1
|
Ma L, Zeng W, Tan Z, Wang R, Yang Y, Lin S, Li F, Wang S. Activated Hepatic Nuclear Factor-κB in Experimental Colitis Regulates CYP2A5 and Metronidazole Disposition. Mol Pharm 2023; 20:1222-1229. [PMID: 36583631 DOI: 10.1021/acs.molpharmaceut.2c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic exposure of metronidazole is increased in patients with inflammatory bowel diseases (IBDs), while the underlying mechanism remains unknown. Here, we aim to decipher the mechanisms by which experimental colitis regulates metronidazole disposition in mice. We first confirmed that the systemic exposure of metronidazole was elevated in dextran sulfate sodium (DSS)-induced experimental colitis. Hepatic microsomal incubation with metronidazole revealed that the production rate of 2-hydroxymetronidazole was inhibited, suggestive of a diminished hydroxylation reaction upon colitis. Remarkably, the hydroxylation reaction of metronidazole was selectively catalyzed by CYP2A5, which was downregulated in the liver of colitis mice. In addition, hepatic nuclear factor (NF)-κB (a prototypical and critical signaling pathway in inflammation) was activated in colitis mice. Luciferase reporter and chromatin immunoprecipitation assay indicated that NF-κB downregulated Cyp2a5 transcription through binding to an NF-κB binding site (-1711 to -1720 bp) in the promoter. We further verified that the regulatory effects of colitis on CYP2A5 depended on the disease itself rather than the DSS compound. First, one-day administration of DSS did not alter mRNA and protein levels of CYP2A5. Moreover, CYP2A5 was suppressed in the Il-10-/- spontaneously developing colitis model. Furthermore, Cyp2a5 expression was downregulated in both groups of mice with modest or severe colitis, whereas the expression change was much more significant in severe colitis as compared to modest colitis. Altogether, activated hepatic NF-κB in experimental colitis regulates CYP2A5 and metronidazole disposition, revealing the mechanism of pharmacokinetic instability under IBDs, and providing a theoretical foundation for rational drug use in the future.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyi Tan
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Rui Wang
- The Third Clinical Medical College, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi Yang
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shubin Lin
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Li
- Infectious Diseases Institute, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Shuai Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhong XB, Lai Y. Special Section on Drug Metabolism and Regulation-Editorial. Drug Metab Dispos 2022; 50:998-999. [PMID: 35817440 DOI: 10.1124/dmd.122.000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
|
3
|
Ye L, Xu Y, Wang L, Zhang C, Hu P, Tong S, Liu Z, Tian D. Downregulation of CYP2E1 is associated with poor prognosis and tumor progression of gliomas. Cancer Med 2021; 10:8100-8113. [PMID: 34612013 PMCID: PMC8607268 DOI: 10.1002/cam4.4320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
Objective To explore the role and possible regulatory mechanisms of CYP2E1 in gliomas. Methods RNA‑seq data and corresponding clinical information of glioma patients were collected from The Cancer Genome Atlas and Chinese Glioma Genome Atlas, and mRNA data of normal brain tissues were obtained by the Genotype‐Tissue Expression project. The Wilcoxon test was performed to analyze the correlation between CYP2E1 expression and glioma subtypes. Univariate and multivariate Cox proportional hazards regression, receiver operating characteristic curves, and Kaplan–Meier plots were used to evaluate the prognostic value of CYP2E1 in glioma. Functional enrichment analyses and immune infiltration analyses were performed to investigate the potential function of CYP2E1 in gliomas. Moreover, we investigated the miRNA and epigenetic mechanisms that regulate CYP2E1 expression. Finally, network pharmacology and molecular docking experiments were used to predict drugs that target CYP2E1. Results The downregulation of CYP2E1 expression may predict a poor prognosis for glioma patients. CYP2E1 expression decreased with increasing WHO grade (II–IV), and its level was correlated with clinical features, including age, 1p19q codeletion status, and IDH state in glioma tissues. Furthermore, CYP2E1 was involved in lipid metabolism and ferroptosis and related to the tumor immune microenvironment due to its strong correlation with the levels of infiltrating monocytes and Tregs. Moreover, variation in the total methylation level and copy number of CYP2E1 was moderately correlated with its mRNA expression (p < 0.05). CYP2E1 was predicted to be targeted by hsa‐miR‐527, whose expression was negatively related to CYP2E1 mRNA expression (p < 0.05). In addition, effective compounds that target CYP2E1, including 18beta‐glycyrrhetinic acid, styrene, toluene, nicotine, m‐xylene, p‐xylene, and colchicine, were identified. Conclusion The downregulation of CYP2E1, which affects lipid metabolism and the ferroptosis signaling pathway, promotes the progression of gliomas.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Zhennan Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
4
|
Nail AN, Spear BT, Peterson ML. Highly homologous mouse Cyp2a4 and Cyp2a5 genes are differentially expressed in the liver and both express long non-coding antisense RNAs. Gene 2020; 767:145162. [PMID: 32987105 DOI: 10.1016/j.gene.2020.145162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
The mammalian Cytochrome P450 (Cyp) gene superfamily encodes enzymes involved in numerous metabolic pathways and are frequently expressed in the liver. Despite the remarkably high sequence similarity of Cyp2a4 and Cyp2a5 genes and their surrounding genomic regions, they exhibit differences in expression in the adult mouse liver. For example, Cyp2a4 is highly female-biased whereas Cyp2a5 is only moderately female-biased and Cyp2a4, but not Cyp2a5, is activated in liver cancer. We hypothesized that the limited sequence differences may help us identify the basis for this differential expression. An antisense expressed sequence tag had been uniquely annotated to the Cyp2a4 gene which led us to investigate this transcript as a possible regulator of this gene. We characterized the full-length antisense transcript and also discovered a similar transcript in the Cyp2a5 gene. These transcripts are nuclear long noncoding RNAs that are expressed similarly to their sense mRNA counterparts. This includes the sex-biased and liver tumor differences seen between the Cyp2a4 and Cyp2a5 genes, but we also find that these two genes and their antisense transcripts are expressed within different zones of the liver structure. Interestingly, while the differences in sex-biased expression of the mRNAs are established 1-2 months after birth, the antisense transcripts exhibit these expression differences earlier, at 3-4 weeks after birth. By analyzing published genomic data, we have identified candidate transcription factor binding sites that could account for differences in Cyp2a4/Cyp2a5 expression. Taken together, these studies characterize the first antisense RNAs within the Cyp supergene family and identify potential transcriptional and post-transcriptional mechanisms governing different Cyp2a4 and Cyp2a5 expression patterns in mouse liver.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Microbiology, Immunology and Molecular Genetics, USA
| | - Brett T Spear
- Department of Microbiology, Immunology and Molecular Genetics, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
5
|
Negishi M, Kobayashi K, Sakuma T, Sueyoshi T. Nuclear receptor phosphorylation in xenobiotic signal transduction. J Biol Chem 2020; 295:15210-15225. [PMID: 32788213 DOI: 10.1074/jbc.rev120.007933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear pregnane X receptor (PXR, NR1I2) and constitutive active/androstane receptor (CAR, NR1I3) are nuclear receptors characterized in 1998 by their capability to respond to xenobiotics and activate cytochrome P450 (CYP) genes. An anti-epileptic drug, phenobarbital (PB), activates CAR and its target CYP2B genes, whereas PXR is activated by drugs such as rifampicin and statins for the CYP3A genes. Inevitably, both nuclear receptors have been investigated as ligand-activated nuclear receptors by identifying and characterizing xenobiotics and therapeutics that directly bind CAR and/or PXR to activate them. However, PB, which does not bind CAR directly, presented an alternative research avenue for an indirect ligand-mediated nuclear receptor activation mechanism: phosphorylation-mediated signal regulation. This review summarizes phosphorylation-based mechanisms utilized by xenobiotics to elicit cell signaling. First, the review presents how PB activates CAR (and other nuclear receptors) through a conserved phosphorylation motif located between two zinc fingers within its DNA-binding domain. PB-regulated phosphorylation at this motif enables nuclear receptors to form communication networks, integrating their functions. Next, the review discusses xenobiotic-induced PXR activation in the absence of the conserved DNA-binding domain phosphorylation motif. In this case, phosphorylation occurs at a motif located within the ligand-binding domain to transduce cell signaling that regulates hepatic energy metabolism. Finally, the review delves into the implications of xenobiotic-induced signaling through phosphorylation in disease development and progression.
Collapse
Affiliation(s)
- Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsutomu Sakuma
- School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, Japan
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Scott JG, Buchon N. Drosophila melanogaster as a powerful tool for studying insect toxicology. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:95-103. [PMID: 31685202 DOI: 10.1016/j.pestbp.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Insecticides are valuable and widely used tools for the control of pest insects. Despite the use of synthetic insecticides for >50 years, we continue to have a limited understanding of the genes that influence the key steps of the poisoning process. Major barriers for improving our understanding of insecticide toxicity have included a narrow range of tools and/or a large number of candidate genes that could be involved in the poisoning process. Herein, we discuss the numerous tools and resources available in Drosophila melanogaster that could be brought to bear to improve our understanding of the processes determining insecticide toxicity. These include unbiased approaches such as forward genetic screens, population genetic methods and candidate gene approaches. Examples are provided to showcase how D. melanogaster has been successfully used for insecticide toxicology studies in the past, and ideas for future studies using this valuable insect are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Escalante DE, Aksan A. Role of Water Hydrogen Bonding on Transport of Small Molecules inside Hydrophobic Channels. J Phys Chem B 2019; 123:6673-6685. [PMID: 31310534 DOI: 10.1021/acs.jpcb.9b03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We conducted a systematic analysis of water networking inside smooth hyperboloid hydrophobic structures (cylindrical, barrel, and hourglass shapes) to elucidate the role of water hydrogen bonding on the transport of small hydrophobic molecules (ligands). Through a series of molecular dynamics simulations, we established that a hydrogen-bonded network forming along the centerline resulted in a water exclusion zone adjacent to the walls. The size of the exclusion zone is a function of the geometry and the nonbonded interaction strength, defining the effective hydrophobicity of the structure. Exclusion of water molecules from this zone results in lower apparent viscosity, leading to acceleration of ligand transport up to 7 times faster than that measured in the bulk. Transport of ligands into and out of the hydrophobic structures was shown to be controlled by a single water molecule that capped the narrow regions in the structure. This mechanism provides physical insights into the behavior and role of water in the bottleneck regions of hydrophobic enzyme channels. These findings were then used in a sister publication [ Escalante , D. E. , Comput. Struct. Biotechnol. J. 2019 17 757 760 ] to develop a model that can accurately predict the transport of ligands along nanochannels of broad-substrate specificity enzymes.
Collapse
Affiliation(s)
- Diego E Escalante
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alptekin Aksan
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
8
|
Leiberich M, Marais HJ, Naidoo V. Phylogenetic analysis of the cytochrome P450 (CYP450) nucleotide sequences of the horse and predicted CYP450s of the white rhinoceros ( Ceratotherium simum) and other mammalian species. PeerJ 2018; 6:e5718. [PMID: 30324017 PMCID: PMC6183514 DOI: 10.7717/peerj.5718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/08/2018] [Indexed: 01/08/2023] Open
Abstract
Background The plight of the white rhinoceros (Ceratotherium simum) and the increasing need of treatment options for injured poaching victims led to the necessity to expand the knowledge on applicable drugs in this endangered species. With very little information available on drug pharmacokinetics in rhino, veterinarians have to rely on information generated from other species. The horse being a closely related species, has served as the model for dose extrapolations. However, from recent research on enrofloxacin and carprofen, the white rhino showed considerable differences in the pharmacokinetic properties of these drugs in comparison to the horse. While the reason for the differences is unknown, a likely cause may be a difference in present cytochrome P450 (CYP450), which may result in the rhino being genetically deficient in certain enzyme families. Methods For this paper we assess the degree of similarity of the CYP genome sequences across the different species, using BLAT (BLAST-like alignment tool) for the alignment of the nucleotide sequences of the equine CYP450 with potential homologous nucleotide sequences of the published database from white rhinos and other mammalian species (cow, pig, dog, sheep, elephant, mouse and human). Results The white rhino nucleotide sequences were 90.74% identical to the equine sequences. This was higher than the degree of similarity between any of the other evaluated species sequences. While no specific CYP family were found to be deficient in the published rhino genome, the horse genome contained additional genetic sequence for a larger number of iso-enzymes that were not present in the rhino. Discussion In pharmacokinetic study, it is well known that absence of a metabolic enzyme will result in constraints in drug metabolism and drug elimination. While this was our speculation, comparison to the horse and other mammalian species indicate that all the described CYP genes required for metabolism are present within the rhino genome. These results leave functional differences in enzyme activity and a lack of isoenzymes as the likely reason for the constraint in drug metabolism. Despite a more than 90% similarity of the equine and rhino gene sequences, seemingly small differences can have major effects on drug metabolism. Thus, in spite of the close anatomical relationship, the rhino should not simply be treated like a big horse.
Collapse
Affiliation(s)
- Marion Leiberich
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | - Vinny Naidoo
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
10
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Negishi M. Phenobarbital Meets Phosphorylation of Nuclear Receptors. Drug Metab Dispos 2017; 45:532-539. [PMID: 28356313 DOI: 10.1124/dmd.116.074872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/13/2017] [Indexed: 02/01/2023] Open
Abstract
Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us.
Collapse
Affiliation(s)
- Masahiko Negishi
- Pharmacogenetics, Reproductive and Developmental Biology, National Institutes of Health National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Venkatachalam A, Parashar A, Manoj KM. Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacol 2016; 4:2. [PMID: 26894412 PMCID: PMC4760962 DOI: 10.1186/s40203-016-0016-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The currently held mechanistic understanding of microsomal cytochrome P450s (CYPs) seeks that diverse drug molecules bind within the deep-seated distal heme pocket and subsequently react at the heme centre. To explain a bevy of experimental observations and meta-analyses, we indulge a hypothesis that involves a "diffusible radical mediated" mechanism. This new hypothesis posits that many substrates could also bind at alternate loci on/within the enzyme and be reacted without the pertinent moiety accessing a bonding proximity to the purported catalytic Fe-O enzyme intermediate. METHODS Through blind and heme-distal pocket centered dockings of various substrates and non-substrates (drug molecules of diverse sizes, classes, topographies etc.) of microsomal CYPs, we explored the possibility of access of substrates via the distal channels, its binding energies, docking orientations, distance of reactive moieties (or molecule per se) to/from the heme centre, etc. We investigated specific cases like- (a) large drug molecules as substrates, (b) classical marker drug substrates, (c) class of drugs as substrates (Sartans, Statins etc.), (d) substrate preferences between related and unrelated CYPs, (e) man-made site-directed mutants' and naturally occurring mutants' reactivity and metabolic disposition, (f) drug-drug interactions, (g) overall affinities of drug substrate versus oxidized product, (h) meta-analysis of in silico versus experimental binding constants and reaction/residence times etc. RESULTS It was found that heme-centered dockings of the substrate/modulator drug molecules with the available CYP crystal structures gave poor docking geometries and distances from Fe-heme centre. In conjunction with several other arguments, the findings discount the relevance of erstwhile hypothesis in many CYP systems. Consequently, the newly proposed hypothesis is deemed a viable alternate, as it satisfies Occam's razor. CONCLUSIONS The new proposal affords expanded scope for explaining the mechanism, kinetics and overall phenomenology of CYP mediated drug metabolism. It is now understood that the heme-iron and the hydrophobic distal pocket of CYPs serve primarily to stabilize the reactive intermediate (diffusible radical) and the surface or crypts of the apoprotein bind to the xenobiotic substrate (and in some cases, the heme distal pocket could also serve the latter function). Thus, CYPs enhance reaction rates and selectivity/specificity via a hitherto unrecognized modality.
Collapse
Affiliation(s)
- Avanthika Venkatachalam
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
| | - Abhinav Parashar
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
| | - Kelath Murali Manoj
- Formerly at PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004, India.
- Formerly at Hemoproteins Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India, 632014.
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Kerala, 679122, India.
| |
Collapse
|
13
|
Deng X, Pu Q, Wang E, Yu C. Celery extract inhibits mouse CYP2A5 and human CYP2A6 activities via different mechanisms. Oncol Lett 2016; 12:5309-5314. [PMID: 28101244 DOI: 10.3892/ol.2016.5317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Human cytochrome P450 (CYP) 2A6 participates in the metabolism of nicotine and precarcinogens, thus the deliberate inhibition of CYP2A6 may reduce cigarette consumption and therefore reduce the risk of developing the types of cancer associated with smoking. The inhibitory effects and mechanisms of celery (Apium graveolens) extract on mouse CYP2A5 and human CYP2A6 activity remain unclear. These effects were investigated in mouse and human liver microsomes using coumarin 7-hydroxylation in a probe reaction. Celery extract reduced CYP2A5 and CYP2A6 activities in vitro in a dose-dependent manner. In vivo experiments also showed that celery extract markedly decreased CYP2A5 activity. The inhibition of celery extract on CYP2A5 was time- and nicotinamide adenine dinucleotide phosphate (NADPH)-independent, and was markedly reduced by ultracentrifugation. Additionally, the inhibition of celery extract on CYP2A6 was time and NADPH-dependent. Levels of inhibition were characterized by a Ki, the measure of the tightness of bonds between the enzyme and its inhibitor, of 266.4 µg/ml for CYP2A5, and a Ki of 1,018 µg/ml and Kinact of 0.3/min for CYP2A6. Kinact is the maximal rate of enzyme inactivation at a saturating concentration of inhibitor. The coumarin derivative 5-methoxypsoralen present in celery extract did not solely to the inhibition of CYP2A5/6 activity. In conclusion, celery extract inhibited the levels of mouse CYP2A5 and human CYP2A6 activity via different mechanisms: Mixed competitive inhibition for CYP2A5 and mechanism-based inhibition for CYP2A6.
Collapse
Affiliation(s)
- Xiao Deng
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qianghong Pu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Erhao Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chao Yu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Kelly A, Proctor RH, Belzile F, Chulze SN, Clear RM, Cowger C, Elmer W, Lee T, Obanor F, Waalwijk C, Ward TJ. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genet Biol 2016; 95:39-48. [PMID: 27497828 DOI: 10.1016/j.fgb.2016.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective constraint.
Collapse
Affiliation(s)
- Amy Kelly
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| | - Robert H Proctor
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA
| | - Francois Belzile
- Université Laval, 1030 avenue de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Sofia N Chulze
- Universidad Nacional de Río Cuarto-CONICET, Rutas 8 and 36 Km 601, 5800 Rio Cuarto, Córdoba, Argentina
| | | | - Christina Cowger
- U.S. Department of Agriculture, Agricultural Research Service, 3411 Gardner Hall, North Carolina State University, Raleigh, NC 27695, USA
| | - Wade Elmer
- The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT 06504, USA
| | - Theresa Lee
- National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Friday Obanor
- Commonwealth Scientific and Industrial Research Organization, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Cees Waalwijk
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Todd J Ward
- U.S. Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA.
| |
Collapse
|
15
|
Paloncýová M, Navrátilová V, Berka K, Laio A, Otyepka M. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. J Chem Theory Comput 2016; 12:2101-9. [DOI: 10.1021/acs.jctc.6b00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markéta Paloncýová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Veronika Navrátilová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karel Berka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Alessandro Laio
- SISSA - Scuola
Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17 Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
16
|
Okamatsu G, Komatsu T, Ono Y, Inoue H, Uchide T, Onaga T, Endoh D, Kitazawa T, Hiraga T, Uno Y, Teraoka H. Characterization of feline cytochrome P450 2B6. Xenobiotica 2016; 47:93-102. [DOI: 10.3109/00498254.2016.1145754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yuka Ono
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Hiroki Inoue
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tsuyoshi Uchide
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takenori Onaga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takeo Hiraga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| |
Collapse
|
17
|
Srivastava S, Sangwan RS, Tripathi S, Mishra B, Narnoliya LK, Misra LN, Sangwan NS. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation. PROTOPLASMA 2015; 252:1421-37. [PMID: 25687294 DOI: 10.1007/s00709-015-0766-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/20/2015] [Indexed: 05/16/2023]
Abstract
Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.
Collapse
MESH Headings
- Biotransformation
- Cloning, Molecular
- Computational Biology
- Cytochrome P-450 Enzyme System/chemistry
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Databases, Genetic
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Hydroxylation
- Indoleacetic Acids/pharmacology
- Isoenzymes
- Light
- Models, Molecular
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Medicinal
- Protein Conformation
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Structure-Activity Relationship
- Substrate Specificity
- Withania/drug effects
- Withania/enzymology
- Withania/genetics
- Withania/radiation effects
- Withanolides/metabolism
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Negev, Israel
| | - Rajender Singh Sangwan
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India.
- Centre of Innovative and Applied Bioprocessing (CIAB), (A National Institute under Department of Biotechnology, Government of India), Mohali, 1600 71, Punjab, India.
| | - Sandhya Tripathi
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - Bhawana Mishra
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - L K Narnoliya
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - L N Misra
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India
| | - Neelam S Sangwan
- Metabolic and Structural Biology Department, CSIR-Central Institute for Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, UP, India.
- Centre of Innovative and Applied Bioprocessing (CIAB), (A National Institute under Department of Biotechnology, Government of India), Mohali, 1600 71, Punjab, India.
| |
Collapse
|
18
|
Ravlić S, Žučko J, Tanković MS, Fafanđel M, Bihari N. Sequence analysis of novel CYP4 transcripts from Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:300-309. [PMID: 26176904 DOI: 10.1016/j.etap.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 enzymes (CYPs) are essential components of cellular detoxification system. We identified and characterized seven new cytochrome P450 gene transcript clusters in the populations of bivalve mollusc Mytilus galloprovincialis from three different locations. The phylogenetic analysis identified all transcripts as clusters within the CYP4 branch. Identified clusters, each comprising a number of transcript variants, were designated CYP4Y1, Y2, Y3, Y4, Y5, Y6 and Y7. Transcript clusters CYP4Y2 and Y7, and CYP4Y5 and Y6 showed site specificity, while the transcript clusters CYP4Y1, Y3 and Y4 were present at all investigated locations. The comparison of transcripts deduced amino acid sequences with CYP4s from vertebrate and invertebrate species showed high conservation of the residues and domains essential to the putative function of the enzyme, as terminal ω-hydroxylation and prostaglandin hydroxylation. Our results suggest the great expansion of the CYP4Y cDNAs indicative of CYP4 proteins in the mussel M. galloprovincialis presumably as a response to different environmental conditions.
Collapse
Affiliation(s)
- Sanda Ravlić
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mirta Smodlaka Tanković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Fafanđel
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Nevenka Bihari
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
19
|
Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci U S A 2015; 112:3074-9. [PMID: 25713355 DOI: 10.1073/pnas.1414657112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Correcting a genetic mutation that leads to a loss of function has been a challenge. One such mutation is in aldehyde dehydrogenase 2 (ALDH2), denoted ALDH2*2. This mutation is present in ∼ 0.6 billion East Asians and results in accumulation of toxic acetaldehyde after consumption of ethanol. To temporarily increase metabolism of acetaldehyde in vivo, we describe an approach in which a pharmacologic agent recruited another ALDH to metabolize acetaldehyde. We focused on ALDH3A1, which is enriched in the upper aerodigestive track, and identified Alda-89 as a small molecule that enables ALDH3A1 to metabolize acetaldehyde. When given together with the ALDH2-specific activator, Alda-1, Alda-89 reduced acetaldehyde-induced behavioral impairment by causing a rapid reduction in blood ethanol and acetaldehyde levels after acute ethanol intoxication in both wild-type and ALDH2-deficient, ALDH2*1/*2, heterozygotic knock-in mice. The use of a pharmacologic agent to recruit an enzyme to metabolize a substrate that it usually does not metabolize may represent a novel means to temporarily increase elimination of toxic agents in vivo.
Collapse
|
20
|
Okamatsu G, Komatsu T, Kubota A, Onaga T, Uchide T, Endo D, Kirisawa R, Yin G, Inoue H, Kitazawa T, Uno Y, Teraoka H. Identification and functional characterization of novel feline cytochrome P450 2A. Xenobiotica 2014; 45:503-10. [PMID: 25547627 DOI: 10.3109/00498254.2014.998322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Cytochrome P450s are the major metabolizing enzymes for xenobiotics in humans and other mammals. Although the domestic cat Felis catus, an obligate carnivore, is the most common companion animal, the properties of cytochrome P450 subfamilies are largely unknown. 2. We newly identified the feline CYP2A13, which consists of 494 deduced amino acids, showing the highest identity to CYP2As of dogs, followed by those of pigs, cattle and humans. 3. The feline CYP2A13 transcript and protein were expressed almost exclusively in the liver without particular sex-dependent differences. 4. The feline CYP2A13 protein heterogeneously expressed in Escherichia coli showed metabolic activity similar to those of human and canine CYP2As for coumarin, 7-ethoxycoumarin and nicotine. 5. The results indicate the importance of CYP2A13 in systemic metabolism of xenobiotics in cats.
Collapse
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University , Ebetsu, Hokkaido , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Penco S, Venco E, Lio A. Lost in translation: the need for better tools. Altern Lab Anim 2014; 42:P41-5. [PMID: 25290949 DOI: 10.1177/026119291404200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although for most pharmaceutical compounds the final aim is improving human health, almost all the methods used to identify and pursue therapeutic targets and to obtain new potential drugs have traditionally focused on animal models
Collapse
|
22
|
Kingsley LJ, Lill MA. Including ligand-induced protein flexibility into protein tunnel prediction. J Comput Chem 2014; 35:1748-56. [PMID: 25043499 PMCID: PMC4122613 DOI: 10.1002/jcc.23680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
In proteins with buried active sites, understanding how ligands migrate through the tunnels that connect the exterior of the protein to the active site can shed light on substrate specificity and enzyme function. A growing body of evidence highlights the importance of protein flexibility in the binding site on ligand binding; however, the influence of protein flexibility throughout the body of the protein during ligand entry and egress is much less characterized. We have developed a novel tunnel prediction and evaluation method named IterTunnel, which includes the influence of ligand-induced protein flexibility, guarantees ligand egress, and provides detailed free energy information as the ligand proceeds along the egress route. IterTunnel combines geometric tunnel prediction with steered molecular dynamics in an iterative process to identify tunnels that open as a result of ligand migration and calculates the potential of mean force of ligand egress through a given tunnel. Applying this new method to cytochrome P450 2B6, we demonstrate the influence of protein flexibility on the shape and accessibility of tunnels. More importantly, we demonstrate that the ligand itself, while traversing through a tunnel, can reshape tunnels due to its interaction with the protein. This process results in the exposure of new tunnels and the closure of preexisting tunnels as the ligand migrates from the active site.
Collapse
Affiliation(s)
- Laura J. Kingsley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr. West Lafayette, IN 47907
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr. West Lafayette, IN 47907
| |
Collapse
|
23
|
Rua F, Di Nardo G, Sadeghi SJ, Gilardi G. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates. Biotechnol Appl Biochem 2014; 59:479-89. [PMID: 23586958 DOI: 10.1002/bab.1051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/08/2023]
Abstract
Macaca fascicularis P450 2C20 shares 92% identity with human cytochrome P450 2C8, which is involved in the metabolism of more than 8% of all prescribed drugs. To date, only paclitaxel and amodiaquine, two substrate markers of the human P450 2C8, have been experimentally confirmed as M. fascicularis P450 2C20 drugs. To bridge the lack of information on the ligands recognized by M. fascicularis P450 2C20, in this study, a three-dimensional homology model of this enzyme was generated on the basis of the available crystal structure of the human homologue P450 2C8 using YASARA. The results indicated that 90.0%, 9.0%, 0.5%, and 0.5% of the residues of the P450 2C20 model were located in the most favorable, allowed, generously allowed, and disallowed regions, respectively. The root-mean-square deviation of the C-alpha superposition of the M. fascicularis P450 2C20 model with the Homo sapiens P450 2C8 was 0.074 Å, indicating a very high similarity of the two structures. Subsequently, the 2C20 model was used for in silico screening of 58 known P450 2C8 substrates and 62 inhibitors. These were also docked in the active site of the crystal structure of the human P450 2C8. The affinity of each compound for the active site of both cytochromes proved to be very similar, meaning that the few key residues that are mutated in the active site of the M. fascicularis P450 do not prevent the P450 2C20 from recognizing the same substrates as the human P450 2C8.
Collapse
Affiliation(s)
- Francesco Rua
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|
24
|
Grobler L, Grobler A, Haynes R, Masimirembwa C, Thelingwani R, Steenkamp P, Steyn HS. The effect of the Pheroid delivery system on the in vitro metabolism and in vivo pharmacokinetics of artemisone. Expert Opin Drug Metab Toxicol 2014; 10:313-25. [PMID: 24511903 DOI: 10.1517/17425255.2014.885503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The objectives were to determine the pharmacokinetics (PK) of artemisone and artemisone formulated in the Pheroid® drug delivery system in primates and to establish whether the formulation affects the in vitro metabolism of artemisone in human and monkey liver and intestinal microsomes. METHODS For the PK study, a single oral dose of artemisone was administered to vervet monkeys using a crossover design. Plasma samples were analyzed by means of liquid chromatography-tandem mass spectrometry. For the in vitro metabolism study, clearance was determined using microsomes and recombinant CYP3A4 enzymes, and samples were analyzed by means of ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. RESULTS Artemisone and M1 plasma levels were unexpectedly low compared to those previously recorded in rodents and humans. The in vitro intrinsic clearance (CLint) of the reference formulation with monkey liver microsomes was much higher (1359.33 ± 103.24 vs 178.86 ± 23.42) than that of human liver microsomes. The in vitro data suggest that microsomal metabolism of artemisone is inhibited by the Pheroid delivery system. CONCLUSIONS The in vivo results obtained in this study indicate that the Pheroid delivery system improves the PK profile of artemisone. The in vitro results indicate that microsomal metabolism of artemisone is inhibited by the Pheroid delivery system.
Collapse
Affiliation(s)
- Lizette Grobler
- North-West University, Faculty of Health Sciences, DST/NWU Preclinical Drug Development Platform , Potchefstroom , South Africa +27 18 299 2281, +27 18 299 4467 ; +27 18 285 2233 ; ;
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Landry MP, Barone PW, Kim JH, Lin S, Ulissi ZW, Lin D, Mu B, Boghossian AA, Hilmer AJ, Rwei A, Hinckley AC, Kruss S, Shandell MA, Nair N, Blake S, Şen F, Şen S, Croy RG, Li D, Yum K, Ahn JH, Jin H, Heller DA, Essigmann JM, Blankschtein D, Strano MS. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. NATURE NANOTECHNOLOGY 2013; 8:959-68. [PMID: 24270641 PMCID: PMC5051352 DOI: 10.1038/nnano.2013.236] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 10/10/2013] [Indexed: 05/18/2023]
Abstract
Understanding molecular recognition is of fundamental importance in applications such as therapeutics, chemical catalysis and sensor design. The most common recognition motifs involve biological macromolecules such as antibodies and aptamers. The key to biorecognition consists of a unique three-dimensional structure formed by a folded and constrained bioheteropolymer that creates a binding pocket, or an interface, able to recognize a specific molecule. Here, we show that synthetic heteropolymers, once constrained onto a single-walled carbon nanotube by chemical adsorption, also form a new corona phase that exhibits highly selective recognition for specific molecules. To prove the generality of this phenomenon, we report three examples of heteropolymer-nanotube recognition complexes for riboflavin, L-thyroxine and oestradiol. In each case, the recognition was predicted using a two-dimensional thermodynamic model of surface interactions in which the dissociation constants can be tuned by perturbing the chemical structure of the heteropolymer. Moreover, these complexes can be used as new types of spatiotemporal sensors based on modulation of the carbon nanotube photoemission in the near-infrared, as we show by tracking riboflavin diffusion in murine macrophages.
Collapse
Affiliation(s)
- Jingqing Zhang
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Divanovic S, Dalli J, Jorge-Nebert LF, Flick LM, Gálvez-Peralta M, Boespflug ND, Stankiewicz TE, Fitzgerald JM, Somarathna M, Karp CL, Serhan CN, Nebert DW. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. THE JOURNAL OF IMMUNOLOGY 2013; 191:3347-57. [PMID: 23956430 DOI: 10.4049/jimmunol.1300699] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B₄ (LTB₄) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB₄ levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB₄ formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.
Collapse
Affiliation(s)
- Senad Divanovic
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Lucia F Jorge-Nebert
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Leah M Flick
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Marina Gálvez-Peralta
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Nicholas D Boespflug
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Traci E Stankiewicz
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Jonathan M Fitzgerald
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Maheshika Somarathna
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| | - Christopher L Karp
- Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati OH 45229
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Daniel W Nebert
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati OH 45267-0056
| |
Collapse
|
27
|
Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R. Changing the Regioselectivity of a P450 from C15 to C11 Hydroxylation of Progesterone. Chembiochem 2012; 13:1161-6. [DOI: 10.1002/cbic.201100811] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Indexed: 11/11/2022]
|
28
|
Pretheeban M, Hammond G, Bandiera S, Riggs W, Rurak D. Ontogenesis of phase I hepatic drug metabolic enzymes in sheep. Reprod Fertil Dev 2012; 24:425-37. [DOI: 10.1071/rd11159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/05/2011] [Indexed: 12/23/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are important for the metabolism of many drugs. While there is information on their identity and ontogeny in humans and rodents, similar data in sheep are lacking. In the present study, cDNA sequences of several CYP enzymes (CYP2A6, CYP2C19, CYP2D6) were cloned by rapid amplification of cDNA ends. In adult, newborn and fetal sheep the mRNA and protein levels of these CYPs and the regulatory factor, hepatic nuclear factor 4α (HNF4α) were determined in liver samples using real-time PCR and western blotting. The effect of antenatal glucocorticoid on these enzymes was also studied by i.v. infusion of cortisol (0.45 mg h–1; 80 h) to another group of fetuses. The mRNA and protein levels of the CYPs and HNF4α were low or absent in the fetus, followed by increasing levels in the newborn and adult. Fetal cortisol administration significantly increased the mRNA and protein levels of CYP2D6. Moreover, the correlation observed between the CYP and HNF4α mRNA levels suggests a possible regulatory role for this transcription factor. The findings suggest that fetal and newborn lambs have a low ability to metabolise drugs that are substrates of these enzymes, and that this ability increases with advancing postnatal age, similar to the situation in humans.
Collapse
|
29
|
Hollander M, Zhou X, Maier CR, Patterson AD, Ding X, Dennis PA. A Cyp2a polymorphism predicts susceptibility to NNK-induced lung tumorigenesis in mice. Carcinogenesis 2011; 32:1279-84. [PMID: 21625009 PMCID: PMC3149208 DOI: 10.1093/carcin/bgr097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 02/06/2023] Open
Abstract
Lung tumors from smokers as well as lung tumors from mice exposed to tobacco carcinogens such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), often carry mutations in K-ras, which activates downstream-signaling pathways such as PI3K/AKT/mTOR pathway. Mice with genetic deletion of one of three isoforms of AKT were used to investigate the role of AKT in mutant K-ras-induced lung tumorigenesis in mice. Although deletion of Akt1 or Akt2 decreased NNK-induced lung tumor formation by 90%, deletion of Akt2 failed to decrease lung tumorigenesis in two other mouse models driven by mutant K-ras. Genetic mapping showed that Akt2 was tightly linked to the cytochrome P450 Cyp2a locus on chromosome 7. Consequently, targeted deletion of Akt2 created linkage to a strain-specific Cyp2a5 polymorphism that decreased activation of NNK in vitro. Mice with this Cyp2a5 polymorphism had decreased NNK-induced DNA adduct formation in vivo and decreased NNK-induced lung tumorigenesis. These studies support human epidemiological studies linking CYP2A polymorphisms with lung cancer risk in humans and highlight the need to confirm phenotypes of genetically engineered mice in multiple mouse strains.
Collapse
Affiliation(s)
| | - Xin Zhou
- Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | | | - Andrew D. Patterson
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Phillip A. Dennis
- To whom correspondence should be addressed. Tel: 301-496-0929 Fax: 301-435-4345
| |
Collapse
|
30
|
Okamoto M, Kushiro T, Jikumaru Y, Abrams SR, Kamiya Y, Seki M, Nambara E. ABA 9'-hydroxylation is catalyzed by CYP707A in Arabidopsis. PHYTOCHEMISTRY 2011; 72:717-22. [PMID: 21414645 DOI: 10.1016/j.phytochem.2011.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 02/08/2011] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) catabolism is important for regulating endogenous ABA levels. To date, most effort has focused on catabolism of ABA to phaseic acid (PA), which is generated spontaneously after 8'-hydroxylation of ABA by cytochrome P450s in the CYP707A subfamily. Neophaseic acid (neoPA) is another well-documented ABA catabolite that is produced via ABA 9'-hydroxylation, but the 9'-hydroxylase has not yet been defined. Here, we show that endogenous neoPA levels are reduced in loss-of-function mutants defective in CYP707A genes. In addition, in planta levels of both neoPA and PA are reduced after treatment of plants with uniconazole-P, a P450 inhibitor. These lines of evidence suggest that CYP707A genes also encode the 9'-hydroxylase required for neoPA synthesis. To test this, in vitro enzyme assays using microsomal fractions from CYP707A-expressing yeast strains were conducted and these showed that all four Arabidopsis CYP707As are 9'-hydroxylases, although this activity is minor. Collectively, our results demonstrate that ABA 9'-hydroxylation is catalyzed by CYP707As as a side reaction.
Collapse
|
31
|
Zhang T, Liu LA, Lewis DFV, Wei DQ. Long-Range Effects of a Peripheral Mutation on the Enzymatic Activity of Cytochrome P450 1A2. J Chem Inf Model 2011; 51:1336-46. [DOI: 10.1021/ci200112b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University), Luc Montagnier Biomedical Research Institute, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Minhang District, China 200240
| | - Limin Angela Liu
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States 98109
| | - David F. V. Lewis
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University), Luc Montagnier Biomedical Research Institute, and College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Minhang District, China 200240
| |
Collapse
|
32
|
Oezguen N, Kumar S. Analysis of Cytochrome P450 Conserved Sequence Motifs between Helices E and H: Prediction of Critical Motifs and Residues in Enzyme Functions. ACTA ACUST UNITED AC 2011; 2:1000110. [PMID: 25426333 PMCID: PMC4241269 DOI: 10.4172/2157-7609.1000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational approaches have been extensively used to investigate the role of active site residues in cytochrome P450 (CYP) functions. However, recent studies using random mutagenesis suggest an important role for non-active site residues in CYP functions. Meta-analysis of the random mutants showed that 75% of the functionally important non-active site residues are present in 20% of the entire protein between helices E and H (E-H) and conserved sequence motif (CSM) between 7 and 11. The CSM approach was developed recently to investigate the functional role of non-active site residues in CYP2B4. Furthermore, we identified and analyzed the CSM in multiple CYP families and subfamilies in the E-H region. Results from CSM analysis showed that CSM 7, 8, 10, and 11 are conserved in CYP1, CYP2, and CYP3 families, while CSM 9 is conserved only in CYP2 family. Analysis of different CYP2 subfamilies showed that CYP2B and CYP2C have similar characteristics in the CSM, while the characteristics of CYP2A and CYP2D subfamilies are different. Finally, we analyzed CSM 7, 8, 10, and 11, which are common in all the CYP families/subfamilies analyzed, in fifteen important drug-metabolizing CYPs. The results showed that while CSM 8 is most conserved among these CYPs, CSM 7, 9, and 10 have significant variations. We suggest that CSM8 has a common role in all the CYPs that have been analyzed, while CSM 7, 10, and 11 may have relatively specific role within the subfamily. We further suggest that these CSM play important role in opening and closing of the substrate access/egress channel by modulating the flexible/plastic region of the protein. Thus, site-directed mutagenesis of these CSM can be used to study structure-function and dynamic/plasticity-function relationships and to design CYP biocatalysts.
Collapse
Affiliation(s)
- Numan Oezguen
- Internal Medicine-Endocrinology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, MO, USA
| |
Collapse
|
33
|
Hardstone MC, Komagata O, Kasai S, Tomita T, Scott JG. Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus. INSECT MOLECULAR BIOLOGY 2010; 19:717-726. [PMID: 20629774 DOI: 10.1111/j.1365-2583.2010.01030.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Previous studies on a strain of Culex pipiens quinquefasciatus from Saudi Arabia indicated permethrin resistance was a result of cytochrome P450 mediated detoxification and kdr. The P450 detoxification was found to be larval specific and associated with a fitness cost in certain environments. The P450 responsible for resistance (and the fitness cost) has not been identified, but recently two candidate P450s (CYP4H34 and CYP9M10) have been found. We measured cytochrome P450 and cytochrome b₅ content as well as the expression levels of CYP4H34 and CYP9M10 in a susceptible (SLAB) and two isogenic strains (isolated by repeated backcrossing and selection) of mosquito (ISOP450 and ISOJPAL) resistant to permethrin. Cytochrome P450 protein levels of the resistant strains were significantly higher (1.5-fold) than SLAB, but were not significantly different from one another. Expression of CYP4H34 in the larvae and adults of the resistant (ISOP450 and ISOJPAL) and susceptible (SLAB) strains were not statistically different. CYP9M10 was found to be significantly over-expressed in larvae of both permethrin-resistant isogenic strains (1800-fold in ISOP450 and 870-fold in ISOJPAL) when compared to SLAB. Partial sequence analysis of CYP9M10 revealed eight polymorphic sites that distinguished the susceptible allele from the resistant allele. We conclude that CYP9M10 is linked to permethrin resistance in these strains of C. p. quinquefasciatus, and is likely to be the P450 gene responsible for resistance in these strains.
Collapse
Affiliation(s)
- M C Hardstone
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-0901, USA
| | | | | | | | | |
Collapse
|
34
|
Schmitz A, Demmel S, Peters LM, Leeb T, Mevissen M, Haase B. Comparative human-horse sequence analysis of the CYP3A subfamily gene cluster. Anim Genet 2010; 41 Suppl 2:72-9. [DOI: 10.1111/j.1365-2052.2010.02111.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Uehara S, Murayama N, Yamazaki H, Uno Y. A novel CYP2A26 identified in cynomolgus monkey liver metabolizes coumarin. Xenobiotica 2010; 40:621-9. [DOI: 10.3109/00498254.2010.501118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Swart AC, Storbeck KH, Swart P. A single amino acid residue, Ala 105, confers 16alpha-hydroxylase activity to human cytochrome P450 17alpha-hydroxylase/17,20 lyase. J Steroid Biochem Mol Biol 2010; 119:112-20. [PMID: 20043997 DOI: 10.1016/j.jsbmb.2009.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
Abstract
In adrenal steroidogenesis, CYP17 catalyses the 17alpha-hydroxylation of pregnenolone and progesterone and the subsequent 17,20-lyase reaction, yielding adrenal androgens. The enzyme exhibits distinctly different selectivities towards these substrates in various species. CYP17 has also been shown to exhibit 16alpha-hydroxylase activity towards progesterone in some species, with only human and chimp CYP17 catalysing the biosynthesis of substantial amounts of 16-OHprogesterone. The 16alpha-hydroxylase activity was investigated by introducing an Ala105Leu substitution into human CYP17. The converse mutation, Leu105Ala was introduced into the baboon, goat and pig enzymes. Wt human CYP17 converted approximately 30% progesterone to 16-OHprogesterone while the Ala105Leu mutant converted negligible amounts to 16-OHprogesterone ( approximately 9%), comparable to wt CYP17 of the other three species when expressed in COS-1 cells. The ratio of 17-hydroxylated products to 16-OHprogesterone of human CYP17 was 2.7 and that of the mutant human construct 10.5. Similar ratios were observed for human and goat CYP17 with the corresponding Ala or Leu residues. Although the Leu105Ala mutation of both baboon and pig CYP17 exhibited the same trend regarding the ratios, the rate of progesterone conversion was reduced. Coexpression with cytochrome b(5) significantly decreased the ratio of 17-hydroxylated products to 16-OHprogesterone in the Leu105 constructs, while effects were negligible with Ala at this position. Homology models show that Ala105 faces towards the active pocket in the predicted B'-C domain of CYP17. The smaller residue allows more flexibility of movement in the active pocket than Leu, presenting both the C16 and C17 of progesterone to the iron-oxy complex.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | | | | |
Collapse
|
37
|
Sawayama AM, Chen MMY, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH. A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chemistry 2009; 15:11723-9. [PMID: 19774562 PMCID: PMC3118466 DOI: 10.1002/chem.200900643] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Herein we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant.
Collapse
Affiliation(s)
- Andrew M. Sawayama
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| | - Michael M. Y. Chen
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| | - Palaniappan Kulanthaivel
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Ming-Shang Kuo
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Horst Hemmerle
- Dr. P. Kulanthaivel, Dr. M.-S. Kuo, Dr. H. Hemmerle, Eli Lilly & Company, Indianapolis, IN 46285 (USA)
| | - Frances H. Arnold
- Dr. A. M. Sawayama, M. M. Y. Chen, Prof. F. H. Arnold, Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125-4100 (USA), Fax: (+1) 626-528-8743
| |
Collapse
|
38
|
Lin HL, Zhang H, Noon KR, Hollenberg PF. Mechanism-based inactivation of CYP2B1 and its F-helix mutant by two tert-butyl acetylenic compounds: covalent modification of prosthetic heme versus apoprotein. J Pharmacol Exp Ther 2009; 331:392-403. [PMID: 19700628 DOI: 10.1124/jpet.109.158782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism-based inactivation of cytochrome CYP2B1 [wild type (WT)] and its Thr205 to Ala mutant (T205A) by tert-butylphenylacetylene (BPA) and tert-butyl 1-methyl-2-propynyl ether (BMP) in the reconstituted system was investigated. The inactivation of WT by BPA exhibited a k(inact)/K(I) value of 1343 min(-1)mM(-1) and a partition ratio of 1. The inactivation of WT by BMP exhibited a k(inact)/K(I) value of 33 min(-1)mM(-1) and a partition ratio of 10. Liquid chromatography/tandem mass spectrometry analysis (LC/MS/MS) of the WT revealed 1) inactivation by BPA resulted in the formation of a protein adduct with a mass increase equivalent to the mass of BPA plus one oxygen atom, and 2) inactivation by BMP resulted in the formation of multiple heme adducts that all exhibited a mass increase equivalent to BMP plus one oxygen atom. LC/MS/MS analysis indicated the formation of glutathione (GSH) conjugates by the reaction of GSH with the ethynyl moiety of BMP or BPA with the oxygen being added to the internal or terminal carbon. For the inactivation of T205A by BPA and BMP, the k(inact)/K(I) values were suppressed by 100- and 4-fold, respectively, and the partition ratios were increased 9- and 3.5-fold, respectively. Only one major heme adduct was detected following the inactivation of the T205A by BMP. These results show that the Thr205 in the F-helix plays an important role in the efficiency of the mechanism-based inactivation of CYP2B1 by BPA and BMP. Homology modeling and substrate docking studies were presented to facilitate the interpretation of the experimental results.
Collapse
Affiliation(s)
- Hsia-Lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | |
Collapse
|
39
|
Capponi L, Schmitz A, Thormann W, Theurillat R, Mevissen M. In vitro evaluation of differences in phase 1 metabolism of ketamine and other analgesics among humans, horses, and dogs. Am J Vet Res 2009; 70:777-86. [DOI: 10.2460/ajvr.70.6.777] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
CYP1A1 and CYP1A2 expression: comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines. Toxicol Appl Pharmacol 2009; 237:119-26. [PMID: 19285097 DOI: 10.1016/j.taap.2009.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 03/02/2009] [Indexed: 12/17/2022]
Abstract
Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how "human-like" can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.
Collapse
|
41
|
Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM. Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 2008; 392:1059-73. [PMID: 18622752 DOI: 10.1007/s00216-008-2248-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät für Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strabetae 6, 44227, Dortmund, Germany
| | | | | | | | | |
Collapse
|
42
|
Enhancements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism and carcinogenic risk via NNK/arsenic interaction. Toxicol Appl Pharmacol 2008; 227:108-14. [DOI: 10.1016/j.taap.2007.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 12/12/2022]
|
43
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
44
|
Visoni S, Meireles N, Monteiro L, Rossini A, Pinto LFR. Different modes of inhibition of mouse Cyp2a5 and rat CYP2A3 by the food-derived 8-methoxypsoralen. Food Chem Toxicol 2007; 46:1190-5. [PMID: 18215451 DOI: 10.1016/j.fct.2007.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/14/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
CYP2A enzymes are responsible for nicotine metabolism and for activating tobacco-related carcinogens. Inhibition of CYP2A is a promising approach in chemoprevention, which could lead to a decrease in cigarette consumption and to a reduction in tobacco-related cancer risk. 8-Methoxypsoralen (8-MOP) is a mechanism-based inhibitor of human CYP2A6 and CYP2A13. 8-MOP is also an inhibitor of Cyp2a5, but the mode of this inhibition is unknown. There is no published data on the inhibition of CYP2A3 by 8-MOP. The objective of this work was to investigate the characteristics of 8-MOP inhibition on mouse hepatic Cyp2a5 and rat nasal CYP2A3, in order to determine the best experimental model for chemoprevention studies using 8-MOP. The results show that 8-MOP inhibits CYP2a5 through three different mechanisms: competitive, non-competitive (K(iu)=1.7 microM), and mechanism-based (K(inactivation) of 0.17 min(-1)). By contrast, 8-MOP was able to inhibit CYP2A3-mediated coumarin 7-hydroxylase only in a non-competitive way (K(iu)=0.22 microM). In conclusion, we showed that 8-MOP inhibits Cyp2a5 and CYP2A3 through different mechanisms.
Collapse
Affiliation(s)
- S Visoni
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
45
|
Uno Y, Hosaka S, Matsuno K, Nakamura C, Kito G, Kamataki T, Nagata R. Characterization of cynomolgus monkey cytochrome P450 (CYP) cDNAs: Is CYP2C76 the only monkey-specific CYP gene responsible for species differences in drug metabolism? Arch Biochem Biophys 2007; 466:98-105. [PMID: 17689485 DOI: 10.1016/j.abb.2007.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Cynomolgus monkey CYP2C76 does not have a corresponding ortholog in humans, and it is at least partly responsible for differences in drug metabolism between monkeys and humans. To determine if CYP2C76 is the only monkey-specific CYP gene, we identified cynomolgus monkey cDNAs for CYP2A23, CYP2A24, CYP2E1, CYP2J2, CYP3A5, CYP3A8, CYP4A11, CYP4F3, CYP4F11, CYP4F12, and CYP4F45. These CYP cDNAs showed a high sequence identity (93-96%) to the homologous human CYP cDNAs. The monkey CYPs were preferentially expressed in liver among the analyzed tissues. Moreover, all five analyzed monkey CYPs (CYP2A23, CYP2A24, CYP2E1, CYP3A5, and CYP3A8) metabolized typical substrates for human CYPs in the corresponding subfamilies. These results suggest that these 11 monkey CYP cDNAs are closely related to the human CYP cDNAs and thus, unlike CYP2C76, are not apparent monkey-specific cDNAs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Laboratory of Translational Research, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 14 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD, Scott EE. Structure of the human lung cytochrome P450 2A13. J Biol Chem 2007; 282:17306-13. [PMID: 17428784 DOI: 10.1074/jbc.m702361200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.
Collapse
Affiliation(s)
- Brian D Smith
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gu J, Chen CS, Wei Y, Fang C, Xie F, Kannan K, Yang W, Waxman DJ, Ding X. A mouse model with liver-specific deletion and global suppression of the NADPH-cytochrome P450 reductase gene: characterization and utility for in vivo studies of cyclophosphamide disposition. J Pharmacol Exp Ther 2007; 321:9-17. [PMID: 17218484 DOI: 10.1124/jpet.106.118240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A mouse model combining liver-specific deletion with global suppression of the NADPH-cytochrome P450 reductase gene (Cpr) has been developed and characterized. These mice (designated "Cpr-low and liver-Cpr-null" or CL-LCN) retain the respective phenotypes of the previously reported Cpr-low (CL) and liver-Cpr-null (LCN) mouse strains, but hepatic deletion of the Cpr gene occurs at an earlier age in the CL-LCN mouse than in the LCN mouse. Residual hepatic microsomal CPR activities are very low in both CL-LCN and LCN mice (at 1.5 and 2.5% of wild-type levels, respectively). The utility of CL-LCN mice for in vivo drug metabolism studies was explored using the cytochrome P450 (P450) prodrug cyclophosphamide (CPA). After i.p. injection of CPA at 100 mg/kg, the t1/2 and the area under the concentration-time curve for plasma CPA were significantly increased in mice deficient in liver CPR compared with wild-type controls, indicating a lower rate of metabolism, with the effects greater in CL-LCN mice than in LCN mice. Correspondingly, substantial decreases in Cmax, and increases in Tmax, and t1/2, of 4-hydroxycyclophosphamide (4-OH-CPA) formation were observed in both LCN and CL-LCN mice relative to wild-type controls. In contrast, CPA and 4-OH-CPA pharmacokinetic parameters were essentially unchanged in CL mice, relative to wild-type controls. The slower elimination of CPA in CL-LCN mice compared with LCN mice suggests a role for extrahepatic P450 in the in vivo metabolism of CPA and demonstrates the utility of the CL-LCN model in determining the role of extrahepatic P450 enzymes in drug metabolism and chemical toxicity.
Collapse
Affiliation(s)
- Jun Gu
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007; 24:585-609. [PMID: 17534532 DOI: 10.1039/b604190f] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew W Munro
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
49
|
Storbeck KH, Swart P, Graham S, Swart AC. Evidence for the functional role of residues in the B'-C loop of baboon cytochrome P450 side-chain cleavage (CYP11A1) obtained by site-directed mutagenesis, kinetic analysis and homology modelling. J Steroid Biochem Mol Biol 2007; 103:65-75. [PMID: 17081746 DOI: 10.1016/j.jsbmb.2006.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
To gain further insight into the structure/function relationship of cytochrome P450 side-chain cleavage (CYP11A1), this enzyme was investigated in the Cape baboon (Papio ursinus). Four constructs were cloned and characterised in non-steroidogenic mammalian COS-1 cells. Wild type recombinant baboon CYP11A1 cDNA yielded a K(m) value of 1.6 microM for 25-hydroxycholesterol. The single amino acid substitutions, I98Q and I98K resulted in a 1.7- and 2.8-fold increases in K(m) values, respectively. Conversely, the introduction of the mutation, K103A, resulted in a 1.8-fold decrease in K(m). A homology model of CYP11A1, based on the crystal structures of CYP102 and CYP2C5, revealed that residues 98 and 103 lie within the B'-C loop and contribute to the spatial orientation and structural integrity of this domain. Based on these results we propose a topological model of the CYP11A1 active pocket, which is supported by substrate docking analysis and kinetic studies.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | |
Collapse
|
50
|
Dragan CA, Blank LM, Bureik M. Increased TCA cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. Yeast 2006; 23:779-94. [PMID: 16921551 DOI: 10.1002/yea.1383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cytochrome P450s are haem-containing monooxygenases that catalyse a variety of oxidations utilizing a large substrate spectrum and are therefore of interest for biotechnological applications. We expressed human CYP21 in fission yeast Schizosaccharomyces pombe as a eukaryotic model for P450-dependent whole-cell biotransformation. The resulting strain displayed strong steroid hydroxylase activity that was accompanied by contrary effects on respiration and non-respiratory oxygen consumption, which combined to a significant decline in total oxygen consumption of the cells. While production of ROS (reactive oxygen species) decreased, the TCA cycle activity increased, as was shown by metabolic flux (METAFoR) analysis. Pentose phosphate pathway (PPP) activity was found to be negligible, regardless of growth phase, CYP21 expression or biocatalytic activity, indicating that NADPH levels in Sz. pombe are sufficiently high to support an exogenous P450 without adaptations of central carbon metabolism. We conclude from these data that neither oxygen supply nor NADPH availability are limiting factors in P450-dependent biocatalysis in Sz. pombe.
Collapse
|