showed markedly enhanced thermal stability (transition midpoint temperature [Tm] = 65.6°C) and production rate (3.27 mg L-medium(-1) OD(600)(-1)) compared with wild-type rhFcγRI (Tm = 48.5°C; production rate, 0.07 mg L-medium(-1) OD(600)(-1)) without a change in the specificities of binding to human IgG subclasses. Moreover, the binding affinity of enFcRd for human IgG1/к (equilibrium dissociation constant [K(D)] = 0.80 × 10(-10) M) was higher than that of wild-type rhFcγRI (K(D) = 1.23 × 10(-10) M). Our study showed that substantial engineering of rhFcγRI is possible.
Collapse
|
25
|
Asghari SM, Khajeh K, Dalfard AB, Pazhang M, Karbalaei-Heidari HR. Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium. BMB Rep 2012; 44:665-8. [PMID: 22027000 DOI: 10.5483/bmbrep.2011.44.10.665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to clarify the impact of Ca-binding sites (Ca1 and 2) on the conformational stability of neutral proteases (NPs), we have analyzed the thermal, pH and organic solvent stability of a NP variant, V189P/A195E/G203D/A268E (Q-mutant), from Salinovibrio proteolyticus. This mutant has shown to bind calcium more tightly than the wild-type (WT) at Ca1 and to possess Ca2. Q-mutant was resisted against autolysis, thermoinactivation and pH denaturation in a Ca-dependent manner and exhibited better activity in organic solvents compared to the WT enzyme. These results imply that Ca1 and Ca2 are important for the conformational stability of NPs.
Collapse
Affiliation(s)
- S Mohsen Asghari
- Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Radestock S, Gohlke H. Protein rigidity and thermophilic adaptation. Proteins 2011; 79:1089-108. [DOI: 10.1002/prot.22946] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/28/2010] [Accepted: 11/07/2010] [Indexed: 11/05/2022]
|
27
|
|
28
|
Imanaka T. Molecular bases of thermophily in hyperthermophiles. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:587-602. [PMID: 22075760 PMCID: PMC3309922 DOI: 10.2183/pjab.87.587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
I reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakarensis KOD1 and its enzymes. The strain can grow at temperatures up to 100 °C, and also represents one of the simplest forms of life. As expected, all enzymes, DNA, RNA, cytoplasmic membrane, and cytoplasmic solute displayed remarkable thermostability, and we have determined some of the basic principles that govern this feature. To our delight, many of the enzymes exhibited unique biochemical properties and novel structures not found in mesophilic proteins. Here, I will focus on some enzymes whose three-dimensional structures are characteristic of thermostable enzymes. I will also add some examples on the stabilization of DNA, RNA, cytoplasmic membrane, and cytoplasmic solute.
Collapse
Affiliation(s)
- Tadayuki Imanaka
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
29
|
Michels PC, Clark DS. Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl Environ Microbiol 2010; 63:3985-91. [PMID: 16535711 PMCID: PMC1389267 DOI: 10.1128/aem.63.10.3985-3991.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988).
Collapse
|
30
|
Badoei-Dalfard A, Khajeh K, Asghari SM, Ranjbar B, Karbalaei-Heidari HR. Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J Biochem 2010; 148:231-8. [PMID: 20519323 DOI: 10.1093/jb/mvq057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Salinivibrio zinc-metalloprotease (SVP) is an enzyme which was isolated from Salinivibrio proteolyticus, a moderately halophilic species from a hypersaline lake in Iran. A195E and G203D mutants were constructed to increase polarity near the active site in order to preserve the hydration layer against organic solvents [dimethylformamide (DMF), methanol, isopropanol and n-propanol]. A268P was constructed to stabilize a surface loop far from the active site and A195E/A268P was constructed to investigate the combined effects of these two mutations. Results showed that relative C(50) values of A195E increased to approximately 26 and 11% in DMF and methanol whereas an increase of approximately 32 and 41% was observed in the presence of isopropanol and n-propanol. The irreversible thermoinactivation rate (k(i)) for A195E was estimated to be 60 and 130 (x10(-3) min(-1)) in the presence of DMF and n-propanol, respectively, while k(i) for SVP was 90 and 190 (x10(-3) min(-1)). G203D exhibited similar k(i) as A195E in the presence of methanol and isopropanol, but the calculated k(i) in the presence of DMF and n-propanol was 70 and 160 (x10(-3) min(-1)), respectively. A268P and A268P/A195E variants marginally increased the thermoresistance of the enzyme in this condition.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
31
|
Asghari SM, Pazhang M, Ehtesham S, Karbalaei-Heidari HR, Taghdir M, Sadeghizadeh M, Naderi-Manesh H, Khajeh K. Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Eng Des Sel 2010; 23:599-606. [DOI: 10.1093/protein/gzq031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Appl Biochem Biotechnol 2010; 162:444-59. [PMID: 20177823 DOI: 10.1007/s12010-009-8879-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 11/26/2009] [Indexed: 10/19/2022]
Abstract
Successful industrial use of amylases requires that they are sufficiently stable and active at application conditions, e.g., at high temperature in starch-liquefaction process. In the present study, site-directed mutagenesis was used to enhance the thermal stability and calcium independency of a mesophilic alpha-amylase from Bacillus megaterium WHO. Mutations (A53S and H58I) were designed at the calcium-binding site based on the sequence alignment. Kinetic and thermostability parameters of the mutants were analyzed and compared with that of the wild type. In the presence of calcium, the affinity of the enzymes (wild type and mutants) toward starch was increased. In comparison to the wild type, calcium ion had more effect on the catalytic efficiency, k (cat)/K (m), and half-life (at 60 degrees C) of A53S mutant. In A53S, the dependence of half-life on calcium concentration showed that the enhanced calcium binding is likely to be responsible for the increased stability. In contrast, calcium-independent mutant (H58I) possessed high thermostability. In addition, thermodynamic parameters of amylolytic reaction exhibited an increase in the activation energy and the entropy of the system. Kinetics of irreversible thermal inactivation suggests that the activation energy increased by 1.4-fold in the most stable variant.
Collapse
|
33
|
|
34
|
Affiliation(s)
- C. J. Gray
- Department of Chemistry, University of Birmingham, PO Box 363, Birmingham, B15 2TT, England
| |
Collapse
|
35
|
Nosoh Y, Sekiguchi T. Protein Thermostability: Mechanism and Control Through Protein Engineering. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242428808998167] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yoshiaki Nosoh
- Department of Fundamental Science, College of Science and Engineering, Iwaki Meisei University, Iwaki Fukushima, 970, Japan
| | - Takeshi Sekiguchi
- Department of Fundamental Science, College of Science and Engineering, Iwaki Meisei University, Iwaki Fukushima, 970, Japan
| |
Collapse
|
36
|
|
37
|
|
38
|
Imanaka T. Adaptation Strategy of Thermophiles toward Hyperthermophily and Their Molecular Bases. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Kapoor M, Kuhad RC. Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Appl Biochem Biotechnol 2008; 142:125-38. [PMID: 18025574 DOI: 10.1007/s12010-007-0013-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/23/2022]
Abstract
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0-10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 degrees C higher (68.0 degrees C) than free enzyme (60.0 degrees C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 degrees C. The immobilized xylanase registered marginal increase and decrease in Km and Vmax values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.
Collapse
Affiliation(s)
- Mukesh Kapoor
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | | |
Collapse
|
40
|
|
41
|
Enhancing the thermostability of Escherichia coli l-asparaginase II by substitution with pro in predicted hydrogen-bonded turn structures. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Guo K, Ma X, Sun G, Zhao Y, Li X, Zhao W, Kai L. Expression and characterization of a thermostable sarcosine oxidase (SOX) from Bacillus sp. in Escherichia coli. Appl Microbiol Biotechnol 2006; 73:559-66. [PMID: 16977470 DOI: 10.1007/s00253-006-0502-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/12/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
A heat-stable sarcosine oxidase produced by Bacillus sp. BSD-8 (SOX) had been studied and its complete gene sequence, which contained 1,164 bp nucleotides and encoded a protein of 387 amino acids, was obtained by DNA Walking method. The sox gene was cloned and functionally overexpressed in E. coli and the recombinant SOX (rSOX) was purified to homogeneity, its properties was studied and compared with the wild type of SOX. The rSOX as well as SOX was stable at 60 degrees C and at pH 7.0 approximately 10.0, respectively. The optimal temperature for this enzyme was 60 degrees C and at pH 8.5, it showed its highest activity. The Km and Kcat of the enzyme was 3.1 mM and 20.3/s, respectively. The difference between the properties of the SOX and rSOX was that the SOX contained noncovalent FAD, whereas the rSOX contained covalent FAD. The study also showed that an increased number of alanine residues in the rSOX might have some contribution in the enzymatic thermostability.
Collapse
Affiliation(s)
- Kangping Guo
- College of Life Sciences, Zhejiang University, No. 268 , Kaixuan Road, Hangzhou 310029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
43
|
Yin J, Bowen D, Southerland WM. Barnase thermal titration via molecular dynamics simulations: Detection of early denaturation sites. J Mol Graph Model 2006; 24:233-43. [PMID: 16213760 DOI: 10.1016/j.jmgm.2005.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/02/2005] [Accepted: 08/15/2005] [Indexed: 11/20/2022]
Abstract
The thermal stability of barnase has been studied using constant pressure and temperature (CPT) molecular dynamics at different temperatures. Barnase X-ray coordinates were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB code:1rnb). Simulations were performed at 285, 295, 300, 335, 345, and 395 K in explicit water under periodic boundary conditions for 280 ps. For each simulation, conformations were saved every 0.2 ps. Root mean square deviation (RMSD) values were calculated relative to the starting structure at 300 K and at time t = 0. Root mean square fluctuation (RMSF) values were calculated relative to the average structure obtained from the 300K simulation. Both root mean square deviation and fluctuation analysis indicated the presence of discrete regions of hyper-sensitivity along the barnase polypeptide chain. These regions exhibited spikes in flexibility prior to any global structural changes. The specific changes in barnase backbone flexibility are accompanied by increased phi/psi angle fluctuations. These results suggest the presence of early denaturation sites or denaturation nuclei whose local structure is disrupted prior to global structure disruption. Identification of denaturation nuclei suggests that appropriate amino acid replacements at these sites may lead to the design and development of more stable barnase mutants. This strategy of identifying denaturation nuclei in protein structures may represent a first step in the design of more stable protein structures.
Collapse
Affiliation(s)
- Jian Yin
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | | | | |
Collapse
|
44
|
Takahashi T, Ng KKS, Oyama H, Oda K. Molecular Cloning of the Gene Encoding Vibrio Metalloproteinase Vimelysin and Isolation of a Mutant with High Stability in Organic Solvents. ACTA ACUST UNITED AC 2005; 138:701-10. [PMID: 16428299 DOI: 10.1093/jb/mvi173] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Vimelysin is a unique metalloproteinase from Vibrio sp. T1800 exhibiting high activity at low temperature and high stability in organic solvents such as ethanol. A 1,821 bp open reading frame of the vimelysin gene encoded 607 amino acid residues consisting of an N-terminal pro-region, a mature enzyme, and a C-terminal pro-region. The mature enzyme region showed 80%, 57% and 35% sequence identity with the mature forms of vibriolysin from V. vulnificus, pseudolysin from Pseudomonas aeruginosa, and thermolysin from Bacillus thermoproteolyticus, respectively. The catalytic residues and zinc-binding motifs of metalloproteinases are well conserved in vimelysin. The vimelysin gene was expressed in E. coli JM109 cells and the recombinant enzyme was purified as a 38-kDa mature form from cell-free extracts. The purified recombinant enzyme is indistinguishable from the enzyme purified directly from Vibrio. To obtain mutants exhibiting higher stability in organic solvents, random mutations were introduced by error-prone PCR and 600 transformants were screened. The N123D mutant exhibits two times higher stability in organic solvents than the wild-type enzyme. A plausible mechanism for the stability of the N123D mutant in organic solvents was discussed based on homology models of vimelysin and the N123D mutant.
Collapse
Affiliation(s)
- Toshihiro Takahashi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585
| | | | | | | |
Collapse
|
45
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
46
|
Sun JY, Liu MQ, Xu YL, Xu ZR, Pan L, Gao H. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expr Purif 2005; 42:122-30. [PMID: 15939297 DOI: 10.1016/j.pep.2005.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/03/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
To improve the thermostability and catalytic activity of Aspergillus niger xylanase A (AnxA), its N-terminus was substituted with the corresponding region of Thermomonospora fusca xylanase A (TfxA). The constructed hybrid xylanase, named ATx, was overexpressed in Pichia pastoris and secreted into the medium. After 96-h 0.25% methanol induction, the activity of the ATx in the culture supernatant reached its peak, 633 U/mg, which was 3.6 and 5.4 times as high as those of recombinant AnxA (reAnxA) and recombinant TfxA (reTfxA), respectively. Studies on enzymatic properties showed that the temperature and pH optimum of the ATx were 60 degrees C and 5.0, respectively. The ATx was more thermostable, when it was treated at 70 degrees C, pH 5.0, for 2 min, the residual activity was 72% which was higher than that of reAnxA and similar to that of reTfxA. The ATx was very stable over a broader pH range (3.0-10.0) and much less affected by acid/base conditions. After incubation at pH 3.0-10.0, 25 degrees C for 1 h, all the residual activities of the ATx were over 80%. These results revealed that the thermostability and catalytic activity of the AnxA were enhanced. The N-terminus of TfxA contributed to the observed thermostability of itself and the ATx, and to the high activity of the ATx. Replacement of N-terminus between mesophilic eukaryotic and thermostable prokaryotic enzymes may be a useful method for constructing the new and improved versions of biologically active enzymes.
Collapse
Affiliation(s)
- Jian-Yi Sun
- Microbiology Division, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
47
|
Eijsink VGH, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G. Rational engineering of enzyme stability. J Biotechnol 2004; 113:105-20. [PMID: 15380651 DOI: 10.1016/j.jbiotec.2004.03.026] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/16/2004] [Accepted: 03/04/2004] [Indexed: 11/19/2022]
Abstract
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5040, N-1432 As.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nakasone N, Toma C, Song T, Iwanaga M. Purification and characterization of a novel metalloprotease isolated fromAeromonas caviae. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09687.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Fadda GC, Lairez D, Arrio B, Carton JP, Larreta-Garde V. Enzyme-catalyzed gel proteolysis: an anomalous diffusion-controlled mechanism. Biophys J 2004; 85:2808-17. [PMID: 14581186 PMCID: PMC1303562 DOI: 10.1016/s0006-3495(03)74704-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enzyme-catalyzed proteolysis of gelatin gels has been studied. We report a gel degradation rate varying as the square of the enzyme concentration. The diffusion motion of enzymes in the gel has been measured by two-photon fluorescence correlation spectroscopy and identified as being anomalously slow. These experimental results are discussed from a theoretical point of view and interpreted in terms of a diffusion-controlled mechanism for the gel degradation. These results make a step toward the understanding of enzyme-catalyzed gel degradation and give new insight on biological processes such as the action of metalloproteinases in the extracellular matrix involved in cellular invasion.
Collapse
Affiliation(s)
- G C Fadda
- Laboratoire Léon Brillouin, Commissariat à l'Energie Atomique/Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
50
|
Abstract
Alkaline proteases are of considerable interest in view of their activity and stability at alkaline pH. This review describes the proteases that can resist extreme alkaline environments produced by a wide range of alkalophilic microorganisms. Different isolation methods are discussed which enable the screening and selection of promising organisms for industrial production. Further, strain improvement using mutagenesis and/or recombinant DNA technology can be applied to augment the efficiency of the producer strain to a commercial status. The various nutritional and environmental parameters affecting the production of alkaline proteases are delineated. The purification and properties of these proteases is discussed, and the use of alkaline proteases in diverse industrial applications is highlighted.
Collapse
Affiliation(s)
- C G Kumar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal 132 001, India
| | | |
Collapse
|