1
|
Aikawa Y, Yamagata K, Katsumoto T, Shima Y, Shino M, Stanley ER, Cleary ML, Akashi K, Tenen DG, Kitabayashi I. Essential role of PU.1 in maintenance of mixed lineage leukemia-associated leukemic stem cells. Cancer Sci 2015; 106:227-36. [PMID: 25529853 PMCID: PMC4373983 DOI: 10.1111/cas.12593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/14/2014] [Indexed: 01/24/2023] Open
Abstract
Acute myeloid leukemia is a clonal malignant disorder derived from a small number of leukemic stem cells (LSCs). Rearrangements of the mixed lineage leukemia (MLL) gene are found in acute myeloid leukemia associated with poor prognosis. The upregulation of Hox genes is critical for LSC induction and maintenance, but is unlikely to support malignancy and the high LSC frequency observed in MLL leukemias. The present study shows that MLL fusion proteins interact with the transcription factor PU.1 to activate the transcription of CSF-1R, which is critical for LSC activity. Acute myeloid leukemia is cured by either deletion of PU.1 or ablation of cells expressing CSF-1R. Kinase inhibitors specific for CSF-1R prolong survival time. These findings indicate that PU.1-mediated upregulation of CSF-1R is a critical effector of MLL leukemogenesis.
Collapse
Affiliation(s)
- Yukiko Aikawa
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Togami K, Kitaura J, Uchida T, Inoue D, Nishimura K, Kawabata KC, Nagase R, Horikawa S, Izawa K, Fukuyama T, Nakahara F, Oki T, Harada Y, Harada H, Aburatani H, Kitamura T. A C-terminal mutant of CCAAT-enhancer-binding protein α (C/EBPα-Cm) downregulates Csf1r, a potent accelerator in the progression of acute myeloid leukemia with C/EBPα-Cm. Exp Hematol 2014; 43:300-8.e1. [PMID: 25534203 DOI: 10.1016/j.exphem.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
Abstract
Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis. Notably, like C/EBPα-K304_R323dup, any type of C/EBPα-C(m) tested (C/EBPα-S299_K304dup, K313dup, or N321D) by itself induced AML, albeit with different latencies after BMT; C/EBPα-N321D induced AML with the shortest latency. By analyzing the gene expression profiles of C/EBPα-N321D- and mock-transduced c-kit(+)Sca-1(+)Lin(-) cells, we identified Csf1r as a gene downregulated by C/EBPα-N321D. In addition, leukemic cells expressing C/EBPα-C(m) exhibited low levels of colony stimulating factor 1 receptor in mice. On the other hand, transduction with C/EBPα-N(m) did not influence Csf1r expression in c-kit(+)Sca-1(+)Lin(-) cells, implying a unique role for C/EBPα-C(m) in downregulating Csf1r. Importantly, Csf1r overexpression collaborated with C/EBPα-N321D to induce fulminant AML with leukocytosis in mouse BMT models to a greater extent than did C/EBPα-N321D alone. Collectively, these results suggest that C/EBPα-C(m)-mediated downregulation of Csf1r has a negative, rather than a positive, impact on the progression of AML involving C/EBPα-C(m), which might possibly be accelerated by additional genetic and/or epigenetic alterations inducing Csf1r upregulation.
Collapse
Affiliation(s)
- Katsuhiro Togami
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Uchida
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Inoue
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reina Nagase
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kumi Izawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuka Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Division of Radiation Information Registry, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan; Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. ACTA ACUST UNITED AC 2011; 208:1189-201. [PMID: 21555486 PMCID: PMC3173243 DOI: 10.1084/jem.20101823] [Citation(s) in RCA: 688] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive or inappropriate activation of the immune system can be deleterious to the organism, warranting multiple molecular mechanisms to control and properly terminate immune responses. MicroRNAs (miRNAs), ∼22-nt-long noncoding RNAs, have recently emerged as key posttranscriptional regulators, controlling diverse biological processes, including responses to non-self. In this study, we examine the biological role of miR-146a using genetically engineered mice and show that targeted deletion of this gene, whose expression is strongly up-regulated after immune cell maturation and/or activation, results in several immune defects. Collectively, our findings suggest that miR-146a plays a key role as a molecular brake on inflammation, myeloid cell proliferation, and oncogenic transformation.
Collapse
Affiliation(s)
- Mark P Boldin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Insertional oncogenesis by non-acute retroviruses: implications for gene therapy. Viruses 2011; 3:398-422. [PMID: 21994739 PMCID: PMC3186009 DOI: 10.3390/v3040398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 01/10/2023] Open
Abstract
Retroviruses cause cancers in a variety of animals and humans. Research on retroviruses has provided important insights into mechanisms of oncogenesis in humans, including the discovery of viral oncogenes and cellular proto-oncogenes. The subject of this review is the mechanisms by which retroviruses that do not carry oncogenes (non-acute retroviruses) cause cancers. The common theme is that these tumors result from insertional activation of cellular proto-oncogenes by integration of viral DNA. Early research on insertional activation of proto-oncogenes in virus-induced tumors is reviewed. Research on non-acute retroviruses has led to the discovery of new proto-oncogenes through searches for common insertion sites (CISs) in virus-induced tumors. Cooperation between different proto-oncogenes in development of tumors has been elucidated through the study of retrovirus-induced tumors, and retroviral infection of genetically susceptible mice (retroviral tagging) has been used to identify cellular proto-oncogenes active in specific oncogenic pathways. The pace of proto-oncogene discovery has been accelerated by technical advances including PCR cloning of viral integration sites, the availability of the mouse genome sequence, and high throughput DNA sequencing. Insertional activation has proven to be a significant risk in gene therapy trials to correct genetic defects with retroviral vectors. Studies on non-acute retroviral oncogenesis provide insight into the potential risks, and the mechanisms of oncogenesis.
Collapse
|
5
|
PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med 2010; 16:580-5, 1p following 585. [PMID: 20418886 DOI: 10.1038/nm.2122] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/18/2010] [Indexed: 01/07/2023]
Abstract
Leukemias and other cancers possess self-renewing stem cells that help to maintain the cancer. Cancer stem cell eradication is thought to be crucial for successful anticancer therapy. Using an acute myeloid leukemia (AML) model induced by the leukemia-associated monocytic leukemia zinc finger (MOZ)-TIF2 fusion protein, we show here that AML can be cured by the ablation of leukemia stem cells. The MOZ fusion proteins MOZ-TIF2 and MOZ-CBP interacted with the transcription factor PU.1 to stimulate the expression of macrophage colony-stimulating factor receptor (CSF1R, also known as M-CSFR, c-FMS or CD115). Studies using PU.1-deficient mice showed that PU.1 is essential for the ability of MOZ-TIF2 to establish and maintain AML stem cells. Cells expressing high amounts of CSF1R (CSF1R(high) cells), but not those expressing low amounts of CSF1R (CSF1R(low) cells), showed potent leukemia-initiating activity. Using transgenic mice expressing a drug-inducible suicide gene controlled by the CSF1R promoter, we cured AML by ablation of CSF1R(high) cells. Moreover, induction of AML was suppressed in CSF1R-deficient mice and CSF1R inhibitors slowed the progression of MOZ-TIF2-induced leukemia. Thus, in this subtype of AML, leukemia stem cells are contained within the CSF1R(high) cell population, and we suggest that targeting of PU.1-mediated upregulation of CSF1R expression might be a useful therapeutic approach.
Collapse
|
6
|
Sherr CJ, Kato JY, Borzillo G, Downing JR, Roussel MF. Signal-response coupling mediated by the transduced colony-stimulating factor-1 receptor and its oncogenic fms variants in naive cells. CIBA FOUNDATION SYMPOSIUM 2007; 148:96-104; discussion 104-9. [PMID: 2156660 DOI: 10.1002/9780470513880.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colony-stimulating factor-1 (CSF-1 or M-CSF) supports the proliferation and survival of mononuclear phagocytes by binding to a receptor (CSF-1R) encoded by the c-fms proto-oncogene. Whereas the CSF-1R kinase is normally regulated by ligand, receptors bearing 'activating mutations' act constitutively as enzymes and can transform fibroblasts and haemopoietic cells of different lineages. Introduction of human CSF-1R enables mouse NIH-3T3 cells to form colonies in agar in response to human CSF-1 and to proliferate in serum-free medium supplemented with CSF-1, albumin, transferrin and insulin. Similarly, expression of human CSF-1R in interleukin 3-dependent mouse FDC-P1 myeloid cells enables them to grow in CSF-1. High levels of CSF-1R expression in FDC-P1 cells can induce factor-independent growth which is abrogated by a 'neutralizing' monoclonal antibody to the receptor. Therefore, critical mutations in the c-fms gene or overexpression of CSF-1R in immature myeloid precursors might each contribute to leukaemia.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | | | |
Collapse
|
7
|
Crowther D, Scarffe JH, Howell A, Thatcher N, Bronchud M, Steward WP, Testa N, Dexter M. Growth factor-assisted chemotherapy--the Manchester experience. CIBA FOUNDATION SYMPOSIUM 2007; 148:201-10; discussion 211-4. [PMID: 1690624 DOI: 10.1002/9780470513880.ch14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulation of red cell production by erythropoietin and of granulocyte production by granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage-CSF (GM-CSF) has been demonstrated in several clinical studies. The first study to show that a human CSF could be used to shorten the period of neutropenia and reduce the risk of serious infection following intensive combination chemotherapy was carried out in Manchester using G-CSF. The period of neutropenia was significantly shortenened (by a median of 80%) and the neutrophil count levels were restored and above normal by 14 days after chemotherapy. In view of these results a further study was undertaken to examine the possibility of using intensive two weekly chemotherapy under cover of G-CSF. Treatment with Doxorubicin at doses of 75, 100, 125 and 150 mg/m2 was followed by infusion of G-CSF for 11 days. The neutrophil counts returned to normal within 12-14 days, allowing the delivery of up to three cycles of high dose chemotherapy at 14 day intervals. These studies demonstrated that intensive chemotherapy with dose-limiting myelodepression can be given with increased frequency under cover of G-CSF. Our studies using GM-CSF have also shown that administration by continuous i.v. infusion can reduce the period of life-threatening neutropenia following high dose Melphalan (120 mg/m2) without resort to autologous bone marrow transplantation (ABMT). In this study the period of granulocytopenia following Melphalan (less than 500 g x 10(9)/m2) was less than 15 days. This compares favourably with other series using high dose Melphalan followed by ABMT without CSF, where the duration of severe neutropenia was prolonged beyond three weeks. Although it appears that G-CSF and GM-CSF should be given either by continuous i.v. infusion or s.c. injection at doses between 3-10 micrograms/kg/day to obtain maximum biological effect, a great deal more work is required to determine optimum schedules and investigate the possibility of using more than one bioregulator.
Collapse
Affiliation(s)
- D Crowther
- Department of Medical Oncology, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
9
|
Follows GA, Tagoh H, Richards SJ, Melnik S, Dickinson H, de Wynter E, Lefevre P, Morgan GJ, Bonifer C. c-FMS chromatin structure and expression in normal and leukaemic myelopoiesis. Oncogene 2005; 24:3643-51. [PMID: 15806141 DOI: 10.1038/sj.onc.1208655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The macrophage colony-stimulating factor receptor is encoded by the c-FMS gene, and it has been suggested that altered regulation of c-FMS expression may contribute to leukaemic transformation. c-FMS is expressed in pluripotent haemopoietic precursor cells and is subsequently upregulated during monocytic differentiation, but downregulated during granulopoiesis. We have examined transcription factor occupancy and aspects of chromatin structure of the critical c-FMS regulatory element located within the second intron (FIRE - fms intonic regulatory element) during normal and leukaemic myelopoiesis. Granulocytic differentiation from normal and leukaemic precursors is accompanied by loss of transcription factors at FIRE and downregulated c-FMS expression. The presence of AML1-ETO in leukaemic cells does not prevent this disassembly. In nonleukaemic cells, granulocytic differentiation is accompanied by reversal to a chromatin fine structure characteristic of c-FMS-nonexpressing cells. In addition, we show that low-level expression of the gene in leukaemic blast cells and granulocytes does not associate with increased CpG methylation across the c-FMS locus.
Collapse
|
10
|
Abstract
Slow transforming retroviruses, such as the Moloney murine leukemia virus (M-MuLV), induce tumors upon infection of a host after a relatively long latency period. The underlying mechanism leading to cell transformation is the activation of proto-oncogenes or inactivation of tumor suppressor genes as a consequence of proviral insertions into the host genome. Cells carrying proviral insertions that confer a selective advantage will preferentially grow out. This means that proviral insertions mark genes contributing to tumorigenesis, as was demonstrated by the identification of numerous proto-oncogenes in retrovirally induced tumors in the past. Since cancer is a complex multistep process, the proviral insertions in one clone of tumor cells also represent oncogenic events that cooperate in tumorigenesis. Novel advances, such as the launch of the complete mouse genome, high-throughput isolation of proviral flanking sequences, and genetically modified animals have revolutionized proviral tagging into an elegant and efficient approach to identify signaling pathways that collaborate in cancer.
Collapse
Affiliation(s)
- Harald Mikkers
- Division of Molecular Genetics and Centre of Biomedical Genetics, Netherlands Cancer Institute 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Abu-Duhier FM, Goodeve AC, Care RS, Gari M, Wilson GA, Peake IR, Reilly JT. Mutational analysis of class III receptor tyrosine kinases (C-KIT, C-FMS, FLT3) in idiopathic myelofibrosis. Br J Haematol 2003; 120:464-70. [PMID: 12580961 DOI: 10.1046/j.1365-2141.2003.04108.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic DNA from patients with idiopathic myelofibrosis (IMF) was screened by polymerase chain reaction (PCR) and conformation sensitive gel electrophoresis (CSGE) for mutations in the C-KIT gene (60 patients), as well as the C-FMS and FLT3 genes (40 patients). Intronic primers were used to amplify the entire coding region of both the C-KIT and C-FMS genes, and selected regions of the FLT3 gene. CSGE and direct DNA sequencing detected all previously reported as well as several novel polymorphisms in each of the genes. A novel c-fms exon 9 mutation (Gly413Ser) was detected in two patients. Its functional significance remains to be determined. The c-kit mutation Asp52Asn, previously described in two of six IMF patients in Japan, was not detected in this study. In addition, the reported c-fms mutations involving codons 301 and 969 were not identified. Therefore, in contrast to acute myeloid leukaemia, mutations in RTKs class III do not appear to play a significant pathogenetic role in idiopathic myelofibrosis.
Collapse
Affiliation(s)
- Faisel M Abu-Duhier
- Academic Unit of Haematology, Division of Genomic Medicine, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
13
|
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
14
|
Himes SR, Tagoh H, Goonetilleke N, Sasmono T, Oceandy D, Clark R, Bonifer C, Hume DA. A highly conserved c‐
fms
gene intronic element controls macrophage‐specific and regulated expression. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.5.812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- S. Roy Himes
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Hiromi Tagoh
- University of Leeds, Molecular Medicine Unit, St. James University Hospital, Leeds, United Kingdom
| | - Nilukshi Goonetilleke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Tedjo Sasmono
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Delvac Oceandy
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Richard Clark
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Constanze Bonifer
- University of Leeds, Molecular Medicine Unit, St. James University Hospital, Leeds, United Kingdom
| | - David A. Hume
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| |
Collapse
|
15
|
Largaespada DA. Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies. Leukemia 2000; 14:1174-84. [PMID: 10914539 DOI: 10.1038/sj.leu.2401852] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of myeloid leukemia induced by slow transforming murine leukemia viruses (MuLV) in the laboratory mouse has led to discovery of many important genes with critical roles in regulating the growth, death, lineage determination and development of hematopoietic precursor cells. This review provides an overview of the susceptible strains and virus isolates that cause acute myeloid leukemia (AML) in mice. In addition, newer methodologies, involving the use of the polymerase chain reaction, that have been used to identify cancer genes mutated by proviral insertion in mouse models, will be discussed. As cancer is a multi-gene disease, a system in which pairs of oncogenic mutations are classified as redundant, neutral or synergistic is described. The potential to combine MuLV mutagenesis with recent advances in mouse transgenesis in order to model specific forms of myeloid leukemia or genetic pathways common in human AML will be discussed. Finally, a general strategy for maximizing these genetically rich models to foster a better understanding of AML physiology and developing therapies is proposed.
Collapse
MESH Headings
- Acute Disease
- Animals
- Biological Specimen Banks
- Crosses, Genetic
- DNA, Neoplasm/genetics
- Databases, Factual
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Library
- Genetic Heterogeneity
- Genetic Predisposition to Disease
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/isolation & purification
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/genetics
- Leukemia, Experimental/pathology
- Leukemia, Experimental/virology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/virology
- Mice
- Mice, Inbred Strains/genetics
- Mice, Inbred Strains/virology
- Mice, Transgenic
- Mutagenesis, Insertional
- Oncogenes
- Polymerase Chain Reaction
- Proto-Oncogenes
- Proviruses/genetics
- Retroviridae Infections/genetics
- Retroviridae Infections/pathology
- Retroviridae Infections/virology
- Transgenes
- Tumor Virus Infections/genetics
- Tumor Virus Infections/pathology
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- D A Largaespada
- Department of Genetics, Cell Biology and Development, Institute of Human Genetics, and University of Minnesota Cancer Center, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
16
|
Tian E, Sawyer JR, Largaespada DA, Jenkins NA, Copeland NG, Shaughnessy JD. Evi27 encodes a novel membrane protein with homology to the IL17 receptor. Oncogene 2000; 19:2098-109. [PMID: 10815801 DOI: 10.1038/sj.onc.1203577] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evi27 is a common site of retroviral integration in BXH2 murine myeloid leukemias. Here we show that integration at Evi27 occurs in a CpG island approximately 6 kb upstream from a novel gene (designated Evii27) with homology to the IL17 receptor (Il17r) and that proviral integrations result in increased expression of the Evi27 protein on the cell surface. The human EVI27 homolog was also cloned and mapped to chromosome 3p21. Multiple Evi27 isoforms were detected at the RNA and protein level in both human and mouse, indicating that Evi27 expression is complex. Some of the isoforms are shown to likely represent secreted soluble forms of the protein produced by intron incorporation or by proteolytic cleavage. In the mouse, highest Evi27 expression occurs in liver and testes with lower expression in kidney and lung. In humans, EVI27 is expressed at high levels in the kidney, with moderate levels in the liver, brain, and testes. Within hematopoietic cells, Evi27 expression is restricted. Northern and Western analysis showed that Evi27 is expressed in selected T-cell, B-cell and myeloid cell lines. These results suggest that Evi27 expression is tightly regulated during hematopoietic differentiation. Collectively, these studies identify a new member of the cytokine receptor family whose increased and uncoordinated expression may lead to myeloid leukemia by altering Evi27's normal ability to control the growth and/or differentiation of hematopoietic cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- Cloning, Molecular
- CpG Islands
- Gene Expression Regulation
- Humans
- Leukemia, Myeloid/genetics
- Liver/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- Receptors, Cytokine
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-17
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- Testis/metabolism
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- E Tian
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | | | |
Collapse
|
17
|
Behre G, Zhang P, Zhang DE, Tenen DG. Analysis of the modulation of transcriptional activity in myelopoiesis and leukemogenesis. Methods 1999; 17:231-7. [PMID: 10080908 DOI: 10.1006/meth.1998.0733] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is still associated with a mortality of 60 to 80%. AML is characterized by a block in myeloid differentiation. The transcription factors PU.1 and C/EBPalpha are responsible for normal myeloid differentiation from stem cells to monocytes or granulocytes. In particular, PU.1 induces expression of the macrophage colony-stimulating factor (M-CSF) receptor and the development of monocytes, whereas C/EBPalpha increases the expression of the granulocyte colony-stimulating factor (G-CSF) receptor and leads to mature granulocytes. In AML, chromosomal aberrations result in oncoproteins such as AML1/ETO, PML/RARalpha, or activated Ras, which can deregulate genes important for normal myelopoiesis. Thus, AML1/ETO can bind to the transcription factor C/EBPalpha, inhibit C/EBPalpha-dependent transcription, and block granulocytic differentiation. However, AML1/ETO can also synergize with the transcription factor AML1 to enhance the activity of the M-CSF receptor promoter. On the other hand, the PML/RARalpha fusion protein causes transcriptional repression by recruiting the nuclear corepressor (N-CoR) histone deacetylase complex to the DNA, which results in decreased histone acetylation and a repressive chromatin organization. Here we describe methods to investigate whether and how signaling agonists induce myeloid differentiation and how oncoproteins might cause AML by modulating the activity of transcription factors that are pivotal for normal myeloid development.
Collapse
Affiliation(s)
- G Behre
- Harvard Medical School and Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02115, USA
| | | | | | | |
Collapse
|
18
|
Valk PJ, Delwel R. The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis. Leuk Lymphoma 1998; 32:29-43. [PMID: 10036999 DOI: 10.3109/10428199809059244] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Following retroviral insertional mutagenesis we recently identified the gene encoding the peripheral cannabinoid receptor (Cb2) near a common virus integration site (VIS), Evi11. In 13 out of 105 Cas-Br-M murine leukemia virus (MuLV) induced leukemias retroviral integrations occured either in the 5' or 3' part of the Cb2 gene. The Cb2 receptor protein is 44% homologous to the central cannabinoid receptor Cb1, which belongs to the superfamily of seven transmembrane (7TM) receptors. Cb1 is mainly expressed in brain, whereas Cb2 encodes the hematopoietic form. Besides the natural cannabinoids, delta9-tetrahydrocannabinol (delta9-THC) and cannabinol, and the many synthetic agonists that have been generated, e.g CP55,940 or WIN55,212-2, several endogenous ligands have recently been identified. These include the arachidonic acid derivatives anandamide and 2-arachidonylglycerol as well as the fatty acid palmitoylethanolamide. Although in the past many studies described growth inhibitory effects of cannabinoid agonists on the in vitro proliferation of hematopoietic cells, recent studies demonstrated that activation of Cb2 may have growth stimulatory effects on blood precursor cells. We demonstrated that many murine hematopoietic growth factor (HGF) dependent cell lines also require the presence of anandamide for optimal growth in serum free culture. Thus, the Cb2 receptor may be an important regulator of normal hematopoietic growth and development. These results strengthen our finding that Cb2 is a proto-oncogene and may implicate a growth advantage for leukemia cells that aberrantly express Cb2. Here we briefly review the mechanisms and application of retroviral insertional mutagenesis in leukemic transformation in mice and discuss the role of the peripheral cannabinoid receptor in leukemia development and normal hematopoiesis.
Collapse
Affiliation(s)
- P J Valk
- Erasmus University, Institute of Hematology, Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Abstract
Growth factor and cytokine control of hemopoiesis, the process of blood cell development, is mediated by specific interactions with cell-surface receptors. Hemopoietic growth factor receptors belong to two major families, the transmembrane protein tyrosine kinases and the hemopoietin receptors. Ligand binding stimulates receptor aggregation and activation resulting in transduction of signals that induce diverse cellular responses including proliferation, maturation, prevention of apoptosis and/or functional activation. Deregulation of hemopoiesis can result in leukemia, the malignant transformation of blood cells, or the development of other hemoproliferative disorders. As hemopoietic growth factor receptors are integral to blood cell regulation, it is feasible that receptor abnormalities may contribute to leukemia by circumventing normal growth factor control or altering the balance of proliferation and differentiation. Although considerable experimental evidence has clearly established the leukemogenic potential of mutated growth factor receptors, studies to date suggest that such abnormalities contribute only rarely to human disease.
Collapse
Affiliation(s)
- W S Alexander
- The Walter and Eliza Hall Institute for Medical Research and the Cooperative Research Centre for Cellular Growth Factors, PO Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
20
|
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene 1998; 222:1-16. [PMID: 9813219 DOI: 10.1016/s0378-1119(98)00451-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reviewed here three sets of data concerning the integration of retroviral sequences in the mammalian genome: (i) our experimental localization of a number of proviruses integrated in isochores characterized by different GC levels; (ii) results from other laboratories on the localization of retroviral sequences in open chromatin regions and/or next to CpG islands; and (iii) our compositional analysis of genes located in the neighborhood of integrated retroviral sequences. The three sets of data have provided a very consistent picture in that a compartmentalized, isopycnic integration of expressed proviruses appears to be the rule ('isopycnic' refers to the compositional match between viral and host sequences around the integration site). The results reviewed here suggest that: (i) integration of proviral sequences is targeted initially towards 'open chromatin regions'; while these exist in both GC-rich and GC-poor isochores, the 'open chromatin regions' of GC-rich isochores are the main targets for integration of retroviral sequences because of their much greater abundance; (ii) isopycnicity is associated with stability of integration; indeed, even non-expressed integrated retroviral sequences tend to show an isopycnic localization in the genome; (iii) transcription of integrated viral sequences (like transcription of host genes) appears to be associated, as a rule, with an isopycnic localization, as indicated by transcribed sequences that show an isopycnic integration and act in trans; (iv) selection plays a role in the choice of specific sites within an isopycnic region; in exceptional cases [such as mouse mammary tumor virus (MMTV) activating GC-rich oncogenes], selection may override isopycnicity.
Collapse
Affiliation(s)
- A V Rynditch
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005, Paris, France
| | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Wolff L. Contribution of oncogenes and tumor suppressor genes to myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:F67-104. [PMID: 9196020 DOI: 10.1016/s0304-419x(97)00006-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L Wolff
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
24
|
Increased Circulating Colony-Stimulating Factor-1 (CSF-1) in SJL/J Mice With Radiation-Induced Acute Myeloid Leukemia (AML) Is Associated With Autocrine Regulation of AML Cells by CSF-1. Blood 1997. [DOI: 10.1182/blood.v89.7.2537] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The SJL/J mouse strain has a high spontaneous incidence of a B-cell neoplasm, reticulum cell neoplasm type B (RCN B). In addition, following irradiation, 10% to 30% of these mice develop acute myelomonocytic leukemia (radiation-induced acute myeloid leukemia [RI-AML]), an incidence that can be increased to 50% by treatment of the mice with corticosteroids after irradiation. The role played by the mononuclear phagocyte growth factor, colony-stimulating factor-1 (CSF-1), in the development of RI-AML in SJL/J mice was investigated. Mice dying of RI-AML, but not those dying of RCN B or without disease, possessed elevated concentrations of circulating CSF-1. In addition, in mice developing RI-AML with a more prolonged latency, circulating CSF-1 concentrations were increased before overt expression of RI-AML. First-passage tumors from 14 different RI-AMLs all contained high concentrations of CSF-1, and six of six different first- or second-passage tumors expressed the CSF-1 receptor (CSF-1R). Furthermore, in vitro colony formation by first- or second-passage tumor cells from 20 of 20 different RI-AMLs was blocked by neutralizing anti–CSF-1 antibody, and four of four of these tumors were inhibited by anti–CSF-1R antibody. The results of these antibody neutralization studies, coupled with the observation of elevated circulating CSF-1 in mice developing RI-AML, show an autocrine role for CSF-1 in RI-AML development in SJL/J mice. Southern blot analysis of tumor DNA from six of six of these tumors failed to reveal any rearrangements in the genes for CSF-1 or the CSF-1R. Studies in humans have shown that patients with AML possess elevated levels of circulating CSF-1 and that AML cells can express CSF-1 and the CSF-1R. Thus, RI-AML in the SJL/J mouse appears to be a useful model for human AML.
Collapse
|
25
|
Scheijen B, Jonkers J, Acton D, Berns A. Characterization of pal-1, a common proviral insertion site in murine leukemia virus-induced lymphomas of c-myc and Pim-1 transgenic mice. J Virol 1997; 71:9-16. [PMID: 8985317 PMCID: PMC191018 DOI: 10.1128/jvi.71.1.9-16.1997] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insertional mutagenesis with Moloney murine leukemia virus (MoMLV) in c-myc and Pim-1 transgenic mice permits the identification of oncogenes that collaborate with the transgenes in lymphomagenesis. The recently identified common insertion site pal-1, in MoMLV-induced lymphomas, is located in a region in which several independent integration clusters are found: eis-1, gfi-1, and evi-5. Proviral insertions of MoMLV in the different integration clusters upregulate the transcriptional activity of the Gfi-1 gene, which is located within the pal-1 locus. The eis-1/pal-1/gfi-1/evi-5 locus serves as a target for MoMLV proviral insertions in pre-B-cell lymphomas of Emu-myc transgenic mice (20%) and in T-cell lymphomas of H-2K-myc (75%) and Emu-pim-1 (93%) transgenic mice. Many tumors overexpress both Gfi-1 as well as Myc and Pim gene family members, indicating that Gfi-1 collaborates with Myc and Pim in lymphomagenesis. Proviral integrations in the previously identified insertion site bmi-1 are, however, mutually exclusive with integrations in the eis-1/pal-1/gfi-1/evi-5 locus. This finding suggests that Bmi-1 and Gfi-1 belong to the same complementation group in lymphoid transformation.
Collapse
Affiliation(s)
- B Scheijen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
26
|
Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG, Zhang DE. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci U S A 1996; 93:11895-900. [PMID: 8876234 PMCID: PMC38155 DOI: 10.1073/pnas.93.21.11895] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AML1 is involved in the (8;21) translocation, associated with acute myelogenous leukemia (AML)-type M2, which results in the production of the AML1-ETO fusion protein: the amino-terminal 177 amino acids of AML1 and the carboxyl-terminal 575 amino acids of ETO. The mechanism by which AML1-ETO accomplishes leukemic transformation is unknown; however, AML1-ETO interferes with AML1 transactivation of such AML1 targets as the T-cell receptor beta enhancer and the granulocyte-macrophage colony-stimulating factor promoter. Herein, we explored the effect of AML1-ETO on regulation of a myeloid-specific AML1 target, the macrophage colony-stimulating factor (M-CSF) receptor promoter. We found that AML1-ETO and AML1 work synergistically to transactivate the M-CSF receptor promoter, thus exhibiting a different activity than previously described. Truncation mutants within the ETO portion of AML1-ETO revealed the region of ETO necessary for the cooperativity between AML1 and AML1-ETO lies between amino acids 347 and 540. Endogenous M-CSF receptor expression was examined in Kasumi-1 cells, derived from a patient with AML-M2 t(8;21) and the promonocytic cell line U937. Kasumi-1 cells exhibited a significantly higher level of M-CSF receptor expression than U937 cells. Bone marrow from patients with AML-M2 t(8;21) also exhibited a higher level of expression of M-CSF receptor compared with normal controls. The upregulation of M-CSF receptor expression by AML1-ETO may contribute to the development of a leukemic state in these patients.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Line
- Chlorocebus aethiops
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA Primers
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Organ Specificity
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proto-Oncogene Proteins/genetics
- RUNX1 Translocation Partner 1 Protein
- Receptor, Macrophage Colony-Stimulating Factor/biosynthesis
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- K L Rhoades
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Hospital, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yue X, Ross IL, Browne CM, Lichanska A, Favot P, Ostrowski MC, Hume DA. Transcriptional control of the expression of the c-fms gene encoding the receptor for macrophage colony-stimulating factor (CSF-1). Immunobiology 1996; 195:461-76. [PMID: 8933151 DOI: 10.1016/s0171-2985(96)80016-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- X Yue
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
29
|
de Parseval N, Bordereaux D, Varlet P, Gisselbrecht S, Sola B. Isolation of new oncogenic forms of the murine c-fms gene. J Virol 1995; 69:3597-604. [PMID: 7745707 PMCID: PMC189074 DOI: 10.1128/jvi.69.6.3597-3604.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor, which plays a key role in the proliferation and differentiation of cells of the myelomonocytic lineage. In order to study the effects of overexpression of the macrophage colony-stimulating factor receptor in hematopoietic cells, a Harvey sarcoma virus-derived retroviral vector containing the murine c-fms cDNA was pseudotyped with Friend murine leukemia virus and inoculated into newborn DBA/2 mice. This viral complex induced monoclonal or oligoclonal leukemias with a shorter latency than that for Friend murine leukemia virus alone. Unexpectedly, 60% of the integrated fms proviruses had deletions at the 5' end of the c-fms gene. Sequence analysis of seven mutant proviruses indicated that the deletions always included the c-fms ligand binding domain and either occurred within the c-fms sequences, leaving the fms open reading frame unchanged, or joined VL30 sequences located at the 5' end of the parental retroviral vector to internal c-fms sequences, resulting in truncated fms proteins devoid of the canonical signal peptide. In contrast to all tyrosine kinase receptors transduced in retroviruses, no helper gag- or env-derived sequences were fused to the rearranged fms sequences. Viral supernatants isolated from hematopoietic tumors with viruses with deletions were able to transform NIH 3T3 cells as efficiently as parental fms virus, indicating that deletions resulted in constitutive activation of the c-fms gene. These oncogenic variants differ from those transduced in the Suzan McDonough strain of feline sarcoma viruses (L. Donner, L. A. Fedele, C. F. Garon, S. J. Anderson, and C. J. Sherr, J. Virol. 41:489-500, 1982). The high rate of c-fms rearrangement and its relevance in the occurrence of hematopoietic tumors are discussed.
Collapse
Affiliation(s)
- N de Parseval
- Hopital Cochin, Institut Cochin de Genetique Moleculaire, U-363 Institut National de la Santé et de la Recherche Médicale, Université Paris V, France
| | | | | | | | | |
Collapse
|
30
|
Hannemann J, Hara T, Kawai M, Miyajima A, Ostertag W, Stocking C. Sequential mutations in the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor beta-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated beta C subunit. Mol Cell Biol 1995; 15:2402-12. [PMID: 7739524 PMCID: PMC230469 DOI: 10.1128/mcb.15.5.2402] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An amino-terminally truncated beta C receptor (beta C-R) subunit of the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor complex mediates factor-independent and tumorigenic growth in two spontaneous mutants of a promyelocytic cell line. The constitutive activation of the JAK2 protein kinase in these mutants confirms that signaling occurs through the truncated receptor protein. Noteworthily, in addition to a 10-kb deletion in the beta C-R subunit gene encoding the truncated receptor, several secondary and independent mutations that result in the deletion or functional inactivation of the allelic beta C-R subunit and the closely related beta IL3-R subunit genes were observed in both mutants, suggesting that such mutations are necessary for the full oncogenic penetrance of the truncated beta C-R subunit. Reversion of these mutations by the expression of the wild-type beta C-R in the two mutants resulted in a fivefold decrease in cloning efficiency of the mutants in the absence of IL3, confirming a functional interaction between the wild-type and truncated proteins. Furthermore, expression of the truncated beta C-R subunit in factor-dependent myeloid cells did not immediately render the cells autonomous but increased the spontaneous frequency to factor-independent growth by 4 orders of magnitude. Implications for both leukemogenic progression and receptor-subunit interaction and signaling are discussed.
Collapse
Affiliation(s)
- J Hannemann
- Abteilung der Zell- und Virusgenetik, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994. [PMID: 8264604 DOI: 10.1128/mcb.14.1.373] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.
Collapse
|
32
|
Zhang DE, Hetherington CJ, Chen HM, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 1994; 14:373-81. [PMID: 8264604 PMCID: PMC358386 DOI: 10.1128/mcb.14.1.373-381.1994] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.
Collapse
Affiliation(s)
- D E Zhang
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
33
|
Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation. Mol Cell Biol 1993. [PMID: 8497248 DOI: 10.1128/mcb.13.6.3191] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fms protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-fms gene revealed a TATA-less promoter with significant homology to human c-fms. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-fms mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fms RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-fms transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages. Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-fms mRNA production to production of unspliced, truncated transcripts. The c-fms promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-fms promoter-reporter construct. The results suggest that expression of the c-fms gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation.
Collapse
|
34
|
Yue X, Favot P, Dunn TL, Cassady AI, Hume DA. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation. Mol Cell Biol 1993; 13:3191-201. [PMID: 8497248 PMCID: PMC359760 DOI: 10.1128/mcb.13.6.3191-3201.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fms protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-fms gene revealed a TATA-less promoter with significant homology to human c-fms. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-fms mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fms RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-fms transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages. Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-fms mRNA production to production of unspliced, truncated transcripts. The c-fms promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-fms promoter-reporter construct. The results suggest that expression of the c-fms gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation.
Collapse
Affiliation(s)
- X Yue
- Centre for Molecular Biology and Biotechnology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
35
|
de Parseval N, Bordereaux D, Gisselbrecht S, Sola B. Reassessment of the murine c-fms proto-oncogene sequence. Nucleic Acids Res 1993; 21:750. [PMID: 8441691 PMCID: PMC309185 DOI: 10.1093/nar/21.3.750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
36
|
de Parseval N, Fichelson S, Mayeux P, Gisselbrecht S, Sola B. Expression of functional beta-platelet-derived growth factor receptors on hematopoietic cell lines. Cytokine 1993; 5:8-15. [PMID: 8485308 DOI: 10.1016/1043-4666(93)90018-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The beta-type receptor of platelet-derived growth factor (beta PDGFR) is a class III transmembrane receptor with tyrosine kinase activity. The beta PDGFR gene is located on mouse chromosome 18 close to the c-fms gene which codes for the colony stimulating factor-1 receptor (CSF-1R). We previously reported that in a high percentage of myeloblastic leukemias induced by the Friend helper murine leukemia virus (F-MuLV), proviruses were integrated in the first intron of the c-fms gene leading to an enhanced expression of c-fms mRNA. Since activation by proviral insertion can act at long distance, we studied beta PDGF receptor gene expression in murine myeloblastic leukemias. This gene was found to be frequently expressed but the level of beta PDGF receptor mRNA was weak and not related to proviral activation. High affinity binding sites were expressed on myeloblastic cells and ligand binding induced cell proliferation. To determine whether beta PDGFR expression is a common feature in hematopoietic cells, we tested cell lines belonging to other hematopoietic lineages. We found that multipotent stem and mast cell lines also expressed the beta PDGF receptor gene. This suggests that PDGF, known as a mitogen for connective tissue cells, could also play a role in normal hematopoiesis.
Collapse
|
37
|
Tang R, Beuvon F, Ojeda M, Mosseri V, Pouillart P, Scholl S. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J Cell Biochem 1992; 50:350-6. [PMID: 1334964 DOI: 10.1002/jcb.240500403] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infiltrating immune cells in 30 primary human epithelial breast tumours were studied using specific anti-CD3 (T cells), anti-CD68 (macrophages), anti-CD57 (NK cells), and an anti-pan-B cell antibody (L26). The majority of tumour infiltrating inflammatory cells are T cells (40-50%) and monocytes/macrophages (15-35%). The macrophage specific chemo-attractant and growth factor CSF-1 is detected by immunohistochemical techniques (IHC) at the level of invasive breast cancer cells in 46/50 tumours but not at the level of in-situ (pre-invasive) cancer. A mosaic staining pattern was usually observed, with a very high expression in areas of obvious stromal invasion (90% cells positive) and absent or trace staining in intraductal carcinoma. Macrophages and plasma cells are equally intensely positive. In-situ hybridisation experiments confirm the production of CSF-1 (mRNA) by tumour cells and show the same pattern of expression. Expression of the CSF-1 receptor protein (fms) was also observed by IHC in 41/48 invasive tumours, albeit at weaker intensities than in tumour infiltrating monocytes/macrophages. A concomitant expression of both CSF-1 and fms in in-situ carcinoma was never seen (n = 14). It is therefore proposed that the associated expression of CSF-1 and its receptor may be linked to the invasive potential of breast cancer, the monocytic infiltrate being an indication of the quantitative importance of CSF-1 production by the tumour.
Collapse
Affiliation(s)
- R Tang
- Institut Curie, Service de Médecine Oncologique, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Justice MJ, Gilbert DJ, Kinzler KW, Vogelstein B, Buchberg AM, Ceci JD, Matsuda Y, Chapman VM, Patriotis C, Makris A. A molecular genetic linkage map of mouse chromosome 18 reveals extensive linkage conservation with human chromosomes 5 and 18. Genomics 1992; 13:1281-8. [PMID: 1354644 DOI: 10.1016/0888-7543(92)90047-v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An interspecific backcross between C57BL/6J and Mus spretus was used to generate a molecular genetic linkage map of mouse chromosome 18 that includes 23 molecular markers and spans approximately 86% of the estimated length of the chromosome. The Apc, Camk2a, D18Fcr1, D18Fcr2, D18Leh1, D18Leh2, Dcc, Emb-rs3, Fgfa, Fim-2/Csfmr, Gnal, Grl-1, Grp, Hk-1rs1, Ii, Kns, Lmnb, Mbp, Mcc, Mtv-38, Palb, Pdgfrb, and Tpl-2 genes were mapped relative to each other in one interspecific backcross. A second interspecific backcross and a centromere-specific DNA satellite probe were used to determine the distance of the most proximal chromosome 18 marker to the centromere. The interspecific map extends the known regions of linkage homology between mouse chromosome 18 and human chromosomes 5 and 18 and identifies a new homology segment with human chromosome 10p. It also provides molecular access to many regions of mouse chromosome 18 for the first time.
Collapse
Affiliation(s)
- M J Justice
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshimoto T, Yoshimoto E, Meruelo D. Enhanced gene expression of the murine ecotropic retroviral receptor and its human homolog in proliferating cells. J Virol 1992; 66:4377-81. [PMID: 1318407 PMCID: PMC241244 DOI: 10.1128/jvi.66.7.4377-4381.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The receptor for gp70 envelope glycoprotein of murine ecotropic leukemia virus is essential for virus entry into the host cell and has been recently demonstrated to function as a cationic amino acid transporter. In the experiments reported herein, we compared the gene expression of the murine ecotropic retroviral receptor (ERR) and its human homolog (H13) in rapidly proliferating cells versus resting cells using four different systems. (i) The expression of ERR gene is enhanced during activation of T and B lymphocytes by concanavalin A and lipopolysaccharide, respectively. Similar enhancement is observed by adding phorbol 12-myristate 13-acetate (PMA) or calcium ionophore (A23187). These phenomena appear to involve protein kinase C; two PMA analogs, 4 alpha-phorbol and 4 alpha-PMA, lacking the ability to activate protein kinase C fail to induce elevated levels of gene expression, and the protein kinase C inhibitor, H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine dihydrochloride[, inhibits the enhancement induced by PMA. (ii) Friend murine leukemia virus induces rapid splenomegaly, and acute erythroleukemia in sensitive mice. Concomitantly with splenomegaly, ERR gene expression in spleen cells increases dramatically. (iii) The level of expression of the ERR or H13 gene in a variety of tumor cells is highly elevated compared with the level in noncancerous cells. (iv) H13 gene expression decreases upon terminal differentiation of the human promyelocytic leukemia cell line HL-60 into granulocytes or macrophages by dimethyl sulfoxide or PMA, respectively. These results suggest that ERR and H13 genes play an important role in cellular proliferation.
Collapse
Affiliation(s)
- T Yoshimoto
- Department of Pathology, New York University Medical Center, New York 10016
| | | | | |
Collapse
|
40
|
Punt CJ. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review. Leuk Res 1992; 16:551-9. [PMID: 1635374 DOI: 10.1016/0145-2126(92)90001-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of extracellular signals to the interior of the cell. This review summarizes the mechanism of action of PTKs from the major subclasses and the involvement of PTK-encoding oncogenes in the regulation of hematopoietic cell function.
Collapse
Affiliation(s)
- C J Punt
- Department of Medical Oncology, University Hospital Nijmegen, The Netherlands
| |
Collapse
|
41
|
Hoang T. The Role of Interleukin-1 and Colony Stimulating Factors in the Biology of the Blasts of Acute Myeloblasts Leukemia. Leuk Lymphoma 1992. [DOI: 10.3109/10428199209053582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Trang Hoang
- Laboratory of Hemopoiesis and Leukemia, Clinical Research Institute of Montreal, Quebec, Canada
- Department of Biomedical Sciences, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Affiliation(s)
- P Roth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
43
|
Han XD, Wong PM, Chung SW. Chronic myeloproliferative disease induced by site-specific integration of Abelson murine leukemia virus-infected hemopoietic stem cells. Proc Natl Acad Sci U S A 1991; 88:10129-33. [PMID: 1682923 PMCID: PMC52881 DOI: 10.1073/pnas.88.22.10129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently showed that hemopoietic stem cells expressing the v-abl oncogene can cause leukemia when injected into lethally irradiated recipient mice. Progenitor cells expressing v-abl did not significantly contribute to disease development, and the leukemia was monoclonal in origin. By serially transplanting v-abl-transduced hemopoietic stem cells into normal, nonirradiated syngeneic recipients, we showed that multiple stem-cell clones do exist in some recipients. These cells fluctuated as normal stem cells do and could home to normal bone marrow. Based on the time course of disease, the recipients developed either an acute or a chronic phase of disorder. All recipients with the acute disease had stem-cell clones with random Abelson murine leukemia virus integration sites. All recipients with the chronic disorder had a specific Abelson murine leukemia virus integration site. We believe this abl-specific integration site, termed ASI, is important in abl-mediated stem-cell leukemogenesis.
Collapse
Affiliation(s)
- X D Han
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn 11203
| | | | | |
Collapse
|
44
|
Chardin P, Courtois G, Mattei MG, Gisselbrecht S. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucleic Acids Res 1991; 19:1431-6. [PMID: 2027750 PMCID: PMC333897 DOI: 10.1093/nar/19.7.1431] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have isolated a human cDNA (kup), encoding a new protein with two distantly spaced zinc fingers of the C2H2 type. This gene is highly conserved in mammals and is expressed mainly in hematopoietic cells and testis. Its expression was not higher in the various transformed cells tested than in the normal corresponding tissues. The kup gene is located in region q23-q24 of the long arm of human chromosome 14. The kup protein is 433 a.a. long, has a M.W. close to 50 kD and binds to DNA. Although the structure of the kup protein is unusual, the isolated fingers resemble closely those of the Krüppel family, suggesting that this protein is also a transcription factor. The precise function and DNA motif recognized by the kup protein remain to be determined.
Collapse
Affiliation(s)
- P Chardin
- Institut de Pharmacologie du CNRS, Valbonne, France
| | | | | | | |
Collapse
|
45
|
Lacombe C, Chrétien S, Lemarchandel V, Mayeux P, Roméo PH, Gisselbrecht S, Cartron JP. Spleen focus-forming virus long terminal repeat insertional activation of the murine erythropoietin receptor gene in the T3Cl-2 friend leukemia cell line. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89595-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Parwaresch MR, Kreipe H, Radzun HJ, Griesser H. Lineage-specific receptors in the diagnosis of malignant lymphomas and myelomonocytic neoplasms. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1991; 83:495-516. [PMID: 1826097 DOI: 10.1007/978-3-642-75515-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Bergeron D, Poliquin L, Kozak CA, Rassart E. Identification of a common viral integration region in Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas. J Virol 1991; 65:7-15. [PMID: 1845910 PMCID: PMC240483 DOI: 10.1128/jvi.65.1.7-15.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Cas-Br-E murine leukemia virus is a nondefective retrovirus that induces non-T-, non-B-cell lymphomas in susceptible NIH/Swiss mice. By using a DNA probe derived from Cas-Br-E provirus-flanking sequences, we identified a DNA region, originally called Sic-1, rearranged in 16 of 24 tumors analyzed (67%). All proviruses were integrated in a DNA segment smaller than 100 bp and were in the same 5'-to-3' orientation. Ecotropic as well as mink cell focus-forming virus types were found integrated in that specific DNA region. On the basis of Southern blot analysis of somatic cell hybrids and progeny of an interspecies backcross, the Sic-1 region was localized on mouse chromosome 9 near the previously described proto-oncogenes or common viral integration sites: Ets-1, Cbl-2, Tpl-1, and Fli-1. Restriction map analysis shows that this region is identical to the Fli-1 locus identified in Friend murine leukemia virus-induced erythroleukemia cell lines and thus may contain sequences also responsible for the development of mouse non-T-, non-B-cell lymphomas.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Southern
- Cloning, Molecular
- DNA Probes
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Gene Rearrangement
- Immunoglobulin Heavy Chains/genetics
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Lymphoma/genetics
- Lymphoma/microbiology
- Mice
- Mice, Inbred Strains
- Receptors, Antigen, T-Cell/genetics
- Restriction Mapping
Collapse
Affiliation(s)
- D Bergeron
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
48
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
49
|
Kung HJ, Boerkoel C, Carter TH. Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 1991; 171:1-25. [PMID: 1814689 DOI: 10.1007/978-3-642-76524-7_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H J Kung
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | | | |
Collapse
|
50
|
van Lohuizen M, Berns A. Tumorigenesis by slow-transforming retroviruses--an update. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1032:213-35. [PMID: 2261495 DOI: 10.1016/0304-419x(90)90005-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|