1
|
Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 2011; 6:420. [PMID: 20959818 DOI: 10.1038/msb.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/27/2010] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.
Collapse
|
2
|
Pellman D. David Pellman: Grasping the geometry of cancer. Interviewed by Caitlin Sedwick. J Cell Biol 2010; 190:4-5. [PMID: 20624895 PMCID: PMC2911666 DOI: 10.1083/jcb.1901pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
David Pellman investigates the constraints and advantages that alteration of chromosome number places on dividing cells.
Collapse
|
3
|
Eiznhamer DA, Ashburner BP, Jackson JC, Gardenour KR, Lopes JM. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame. Mol Microbiol 2004. [DOI: 10.1111/j.1365-2958.2001.02330.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Escobar-Henriques M, Daignan-Fornier B, Collart MA. The critical cis-acting element required for IMD2 feedback regulation by GDP is a TATA box located 202 nucleotides upstream of the transcription start site. Mol Cell Biol 2003; 23:6267-78. [PMID: 12917347 PMCID: PMC180940 DOI: 10.1128/mcb.23.17.6267-6278.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanylic nucleotides are essential cellular players, and the critical enzyme in their tightly regulated synthesis in Saccharomyces cerevisiae is encoded by the IMD2 gene. The transcription of IMD2 is subject to general repression by nutrient limitation through the cis nutrient-sensing element. It is also subject to specific feedback regulation by the end products of the guanylic nucleotide synthesis pathway. The critical cis element for this latter mechanism is the guanine response element (GRE), a TATAATA sequence which is located 202 nucleotides upstream of the transcription initiation site and which functions as the IMD2 TATA box. We show that the GRE functions in conjunction with a 52-nucleotide stretch near the transcription start site. This very unusual promoter structure ensures low, basal expression of IMD2 and the recruitment of TFIID to the GRE in response to guanylic nucleotide limitation.
Collapse
|
5
|
Lemaire M, Collart MA. The TATA-binding Protein-associated Factor yTafII19p Functionally Interacts with Components of the Global Transcriptional Regulator Ccr4-Not Complex and Physically Interacts with the Not5 Subunit. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61462-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Lemaire M, Xie J, Meisterernst M, Collart MA. The NC2 repressor is dispensable in yeast mutated for the Sin4p component of the holoenzyme and plays roles similar to Mot1p in vivo. Mol Microbiol 2000; 36:163-73. [PMID: 10760173 DOI: 10.1046/j.1365-2958.2000.01839.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NC2 (Dr1/DRAP1) and Mot1p are global repressors of transcription that have been isolated in both Saccharomyces cerevisiae and humans. NC2 is a dimeric histone-fold complex that represses RNA polymerase II transcription through binding to TBP and inhibition of TFIIA and TFIIB. Mot1p is an ATPase that removes DNA-bound TBP upon ATP hydrolysis. In this work, we studied the core promoter specificity of NC2 in vivo using a strain that carries mutated NC2beta activity. We show that NC2, like Mot1p, is required for transcription of the HIS3 and HIS4 TATA-less core promoters. Furthermore, whereas neither Mot1p nor NC2 appear to function as repressors of the HIS3 gene in cells growing exponentially in glucose, we find that both are required for repression of the HIS3 TATA promoter when cells go through the diauxic shift. Thus, the activity of these factors is similarly regulated depending upon the physiological conditions, and it appears that core promoters activated or repressed by them in vivo might be distinguishable by whether or not they contain a canonical TATA sequence. Finally, although NC2 is an essential factor for yeast viability, we isolated a mutation in a non-essential component of the holoenzyme, Sin4p, that bypasses the requirement for NC2.
Collapse
Affiliation(s)
- M Lemaire
- Département de Biochimie Médicale, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
7
|
Hallstrom TC, Moye-Rowley WS. Divergent transcriptional control of multidrug resistance genes in Saccharomyces cerevisiae. J Biol Chem 1998; 273:2098-104. [PMID: 9442049 DOI: 10.1074/jbc.273.4.2098] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Improper control of expression of ATP binding cassette transporter-encoding genes is an important contributor to acquisition of multidrug resistance in human tumor cells. In this study, we have analyzed the function of the promoter region of the Saccharomyces cerevisiae YOR1 gene, which encodes an ATP binding cassette transporter protein that is required for multidrug tolerance in S. cerevisiae. Deletion analysis of a YOR1-lacZ fusion gene defines three important transcriptional regulatory elements. Two of these elements serve to positively regulate expression of YOR1, and the third element is a negative regulatory site. One positive element corresponds to a Pdr1p/Pdr3p response element, a site required for transcriptional control by the homologous zinc finger transcription factors Pdr1p and Pdr3p in other promoters. The second positive element is located between nucleotides -535 and -299 and is referred to as UASYOR1 (where UAS is upstream activation sequence). Interestingly, function of UASYOR1 is inhibited by the downstream negative regulatory site. Promoter fusions constructed between UASYOR1 and the PDR5 promoter, another gene under Pdr1p/Pdr3p control, are active, whereas analogous promoter fusions constructed with the CYC1 promoter are not. This suggests the possibility that UASYOR1 has promoter-specific sequence requirements that are satisfied by another Pdr1p/Pdr3p-regulated gene but not by a heterologous promoter.
Collapse
Affiliation(s)
- T C Hallstrom
- Molecular Biology Program, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
8
|
Sakurai H, Fukasawa T. Yeast Gal11 and transcription factor IIE function through a common pathway in transcriptional regulation. J Biol Chem 1997; 272:32663-9. [PMID: 9405484 DOI: 10.1074/jbc.272.51.32663] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The global transcription regulator Gal11, a component of RNA polymerase II holoenzyme, is required for full expression of many genes in yeast. We previously reported that Gal11 binds the small (Tfa2) and large (Tfa1) subunits of the general transcription factor (TF) IIE through Gal11 functional domains A and B, respectively. Here we demonstrate that the C-terminal basic region in Tfa2 is responsible for binding to domain A, whereas both the N-terminal hydrophobic and internal glutamic acid-rich regions in Tfa1 are responsible for binding to domain B. Yeast cells bearing a C-terminal deletion encompassing the Gal11-interacting region in each of the two TFIIE subunits, being viable, exhibited no obvious phenotype. In contrast, combination of the two deletions (TFIIE-DeltaC) showed phenotypes similar to those of gal11 null mutations. The levels of mRNA from TATA-containing genes, but not from TATA-less genes, decreased in TFIIE-DeltaC to an extent comparable to that in the gal11 null mutant. Combination of TFIIE-DeltaC with a gal11 null mutation did not result in an enhanced effect, suggesting that both TFIIE and Gal11 act in a common regulatory pathway. In a reconstituted cell-free system, Gal11 protein stimulated basal transcription in the presence of wild-type TFIIE. Such a stimulation was not seen in the presence of TFIIE-DeltaC.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920, Japan.
| | | |
Collapse
|
9
|
Collart MA. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol Cell Biol 1996; 16:6668-76. [PMID: 8943321 PMCID: PMC231669 DOI: 10.1128/mcb.16.12.6668] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous studies demonstrated that mutations in the Saccharomyces cerevisiae NOT genes increase transcription from TATA-less promoters. In this report, I show that in contrast, mutations in the yeast MOT1 gene decrease transcription from TATA-less promoters. I also demonstrate specific genetic interactions between the Not complex, Mot1p, and another global regulator of transcription in S. cerevisiae, Spt3p. Five distinct genetic interactions have been established. First, a null allele of SPT3, or a mutation in SPT15 that disrupts the interaction between Spt3p and TATA-binding protein (TBP), allele specifically suppressed the not1-2 mutation. Second, in contrast to not mutations, mutations in MOT1 decreased HIS3 and HIS4 TATA-less transcription. Third, not mutations suppressed toxicity due to overexpression of TBP in mot1-1 mutants. Finally, overexpression of SPT3 caused a weak Not- mutant phenotype in mot1-1 mutants. Collectively, these results suggest a novel type of transcriptional regulation whereby the distribution of limiting TBP (TFIID) on weak and strong TBP-binding core promoters is regulated: Mot1p releases stably bound TBP to allow its redistribution to low-affinity sites, and the Not proteins negatively regulate the activity of factors such as Spt3p that favor distribution of TBP to these low-affinity sites.
Collapse
Affiliation(s)
- M A Collart
- Department of Medical Biochemistry, University of Geneva Medical School, Switzerland
| |
Collapse
|
10
|
Sakurai H, Ohishi T, Fukasawa T. Core promoter elements are essential as selective determinants for function of the yeast transcription factor GAL11. FEBS Lett 1996; 398:113-9. [PMID: 8946963 DOI: 10.1016/s0014-5793(96)01219-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The GAL11 gene product, which copurifies with RNA polymerase II holoenzyme, is necessary for full expression of many, but not all, genes in yeast. Here we shows that the GAL11 dependence of a gene for expression is determined by the core promoter structure. In the GAL80 gene, a gal11 null mutation caused reduction of TATA-dependent transcription, but exerted no effect on initiator-mediated transcription. GAL11 stimulated TATA-dependent transcription, but did not affect the TATA-independent transcription in HIS4. GAL11 was also required for transcription mediated by a canonical TATA sequence but not by a nonconsensus TATA sequence of HIS3. These results suggest that GAL11 is specifically involved in the transcription machinery formed on the TATA element.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, Japan.
| | | | | |
Collapse
|
11
|
Laine RO, Hutson RG, Kilberg MS. Eukaryotic gene expression: metabolite control by amino acids. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:219-48. [PMID: 8650304 DOI: 10.1016/s0079-6603(08)60146-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Our understanding of the metabolite control in mammalian cells lags far behind that in prokaryotes. This is particularly true for amino-acid-dependent gene expression. Few proteins have been identified for which synthesis is selectively regulated by amino-acid availability, and the mechanisms for control of transcription and translation in response to changes in amino-acid availability have not yet been elucidated. The intimate relationship between amino-acid supply and the fundamental cellular process of protein synthesis makes amino-acid-dependent control of gene expression particularly important. Future studies should provide important insight into amino-acid and other nutrient signaling pathways, and their impact on cellular growth and metabolism.
Collapse
Affiliation(s)
- R O Laine
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | |
Collapse
|
12
|
Iyer V, Struhl K. Mechanism of differential utilization of the his3 TR and TC TATA elements. Mol Cell Biol 1995; 15:7059-66. [PMID: 8524273 PMCID: PMC230961 DOI: 10.1128/mcb.15.12.7059] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The yeast his3 promoter region contains two TATA elements, TC and TR, that are differentially utilized in constitutive his3 transcription and Gcn4-activated his3 transcription. TR contains the canonical TATAAA sequence, whereas TC is an extended region that lacks a conventional TATA sequence and does not support transcription in vitro. Surprisingly, differential his3 TATA-element utilization does not depend on specific properties of activator proteins but, rather, is determined by the overall level of his3 transcription. At low levels of transcription, the upstream TC is preferentially utilized, even though it is inherently a much weaker TATA element than TR. The TATA elements are utilized equally at intermediate levels, whereas TR is strongly preferred at high levels of transcription. This characteristic behavior can be recreated by replacing TC with moderately functional derivatives of a conventional TATA element, suggesting that TC is a collection of weak TATA elements. Analysis of promoters containing two biochemically defined TATA elements indicates that differential utilization occurs when the upstream TATA element is weaker than the downstream element. In other situations, the upstream TATA element is preferentially utilized in a manner that is independent of the overall level of transcription. Thus, in promoters containing multiple TATA elements, relative utilization not only depends on the quality and arrangement of the TATA elements but can vary with the overall level of transcriptional stimulation. We suggest that differential TATA utilization results from the combination of an intrinsic preference for the upstream element and functional saturation of weak TATA elements at low levels of transcriptional stimulation.
Collapse
Affiliation(s)
- V Iyer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
13
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
14
|
Majumder S, DePamphilis ML. A unique role for enhancers is revealed during early mouse development. Bioessays 1995; 17:879-89. [PMID: 7487969 DOI: 10.1002/bies.950171010] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription and replication of genes in mammalian cells always requires a promoter or replication origin, respectively, but the ability of enhancers to stimulate these regulatory elements and the interactions that mediate this stimulation are developmentally acquired. The primary function of enhancers is to prevent repression, which appears to result from particular components of chromatin structure. Factors responsible for this repression are present in the maternal nucleus of oocytes and its descendant, the maternal pronucleus of mouse 1-cell embryos and in mouse 2-cell embryos, but are absent in the paternal pronucleus. Thus, enhancers are not needed to achieve efficient transcription and replication in paternal pronuclei. However, enhancers, even in the presence of their specific activation protein, are inactive prior to formation of a 2-cell embryo, suggesting that a coactivator essential for enhancer function is not available until zygotic gene expression begins. Furthermore, enhancer stimulation of transcription appears to be mediated through a promoter transcription factor, but this interaction can change as cells undergo differentiation, switching from a TATA-box independent to a TATA-box dependent mode.
Collapse
Affiliation(s)
- S Majumder
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | |
Collapse
|
15
|
Abstract
The LEU4 gene of Saccharomyces cerevisiae and the enzyme encoded by LEU4, alpha-isopropylmalate synthase, occupy a special position in amino acid metabolism. alpha-Isopropylmalate synthase catalyzes the first committed step in leucine biosynthesis. However, the reaction product alpha-isopropylmalate is not only an intermediate in the leucine biosynthetic pathway, but also functions as co-activator of at least six genes, both within and outside of the leucine pathway. The metabolic importance of alpha-isopropylmalate appears to be reflected in the surprisingly multifaceted regulation of LEU4 expression. This report describes an analysis of functional cis elements in the LEU4 promoter. Five such elements were identified. Three distal elements, designated UASLEU, GCE-A, and GCE-B, are responsible for regulation by the regulatory proteins Leu3p and Gen4p, respectively. The incremental activation of LEU4 by these elements is additive and independent. In addition, two proximal elements were localized. One of these conforms to the TATA consensus sequence and exhibits high affinity for TATA binding protein. The other element shows strong sequence identity with the Bas2p binding site and appears to be involved in basal and phosphate-mediated regulation of LEU4.
Collapse
Affiliation(s)
- Y Hu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | |
Collapse
|
16
|
Drysdale CM, Dueñas E, Jackson BM, Reusser U, Braus GH, Hinnebusch AG. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol 1995; 15:1220-33. [PMID: 7862116 PMCID: PMC230345 DOI: 10.1128/mcb.15.3.1220] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
GCN4 is a transcriptional activator in the bZIP family that regulates amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. Previous work suggested that the principal activation domain of GCN4 is a highly acidic segment of approximately 40 amino acids located in the center of the protein. We conducted a mutational analysis of GCN4 with a single-copy allele expressed under the control of the native promoter and translational control elements. Our results indicate that GCN4 contains two activation domains of similar potency that can function independently to promote high-level transcription of the target genes HIS3 and HIS4. One of these domains is coincident with the acidic activation domain defined previously; the other extends over the N-terminal one-third of the protein. Both domains are partially dependent on the coactivator protein ADA2. Each domain appears to be composed of two or more small subdomains that have additive effects on transcription and that can cooperate in different combinations to promote high-level expression of HIS3 and HIS4. At least three of these subdomains are critically dependent on bulky hydrophobic amino acids for their function. Five of the important hydrophobic residues, Phe-97, Phe-98, Met-107, Tyr-110, and Leu-113, fall within a region of proposed sequence homology between GCN4 and the herpesvirus acidic activator VP16. The remaining three residues, Trp-120, Leu-123, and Phe-124, are highly conserved between GCN4 and its Neurospora counterpart, cpc-1. Because of the functional redundancy in the activation domain, mutations at positions 97 and 98 must be combined with mutations at positions 120 to 124 to observe a substantial reduction in activation by full-length GCN4, and substitution of all eight hydrophobic residues was required to inactivate full-length GCN4. These hydrophobic residues may mediate important interactions between GCN4 and one or more of its target proteins in the transcription initiation complex.
Collapse
Affiliation(s)
- C M Drysdale
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
17
|
Two alternative pathways of transcription initiation in the yeast negative regulatory gene GAL80. Mol Cell Biol 1994. [PMID: 7935399 DOI: 10.1128/mcb.14.10.6819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast GAL80 gene, encoding a negative regulatory protein of galactose-inducible genes, shows both constitutive and galactose-inducible expression. The inducible transcription is under the control of Gal4p, a common activator for the galactose-inducible genes, which binds to an upstream activation sequence, called UASG, spanning between -105 and -89 in the 5'-flanking region of GAL80. Here we demonstrate that the constitutive transcription started at +1, whereas the inducible transcription occurs from a set of downstream sites at +37, +47, +56, and +67. Both transcriptions were enhanced 10-fold by another UAS, whose 5' boundary is located between -195 and -185. Gal4p stimulated transcription, which depends on the TATA box located at -20, from all the downstream sites. By contrast, the constitutive transcription depended on a small region of less than 16 bp long encompassing the +1 site, which directed transcription even in the absence of both the TATA box and the UASs. When a fragment covering that region was inserted immediately upstream of the open reading frame of HIS3, the resulting gene fusion, if introduced into a his3 yeast strain, supported growth on histidine-lacking medium. We detected by gel retardation assay a protein specifically interacting with this fragment. All the transcriptions observed in the in vivo experiments were faithfully reproduced in a cell-free transcription system. From these results, we suggest that initiation of GAL80 transcription involves two alternative pathways; one is initiator dependent, and the other is Gal4p regulated and TATA dependent.
Collapse
|
18
|
Sakurai H, Ohishi T, Fukasawa T. Two alternative pathways of transcription initiation in the yeast negative regulatory gene GAL80. Mol Cell Biol 1994; 14:6819-28. [PMID: 7935399 PMCID: PMC359212 DOI: 10.1128/mcb.14.10.6819-6828.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The yeast GAL80 gene, encoding a negative regulatory protein of galactose-inducible genes, shows both constitutive and galactose-inducible expression. The inducible transcription is under the control of Gal4p, a common activator for the galactose-inducible genes, which binds to an upstream activation sequence, called UASG, spanning between -105 and -89 in the 5'-flanking region of GAL80. Here we demonstrate that the constitutive transcription started at +1, whereas the inducible transcription occurs from a set of downstream sites at +37, +47, +56, and +67. Both transcriptions were enhanced 10-fold by another UAS, whose 5' boundary is located between -195 and -185. Gal4p stimulated transcription, which depends on the TATA box located at -20, from all the downstream sites. By contrast, the constitutive transcription depended on a small region of less than 16 bp long encompassing the +1 site, which directed transcription even in the absence of both the TATA box and the UASs. When a fragment covering that region was inserted immediately upstream of the open reading frame of HIS3, the resulting gene fusion, if introduced into a his3 yeast strain, supported growth on histidine-lacking medium. We detected by gel retardation assay a protein specifically interacting with this fragment. All the transcriptions observed in the in vivo experiments were faithfully reproduced in a cell-free transcription system. From these results, we suggest that initiation of GAL80 transcription involves two alternative pathways; one is initiator dependent, and the other is Gal4p regulated and TATA dependent.
Collapse
Affiliation(s)
- H Sakurai
- Laboratory of Molecular Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
19
|
TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired. Mol Cell Biol 1994. [PMID: 8196662 DOI: 10.1128/mcb.14.6.4258] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus (HSV) thymidine kinase (tk) promoter activity depends on four transcription factor binding sites, one of which is a TATA box sequence, and the presence of either a cis-acting enhancer sequence or a transactivator protein. Studies presented here show that this TATA box was required for promoter activity only after cells began to differentiate and then only when promoter activity was stimulated by either an enhancer or a transactivator. When the HSV tk promoter was utilized by mouse embryos from the one-cell to eight-cell stage of development or by undifferentiated mouse embryonic stem cells, disruption of the HSV tk TATA box by site-specific mutations did not reduce promoter activity. This was true even when HSV tk promoter activity was stimulated strongly by either the embryo-responsive polyomavirus F101 enhancer or its natural transactivator, the HSV ICP4 gene product. However, stimulated expression was dependent on a distal Sp1 DNA binding site. Similarly, disruption of the TATA box did not reduce tk promoter activity in primary mouse embryonic fibroblasts or in immortalized 3T3 mouse fibroblasts; in fact, promoter activity was increased up to 2.6-fold. However, in these differentiated cells, stimulation of the HSV tk promoter by either the F101 enhancer or ICP4 protein required the TATA box. HSV tk promoter activity also was dependent on its TATA box in the mouse oocyte, a terminally differentiated cell with an endogenous transactivating activity. These results reveal that the need for a TATA box is developmentally acquired and depends on at least two parameters: the differentiated state of the cell and stimulation of the promoter by either an enhancer or a transactivator.
Collapse
|
20
|
Majumder S, DePamphilis ML. TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired. Mol Cell Biol 1994; 14:4258-68. [PMID: 8196662 PMCID: PMC358792 DOI: 10.1128/mcb.14.6.4258-4268.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Herpes simplex virus (HSV) thymidine kinase (tk) promoter activity depends on four transcription factor binding sites, one of which is a TATA box sequence, and the presence of either a cis-acting enhancer sequence or a transactivator protein. Studies presented here show that this TATA box was required for promoter activity only after cells began to differentiate and then only when promoter activity was stimulated by either an enhancer or a transactivator. When the HSV tk promoter was utilized by mouse embryos from the one-cell to eight-cell stage of development or by undifferentiated mouse embryonic stem cells, disruption of the HSV tk TATA box by site-specific mutations did not reduce promoter activity. This was true even when HSV tk promoter activity was stimulated strongly by either the embryo-responsive polyomavirus F101 enhancer or its natural transactivator, the HSV ICP4 gene product. However, stimulated expression was dependent on a distal Sp1 DNA binding site. Similarly, disruption of the TATA box did not reduce tk promoter activity in primary mouse embryonic fibroblasts or in immortalized 3T3 mouse fibroblasts; in fact, promoter activity was increased up to 2.6-fold. However, in these differentiated cells, stimulation of the HSV tk promoter by either the F101 enhancer or ICP4 protein required the TATA box. HSV tk promoter activity also was dependent on its TATA box in the mouse oocyte, a terminally differentiated cell with an endogenous transactivating activity. These results reveal that the need for a TATA box is developmentally acquired and depends on at least two parameters: the differentiated state of the cell and stimulation of the promoter by either an enhancer or a transactivator.
Collapse
Affiliation(s)
- S Majumder
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110
| | | |
Collapse
|
21
|
Kuenzler M, Balmelli T, Egli CM, Paravicini G, Braus GH. Cloning, primary structure, and regulation of the HIS7 gene encoding a bifunctional glutamine amidotransferase: cyclase from Saccharomyces cerevisiae. J Bacteriol 1993; 175:5548-58. [PMID: 8366040 PMCID: PMC206611 DOI: 10.1128/jb.175.17.5548-5558.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Saccharomyces cerevisiae HIS7 gene was cloned by its location immediately downstream of the previously isolated and characterized ARO4 gene. The two genes have the same orientation with a distance of only 416 bp between the two open reading frames. The yeast HIS7 gene represents the first isolated eukaryotic gene encoding the enzymatic activities which catalyze the fifth and sixth step in histidine biosynthesis. The open reading frame of the HIS7 gene has a length of 1,656 bp resulting in a gene product of 552 amino acids with a calculated molecular weight of 61,082. Two findings implicate a bifunctional nature of the HIS7 gene product. First, the N-terminal and C-terminal segments of the deduced HIS7 amino acid sequence show significant homology to prokaryotic monofunctional glutamine amidotransferases and cyclases, respectively, involved in histidine biosynthesis. Second, the yeast HIS7 gene is able to suppress His auxotrophy of corresponding Escherichia coli hisH and hisF mutants. HIS7 gene expression is regulated by the general control system of amino acid biosynthesis. GCN4-dependent and GCN4-independent (basal) transcription use different initiator elements in the HIS7 promoter.
Collapse
Affiliation(s)
- M Kuenzler
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8393142 DOI: 10.1128/mcb.13.8.4999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GAL4 gene of Saccharomyces cerevisiae (encoding the activator of transcription of the GAL genes) is poorly expressed and is repressed during growth on glucose. To determine the basis for its weak expression and to identify DNA sequences recognized by proteins that activate transcription of a gene that itself encodes an activator of transcription, we have analyzed GAL4 promoter structure. We show that the GAL4 promoter is about 90-fold weaker than the strong GAL1 promoter and at least 7-fold weaker than the feeble URA3 promoter and that this low level of GAL4 expression is primarily due to a weak promoter. By deletion mapping, the GAL4 promoter can be divided into three functional regions. Two of these regions contain positive elements; a distal region termed the UASGAL4 (upstream activation sequence) contains redundant elements that increase promoter function, and a central region termed the UESGAL4 (upstream essential sequence) is essential for even basal levels of GAL4 expression. The third element, an upstream repression sequence, mediates glucose repression of GAL4 expression and is located between the UES and the transcriptional start site. The UASGAL4 is unusual because it is not interchangable with UAS elements in other yeast promoters; it does not function as a UAS element when inserted in a CYC1 promoter, and a normally strong UAS functions poorly in place of UASGAL4 in the GAL4 promoter. Similarly, the UES element of GAL4 does not function as a TATA element in a test promoter, and consensus TATA elements do not function in place of UES elements in the GAL4 promoter. These results suggest that GAL4 contains a weak TATA-less promoter and that the proteins regulating expression of this regulatory gene may be novel and context specific.
Collapse
|
23
|
Griggs DW, Johnston M. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:4999-5009. [PMID: 8393142 PMCID: PMC360147 DOI: 10.1128/mcb.13.8.4999-5009.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The GAL4 gene of Saccharomyces cerevisiae (encoding the activator of transcription of the GAL genes) is poorly expressed and is repressed during growth on glucose. To determine the basis for its weak expression and to identify DNA sequences recognized by proteins that activate transcription of a gene that itself encodes an activator of transcription, we have analyzed GAL4 promoter structure. We show that the GAL4 promoter is about 90-fold weaker than the strong GAL1 promoter and at least 7-fold weaker than the feeble URA3 promoter and that this low level of GAL4 expression is primarily due to a weak promoter. By deletion mapping, the GAL4 promoter can be divided into three functional regions. Two of these regions contain positive elements; a distal region termed the UASGAL4 (upstream activation sequence) contains redundant elements that increase promoter function, and a central region termed the UESGAL4 (upstream essential sequence) is essential for even basal levels of GAL4 expression. The third element, an upstream repression sequence, mediates glucose repression of GAL4 expression and is located between the UES and the transcriptional start site. The UASGAL4 is unusual because it is not interchangable with UAS elements in other yeast promoters; it does not function as a UAS element when inserted in a CYC1 promoter, and a normally strong UAS functions poorly in place of UASGAL4 in the GAL4 promoter. Similarly, the UES element of GAL4 does not function as a TATA element in a test promoter, and consensus TATA elements do not function in place of UES elements in the GAL4 promoter. These results suggest that GAL4 contains a weak TATA-less promoter and that the proteins regulating expression of this regulatory gene may be novel and context specific.
Collapse
Affiliation(s)
- D W Griggs
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
24
|
Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98349-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Rouleau J, Tanigawa G, Szyf M. The mouse DNA methyltransferase 5'-region. A unique housekeeping gene promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42526-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Bungert J, Kober I, Düring F, Seifart KH. Transcription factor eUSF is an essential component of isolated transcription complexes on the duck histone H5 gene and it mediates the interaction of TFIID with a TATA-deficient promoter. J Mol Biol 1992; 223:885-98. [PMID: 1538403 DOI: 10.1016/0022-2836(92)90250-n] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We analysed the formation of transcription complexes on the H5 gene of the duck which is efficiently transcribed in HeLa cell extracts in vitro. Upon deletion of its TATA-box, the fidelity of transcription of the H5 gene is maintained, although the efficiency of this process is significantly reduced. Selective inactivation of TFIID in whole cell extracts and reconstitution experiments either with human recombinant TFIID or a protein fraction from duck erythrocytes enriched in TFIID show that transcription of the TATA-less H5 promoter nevertheless requires the protein TFIID. Screening of promoter elements which could indirectly mediate the interaction of TFIID with a TATA-less H5 promoter led to the identification of a sequence element located about 40 base-pairs downstream from the H5 initiation site that shows partial homology to the USF consensus sequence. In electrophoretic mobility shift and footprinting studies we demonstrated a specific interaction of the erythroid factor USF (eUSF) with this downstream element. By isolating active transcription complexes we found that all components required for correct initiation remain stably associated with the H5 promoter irrespective of the presence or absence of the TATA box. Moreover, the reconstitution of eUSF and TFIID-depleted transcription complexes with purified protein fractions demonstrate that not only TFIID but also eUSF essentially participates in complex formation even on H5 promoter mutations lacking the TATA-box. Mutual interactions between eUSF and TFIID appear to stabilize the binding of TFIID in the presence or absence of its proper binding site.
Collapse
Affiliation(s)
- J Bungert
- Institut für Molekularbiologie und Tumorforschung, Marburg/Lahnberge, Germany
| | | | | | | |
Collapse
|
27
|
Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol Cell Biol 1992. [PMID: 1729616 DOI: 10.1128/mcb.12.1.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have determined the sequences and positions of the cis elements required for proper functioning of the ARG3 promoter and proper arginine-specific control. A TATA box located 100 nucleotides upstream of the transcription start was shown to be essential for ARG3 transcription. Two sequences involved in normal arginine-mediated repression lie immediately downstream of the TATA box: an essential one (arginine box 1 [AB1]) and a secondary one (arginine box 2 [AB2]). AB1 was defined by saturation mutagenesis and is an asymmetrical sequence. A stringently required CGPu motif in AB1 is conserved in all known target sites of C6 zinc cluster DNA-binding proteins, leading us to propose that AB1 is the binding site of ARGRII, another member of the C6 family. The palindromic AB2 sequence is suggested, on the basis of published data, to be the binding site of ARGRI, possibly in heterodimerization with MCM1. AB2 and AB1 correspond respectively to the 5' and 3' halves of two adjacent similar sequences of 29 bp that appear to constitute tandem operators. Indeed, mutations increasing the similarity of the other halves with AB1 and AB2 cause hyperrepression. To mediate repression, the operator must be located close to the transcription initiation region. It remains functional if the TATA box is moved downstream of it but becomes inoperative in repression when displaced to a far-upstream position where it mediates an arginine and ARGR-dependent induction of gene expression. The ability of the ARG3 operator to act either as an operator or as an upstream activator sequence, depending on its location, and the functional organization of the anabolic and catabolic arginine genes suggest a simple model for arginine regulation in which an activator complex can turn into a repressor when able to interfere sterically with the process of transcription initiation.
Collapse
|
28
|
Lee H, Kraus KW, Wolfner MF, Lis JT. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev 1992; 6:284-95. [PMID: 1737619 DOI: 10.1101/gad.6.2.284] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA polymerase II is transcriptionally engaged but paused approximately 25 nucleotides from the start site of the hsp70 gene of Drosophila melanogaster in uninduced (non-heat-shocked) flies. Here, we identify regions of the hsp70 promoter that are required for formation of this paused polymerase. Various hsp70 promoter sequences are substituted for promoter sequences of a yolk protein gene, yp1, which, in males, is normally not expressed and has no paused polymerase. Run-on assays with nuclei of male transgenic flies are used to measure the level of paused polymerase on the hybrid genes. Sequences that reside upstream of the hsp70 TATA element, when fused upstream of the yp1 TATA element, specify the formation of a paused polymerase on the 5' end of this hybrid gene. Within this region are multiple copies of the GAGA element, which is known to bind a constitutively expressed factor. This element appears to play a role in generating the pause. Also, in the absence of much of this upstream region, hsp70 sequences in the vicinity of the transcriptional start and pause site participate in specifying the pause. Deletions of the pause site reduce the level of paused polymerase but do not lead to constitutive transcription. However, a connection between transcription and pausing is seen. The level of paused polymerase on the various hybrid hsp70-yp1 promoters correlates with the promoter's potential to direct heat-induced transcription.
Collapse
Affiliation(s)
- H Lee
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
29
|
Berkhout B, Jeang KT. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1992; 66:139-49. [PMID: 1727476 PMCID: PMC238269 DOI: 10.1128/jvi.66.1.139-149.1992] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have analyzed the contributory role of the human immunodeficiency virus type 1 (HIV-1) promoter and enhancers in basal and Tat-induced transcription. We found that a minimal promoter competent for basal expression is contained within sequences spanning nucleotides -43 to +80. Basal expression from this HIV-1 promoter was boosted more by the additional presence of the NF-kappa B elements than by the Sp1 elements. The minimal long terminal repeat promoter (-43 to +80), while having an intact TAR sequence, was not Tat inducible. However, the simple addition of short synthetic enhancer motifs (AP1, Oct, Sp1, and NF-kappa B) conferred Tat responsiveness. This ability to respond to Tat was in part dependent on the presence of the HIV-1 promoter. Changing the HIV-1 TATA to other eucaryotic TATA or non-TATA initiators minimally affected basal expression but altered Tat inducibility. Our findings suggest a specific context of functional promoter and enhancer elements that is optimal for Tat trans activation of the HIV-1 long terminal repeat. Our results do not allow conclusions about whether Tat acts at the level of initiation or at the level of elongation to be drawn.
Collapse
Affiliation(s)
- B Berkhout
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
30
|
De Rijcke M, Seneca S, Punyammalee B, Glansdorff N, Crabeel M. Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol Cell Biol 1992; 12:68-81. [PMID: 1729616 PMCID: PMC364070 DOI: 10.1128/mcb.12.1.68-81.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have determined the sequences and positions of the cis elements required for proper functioning of the ARG3 promoter and proper arginine-specific control. A TATA box located 100 nucleotides upstream of the transcription start was shown to be essential for ARG3 transcription. Two sequences involved in normal arginine-mediated repression lie immediately downstream of the TATA box: an essential one (arginine box 1 [AB1]) and a secondary one (arginine box 2 [AB2]). AB1 was defined by saturation mutagenesis and is an asymmetrical sequence. A stringently required CGPu motif in AB1 is conserved in all known target sites of C6 zinc cluster DNA-binding proteins, leading us to propose that AB1 is the binding site of ARGRII, another member of the C6 family. The palindromic AB2 sequence is suggested, on the basis of published data, to be the binding site of ARGRI, possibly in heterodimerization with MCM1. AB2 and AB1 correspond respectively to the 5' and 3' halves of two adjacent similar sequences of 29 bp that appear to constitute tandem operators. Indeed, mutations increasing the similarity of the other halves with AB1 and AB2 cause hyperrepression. To mediate repression, the operator must be located close to the transcription initiation region. It remains functional if the TATA box is moved downstream of it but becomes inoperative in repression when displaced to a far-upstream position where it mediates an arginine and ARGR-dependent induction of gene expression. The ability of the ARG3 operator to act either as an operator or as an upstream activator sequence, depending on its location, and the functional organization of the anabolic and catabolic arginine genes suggest a simple model for arginine regulation in which an activator complex can turn into a repressor when able to interfere sterically with the process of transcription initiation.
Collapse
Affiliation(s)
- M De Rijcke
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Belgium
| | | | | | | | | |
Collapse
|
31
|
Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol Cell Biol 1991. [PMID: 1922077 DOI: 10.1128/mcb.11.11.5781] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sensitive phenotypic assay has been used to identify mutations affecting transcription initiation in the genes encoding the two large subunits of Saccharomyces cerevisiae RNA polymerase II (RPB1 and RPB2). The rpb1 and rpb2 mutations alter the ratio of transcripts initiated at two adjacent start sites of a delta-insertion promoter. Of a large number of rpb1 and rpb2 mutations screened, only a few affect transcription initiation patterns at delta-insertion promoters, and these mutations are in close proximity to each other within both RPB1 and RPB2. The two rpb1 mutations alter amino acid residues within homology block G, a region conserved in the large subunits of all RNA polymerases. The three strong rpb2 mutations alter adjacent amino acids. At a wild-type promoter, the rpb1 mutations affect the accuracy of mRNA start site selection by producing a small but detectable increase in the 5'-end heterogeneity of transcripts. These RNA polymerase II mutations implicate specific portions of the enzyme in aspects of transcription initiation.
Collapse
|
32
|
Hekmatpanah DS, Young RA. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol Cell Biol 1991; 11:5781-91. [PMID: 1922077 PMCID: PMC361949 DOI: 10.1128/mcb.11.11.5781-5791.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A sensitive phenotypic assay has been used to identify mutations affecting transcription initiation in the genes encoding the two large subunits of Saccharomyces cerevisiae RNA polymerase II (RPB1 and RPB2). The rpb1 and rpb2 mutations alter the ratio of transcripts initiated at two adjacent start sites of a delta-insertion promoter. Of a large number of rpb1 and rpb2 mutations screened, only a few affect transcription initiation patterns at delta-insertion promoters, and these mutations are in close proximity to each other within both RPB1 and RPB2. The two rpb1 mutations alter amino acid residues within homology block G, a region conserved in the large subunits of all RNA polymerases. The three strong rpb2 mutations alter adjacent amino acids. At a wild-type promoter, the rpb1 mutations affect the accuracy of mRNA start site selection by producing a small but detectable increase in the 5'-end heterogeneity of transcripts. These RNA polymerase II mutations implicate specific portions of the enzyme in aspects of transcription initiation.
Collapse
Affiliation(s)
- D S Hekmatpanah
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142-1479
| | | |
Collapse
|
33
|
Pham T, Hwung Y, McDonnell D, O'Malley B. Transactivation functions facilitate the disruption of chromatin structure by estrogen receptor derivatives in vivo. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55252-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Dickson JA, Friesen PD. Identification of upstream promoter elements mediating early transcription from the 35,000-molecular-weight protein gene of Autographa californica nuclear polyhedrosis virus. J Virol 1991; 65:4006-16. [PMID: 2072443 PMCID: PMC248831 DOI: 10.1128/jvi.65.8.4006-4016.1991] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Site-directed mutagenesis was used to examine the organization of cis-acting regulatory elements that comprise the promoter of the early 35,000-molecular-weight protein gene (35K protein gene) encoded by the EcoRI-S region of the baculovirus Autographa californica nuclear polyhedrosis virus. The promoter fragment, extending from positions -226 to +12 relative to the early RNA start site (position +1), was fused to the reporter gene encoding chloramphenicol acetyltransferase (CAT) and then inserted into the genome of recombinant viruses (3.96 map units) in order to ascertain the role of regulatory elements in the context of a normal infection. A combination of deletions and linker insertions revealed that early transcription was mediated by a basal (minimum) promoter, consisting of the TATA element (positions -30 to -25), that was in turn responsive to an upstream activating region located between -90 and -30. The TATA element exerted the single greatest influence on the level of early promoter activity and contained all information necessary to direct transcription from a site located 30 nucleotides downstream. The upstream activating region provided a 10- to 15-fold stimulation of transcription from the early +1 start site that was mediated by distinct DNA elements. These regulatory elements included two GC motifs (centered at positions -81 and -54, respectively), composed of alternating G and C residues, and a CGT motif (position -40) that contained the core sequence A(A/T)CGT(G/T). Each motif was required for full promoter activity during the early phase of infection. This organization that employs diverse cis-acting stimulatory elements is typical of promoters responsive to RNA polymerase II and may facilitate increased expression of A. californica nuclear polyhedrosis virus genes early in infection when the level of viral DNA for transcription is critically low.
Collapse
Affiliation(s)
- J A Dickson
- Institute for Molecular Virology, Graduate School, University of Wisconsin-Madison 53706
| | | |
Collapse
|
35
|
RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol Cell Biol 1991. [PMID: 1904543 DOI: 10.1128/mcb.11.7.3642] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.
Collapse
|
36
|
Devlin C, Tice-Baldwin K, Shore D, Arndt KT. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol Cell Biol 1991; 11:3642-51. [PMID: 1904543 PMCID: PMC361116 DOI: 10.1128/mcb.11.7.3642-3651.1991] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.
Collapse
Affiliation(s)
- C Devlin
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- K Strum
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|