1
|
Singh KK, Kumar D, Singh A, Goswami D. Precise Nanoparticle Manipulation Using Femtosecond Laser Trapping. J Phys Chem Lett 2024; 15:10360-10365. [PMID: 39373916 DOI: 10.1021/acs.jpclett.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Optical tweezers use strongly focused light for trapping, characterizing, and manipulating objects in the microscopic and nanoscopic regimes. However, fully understanding optical trapping at the nanoscale remains a significant challenge. This holds importance because the nanoscale is the frontier for numerous promising advancements, ranging from enhancing single-molecule investigations in biology to developing hybrid devices for nanoelectronics and photonics and exploring fundamental quantum phenomena in opto-mechanics. We report an experimental and theoretical study of nanoparticles of various sizes, showing the advantages of the immense peak power of ultrashort laser pulses over conventional optical tweezers. We also demonstrate highly stable trapping of nanoparticles for extended durations at low average laser power using femtosecond lasers.
Collapse
Affiliation(s)
- Krishna Kant Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ajitesh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre of Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Amano R, Nishizawa D, Taketsugu T, Iwasa T. Optical force and torque in near-field excitation of C3H6: A first-principles study using RT-TDDFT. J Chem Phys 2024; 161:124110. [PMID: 39325997 DOI: 10.1063/5.0223371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Optical trapping is an effective tool for manipulating micrometer-sized particles, although its application to nanometer-sized particles remains difficult. The field of optical trapping has advanced significantly, incorporating more advanced techniques such as plasmonic structures. However, single-molecule trapping remains a challenge. To achieve a deeper understanding of optical forces acting on molecular systems, a first-principles approach to analyze the optical force on molecules interacting with a plasmonic field is crucial. In our study, the optical force and torque induced by the near-field excitation of C3H6 were investigated using real-time time-dependent density functional theory calculations on real-space grids. The near field from the scanning tunneling probe was adopted as the excitation source for the molecule. The optical force was calculated using the polarization charges induced in the molecule based on Lorentz force. While the optical force and torque calculated as functions of the light energy were in moderate agreement with the oscillator strengths obtained from the far-field excitation of C3H6, a closer correspondence was achieved with the power spectrum of the induced dipole moment using near-field excitation. Time-domain analysis of the optical force suggests that the simultaneous excitation of multiple excited states generally weakens the force because of mismatches between the directions of the induced polarization and the electric field. This study revealed a subtle damping mechanism for the optical force arising from intrinsic electronic states and the influence of beating.
Collapse
Affiliation(s)
- Risa Amano
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Nishizawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
3
|
Anjur-Dietrich MI, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Dev Cell 2024; 59:2429-2442.e4. [PMID: 38866013 DOI: 10.1016/j.devcel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
4
|
Erenso D, Tran L, Abualrob I, Bushra M, Hengstenberg J, Muhammed E, Endale I, Endale N, Endale E, Mayhut S, Torres N, Sheffield P, Vazquez C, Crogman H, Nichols C, Dang T, Hach EE. Observation of magnet-induced star-like radiation of a plasma created from cancer cells in a laser trap. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:123-131. [PMID: 38451329 DOI: 10.1007/s00249-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
We present a new phenomenon resulting from the interaction of magnetic beads with cancer cells in a laser trap formed on a slide containing a depression 16.5 mm in diameter and 0.78 mm of maximum depth. This phenomenon includes the apparent formation and expansion of a dark bubble that attracts and incinerates surrounding matter when it explodes, which leads to a plasma emitting intense radiation that has the appearance of a star on a microscopic scale. We have observed the star-like phenomenon for more than 4 years, and the intensity depends on the laser's power. Measuring the laser power of the dark bubble shows the entrapment of electromagnetic energy as it expands.
Collapse
Affiliation(s)
- D Erenso
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| | - L Tran
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - I Abualrob
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - M Bushra
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - J Hengstenberg
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - E Muhammed
- Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia
| | - I Endale
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - N Endale
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - E Endale
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - S Mayhut
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - N Torres
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - P Sheffield
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - C Vazquez
- Department of Physics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - H Crogman
- Department of Physics, California State University Dominguez Hills, Carson, CA, 90747, USA
| | - C Nichols
- Department of Physics, California State University Dominguez Hills, Carson, CA, 90747, USA
| | - T Dang
- Department of Physics, California State University Dominguez Hills, Carson, CA, 90747, USA
| | - E E Hach
- School of Physics and Astronomy, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA
| |
Collapse
|
5
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Liu W, Min C, Zhang Y. Selective plasmonic trapping of nano-particles by Archimedes metalens. OPTICS EXPRESS 2023; 31:35354-35362. [PMID: 37859269 DOI: 10.1364/oe.497015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Optical tweezer is a non-invasive method for optical force tool applied in various fields like biology, physics, and lab on chip manipulation. The Archimedean helix shape is ideal for creating chiral nanostructures, and being able to generate plasmonic focused hotspot field for optical trapping. Here we design a metal disk with the Archimedean shape to own the ability of selective trapping nanoparticles based on the spin-orbit interactions with circularly polarized light. The plasmonic near field on the metalens can be designed by adjusting the geometric parameter flexibly. We numerically analyze the optimal size and screw pitch of the metal disk to realize the switch modulation of hotspot generation, and then demonstrate the novel switchable optical trapping ability in the view of optical force and potential well analysis under the circularly polarized light excitation by a 532 nm laser. The work shows significant potential for on-chip optical trapping in various fields.
Collapse
|
7
|
Li G, Kuang T, Xiong W, Han X, Chen X, Xiao G, Tan Z, Luo H. Structured-light displacement detection method using split-waveplate for dual-beam optical tweezers. OPTICS EXPRESS 2023; 31:34459-34469. [PMID: 37859201 DOI: 10.1364/oe.500565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Structured-light displacement detection method is an innovative approach with extremely high sensitivity for measuring the displacement of a levitated particle. This scheme includes two key components, a split-waveplate (SWP) and a single-mode fiber. In this work, we further investigated the influence of SWP installation on this method regarding the sensitivity of displacement detection. The results indicate that the sensitivity increases with the expanding of SWP offset in the effective range. In addition, we found this method has a significant tolerance rate, with an extensive SWP offset effective range of 5%-25%. However, an excessive offset can render this method ineffective. More interestingly, we demonstrated the feasibility of rotating the SWP to detect displacement in different directions. Our research contributes to guiding the structured-light detection methods in practical applications and expanding their applications in fundamental physics.
Collapse
|
8
|
Anjur-Dietrich MI, Hererra VG, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Clustering of cortical dynein regulates the mechanics of spindle orientation in human mitotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557210. [PMID: 37745442 PMCID: PMC10515834 DOI: 10.1101/2023.09.11.557210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I. Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J. Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J. Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
9
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
10
|
Sanghavi P, Rai A, Mallik R. In Vivo Trapping of Latex Bead Phagosomes for Quantitative Force Measurements. Methods Mol Biol 2023; 2623:187-200. [PMID: 36602687 DOI: 10.1007/978-1-0716-2958-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optical trapping of organelles inside cells is a powerful technique for directly measuring the forces generated by motor proteins when they are transporting the organelle in the form of a "cargo". Such experiments provide an understanding of how multiple motors (similar or dissimilar) function in their endogenous environment. Here we describe the use of latex bead phagosomes ingested by macrophage cells as a model cargo for optical trap-based force measurements. A protocol for quantitative force measurements of microtubule-based motors (dynein and kinesins) inside macrophage cells is provided.
Collapse
Affiliation(s)
- Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Djenoune L, Mahamdeh M, Truong TV, Nguyen CT, Fraser SE, Brueckner M, Howard J, Yuan S. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science 2023; 379:71-78. [PMID: 36603098 PMCID: PMC9939240 DOI: 10.1126/science.abq7317] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Thai V. Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathon Howard
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
12
|
Kishimoto T, Masui K, Minoshima W, Hosokawa C. Recent advances in optical manipulation of cells and molecules for biological science. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Liu W, Zhang Y, Min C, Yuan X. Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect. OPTICS EXPRESS 2022; 30:16094-16103. [PMID: 36221461 DOI: 10.1364/oe.451250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
With the nanoscale integration advantage of near field photonics, controllable manipulation and transportation of micro-objects have possessed plentiful applications in the fields of physics, biology and material sciences. However, multifunctional optical manipulation like controllable transportation and synchronous routing by nano-devices are limited and rarely reported. Here we propose a new type of Y-shaped waveguide optical conveyor belt, which can transport and route particles along the structured waveguide based on the plasmonic spin-hall effect. The routing of micro-particles in different branches is determined by the optical force components difference at the center of the Y junction along the two branches of the waveguide. The influence of light source and structural parameters on the optical forces and transportation capability are numerically studied. The results illustrate that the proposed structured waveguide optical conveyor belt can transport the microparticles controllably in different branches of the waveguide. Due to the selective transportation ability of microparticles by the 2D waveguide, our work shows great application potential in the region of on-chip optical manipulation.
Collapse
|
14
|
Schneckenburger H. Lasers in Live Cell Microscopy. Int J Mol Sci 2022; 23:ijms23095015. [PMID: 35563406 PMCID: PMC9102032 DOI: 10.3390/ijms23095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.
Collapse
|
15
|
Shakya G, Yang T, Gao Y, Fajrial AK, Li B, Ruzzene M, Borden MA, Ding X. Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nat Commun 2022; 13:987. [PMID: 35190549 PMCID: PMC8861019 DOI: 10.1038/s41467-022-28574-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Manipulation of micro/nano particles has been well studied and demonstrated by optical, electromagnetic, and acoustic approaches, or their combinations. Manipulation of internal structure of droplet/particle is rarely explored and remains challenging due to its complicated nature. Here we demonstrated the manipulation of internal structure of disk-in-sphere endoskeletal droplets using acoustic wave. We developed a model to investigate the physical mechanisms behind this interesting phenomenon. Theoretical analysis of the acoustic interactions indicated that these assembly dynamics arise from a balance of the primary and secondary radiation forces. Additionally, the disk orientation was found to change with acoustic driving frequency, which allowed on-demand, reversible adjustment of the disk orientations with respect to the substrate. This dynamic behavior leads to unique reversible arrangements of the endoskeletal droplets and their internal architecture, which may provide an avenue for directed assembly of novel hierarchical colloidal architectures and intracellular organelles or intra-organoid structures. Endoskeletal droplets are a class of complex colloids containing a solid internal phase cast within a liquid emulsion droplet. Here, authors show acoustic manipulation of solid disks inside liquid droplets whose orientation can be externally controlled with the frequency.
Collapse
|
16
|
Cao T, Wang Z, Mao L. Reconfigurable label-free shape-sieving of submicron particles in paired chalcogenide waveguides. NANOSCALE 2022; 14:2465-2474. [PMID: 35103269 DOI: 10.1039/d1nr05798g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up-to-date particle sieving schemes face formidable challenges for sieving label-free submicron molecules with similar sizes and dielectric constants but diverse shapes. Herein, optical sorting of polystyrene particles with various shapes is illustrated in optofluidic nanophotonic paired waveguide (ONPW) composed of chalcogenide semiconductor Sb2Se3. The Sb2Se3-ONPW creates the coupling length (CL) between the neighboring hot spots that can be actively modulated via the transition of Sb2Se3 between amorphous (AM) and crystalline (CR) phases. Submicron particles interfere with the coupled hotspots, which can exert various optical torques on the particles according to their profiles. In the model system, spherical (diameter of 0.5 μm) and rod-shaped (diameter of 0.5 μm, length of 1.5 μm) polystyrene particles were employed to mimic two types of bacteria, namely, Staphylococcus aureus and rod-shaped Escherichia coli, respectively. For the AM state, the CL value is ∼7.0 μm, enabling the structure to trap the sphere stably in the hot spots. For the CR state, the CL value becomes ∼25 μm, leading to stable trapping of the rod-shaped particle. In this work, the working wavelength was fixed at 1.55 μm at which both AM- and CR-Sb2Se3 are transparent. Our scheme may offer a paradigm shift in shape-selective sieving of biomolecules and fulfill the requirements of the new-generation lab-on-chip techniques, where the integrated manipulation system must be much more multifunctional and flexible.
Collapse
Affiliation(s)
- Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Zhongming Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Libang Mao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
17
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
18
|
Hang X, He S, Dong Z, Minnick G, Rosenbohm J, Chen Z, Yang R, Chang L. Nanosensors for single cell mechanical interrogation. Biosens Bioelectron 2021; 179:113086. [DOI: 10.1016/j.bios.2021.113086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
|
19
|
Abstract
In the scanning probe microscope system, the weak signal detection of cantilever vibration is one of the important factors affecting the sensor sensitivity. In our current work, we present a novel design concept for an atomic force microscope (AFM) combined with optomechanics with an ultra-high quality factor and a low thermal noise. The detection system consists of a fixed mirror placed on the cantilever of the AFM and pump-probe beams that is equivalent to a Fabry-Perot cavity. We realize that the AFM combined with an optical cavity can achieve ultra-sensitive detection of force gradients of 10-12 N m-1 in the case of high-vacuum and low effective temperature of 1 mK, which may open up new avenues for super-high resolution imaging and super-high precision force spectroscopy.
Collapse
Affiliation(s)
- Fei He
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Jian Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| | - Ka-Di Zhu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
20
|
|
21
|
Nanogap dielectrophoresis combined with buffer exchange for detecting protein binding to trapped bioparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Li Z, Liu Y, Li Y, Wang W, Song Y, Zhang J, Tian H. High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System. Angew Chem Int Ed Engl 2021; 60:5157-5161. [DOI: 10.1002/anie.202013011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zi‐Yuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Ying‐Ya Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuan‐Jie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
23
|
Li Z, Liu Y, Li Y, Wang W, Song Y, Zhang J, Tian H. High‐Preservation Single‐Cell Operation through a Photo‐responsive Hydrogel‐Nanopipette System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zi‐Yuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Ying‐Ya Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuan‐Jie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
24
|
Fujiwara H, Yamauchi K, Wada T, Ishihara H, Sasaki K. Optical selection and sorting of nanoparticles according to quantum mechanical properties. SCIENCE ADVANCES 2021; 7:7/3/eabd9551. [PMID: 33523883 PMCID: PMC7806212 DOI: 10.1126/sciadv.abd9551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Optical trapping and manipulation have been widely applied to biological systems, and their cutting-edge techniques are creating current trends in nanomaterial sciences. The resonant absorption of materials induces not only the energy transfer from photons to quantum mechanical motion of electrons but also the momentum transfer between them, resulting in dissipative optical forces that drive the macroscopic mechanical motion of the particles. However, optical manipulation, according to the quantum mechanical properties of individual nanoparticles, is still challenging. Here, we demonstrate selective transportation of nanodiamonds with and without nitrogen-vacancy centers by balancing resonant absorption and scattering forces induced by two different-colored lasers counterpropagating along a nanofiber. Furthermore, we propose a methodology for precisely determining the absorption cross sections for single nanoparticles by monitoring the optically driven motion, which is called as "optical force spectroscopy." This method provides a novel direction in optical manipulation technology toward development of functional nanomaterials and quantum devices.
Collapse
Affiliation(s)
- Hideki Fujiwara
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Department of Electronics and Information Engineering, Hokkai-Gakuen University, Sapporo, Hokkaido 064-0926, Japan
| | - Kyosuke Yamauchi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Takudo Wada
- Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hajime Ishihara
- Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
- Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
25
|
Abe Y, Meguriya K, Matsuzaki T, Sugiyama T, Yoshikawa HY, Morita MT, Toyota M. Micromanipulation of amyloplasts with optical tweezers in Arabidopsis stems. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:405-415. [PMID: 33850427 PMCID: PMC8034693 DOI: 10.5511/plantbiotechnology.20.1201a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 05/25/2023]
Abstract
Intracellular sedimentation of highly dense, starch-filled amyloplasts toward the gravity vector is likely a key initial step for gravity sensing in plants. However, recent live-cell imaging technology revealed that most amyloplasts continuously exhibit dynamic, saltatory movements in the endodermal cells of Arabidopsis stems. These complicated movements led to questions about what type of amyloplast movement triggers gravity sensing. Here we show that a confocal microscope equipped with optical tweezers can be a powerful tool to trap and manipulate amyloplasts noninvasively, while simultaneously observing cellular responses such as vacuolar dynamics in living cells. A near-infrared (λ=1064 nm) laser that was focused into the endodermal cells at 1 mW of laser power attracted and captured amyloplasts at the laser focus. The optical force exerted on the amyloplasts was theoretically estimated to be up to 1 pN. Interestingly, endosomes and trans-Golgi network were trapped at 30 mW but not at 1 mW, which is probably due to lower refractive indices of these organelles than that of the amyloplasts. Because amyloplasts are in close proximity to vacuolar membranes in endodermal cells, their physical interaction could be visualized in real time. The vacuolar membranes drastically stretched and deformed in response to the manipulated movements of amyloplasts by optical tweezers. Our new method provides deep insights into the biophysical properties of plant organelles in vivo and opens a new avenue for studying gravity-sensing mechanisms in plants.
Collapse
Affiliation(s)
- Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Keisuke Meguriya
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hiroshi Y. Yoshikawa
- Department of Chemistry, Saitama University, Saitama 338-8570, Japan
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
26
|
Squires AH. Engineering improved measurement and actuation for nanoscale biophysics. Biophys Rev 2020; 12:1107-1109. [PMID: 32909236 DOI: 10.1007/s12551-020-00751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
This commentary profiles the research interests of my recently established research group at The University of Chicago, as well as my own research trajectory and contributions to the field of nanoscale biophysics. I describe here certain open challenges of interest that drive my group's current research efforts, along with my past efforts that have impacted these areas.
Collapse
Affiliation(s)
- Allison H Squires
- Pritzker School for Molecular Engineering, The University of Chicago, 5640 South Ellis Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
28
|
Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, Ghosh A, Wang J. Fantastic Voyage of Nanomotors into the Cell. ACS NANO 2020; 14:9423-9439. [PMID: 32701260 DOI: 10.1021/acsnano.0c05217] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Richard Feynman's 1959 vision of controlling devices at small scales and swallowing the surgeon has inspired the science-fiction Fantastic Voyage film and has played a crucial role in the rapid development of the microrobotics field. Sixty years later, we are currently witnessing a dramatic progress in this field, with artificial micro- and nanoscale robots moving within confined spaces, down to the cellular level, and performing a wide range of biomedical applications within the cellular interior while addressing the limitations of common passive nanosystems. In this review article, we discuss key recent advances in the field of micro/nanomotors toward important cellular applications. Specifically, we outline the distinct capabilities of nanoscale motors for such cellular applications and illustrate how the active movement of nanomotors leads to distinct advantages of rapid cell penetration, accelerated intracellular sensing, and effective intracellular delivery toward enhanced therapeutic efficiencies. We finalize by discussing the future prospects and key challenges that such micromotor technology face toward implementing practical intracellular applications. By increasing our knowledge of nanomotors' cell entry and of their behavior within the intracellular space, and by successfully addressing key challenges, we expect that next-generation nanomotors will lead to exciting advances toward cell-based diagnostics and therapy.
Collapse
Affiliation(s)
- Pooyath Lekshmy Venugopalan
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Malay Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Rueangkham N, Estabrook ID, Hawkins RJ. Modelling cytoskeletal transport by clusters of non-processive molecular motors with limited binding sites. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200527. [PMID: 32968517 PMCID: PMC7481682 DOI: 10.1098/rsos.200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Molecular motors are responsible for intracellular transport of a variety of biological cargo. We consider the collective behaviour of a finite number of motors attached on a cargo. We extend previous analytical work on processive motors to the case of non-processive motors, which stochastically bind on and off cytoskeletal filaments with a limited number of binding sites available. Physically, motors attached to a cargo cannot bind anywhere along the filaments, so the number of accessible binding sites on the filament should be limited. Thus, we analytically study the distribution and the velocity of a cluster of non-processive motors with limited number of binding sites. To validate our analytical results and to go beyond the level of detail possible analytically, we perform Monte Carlo latticed based stochastic simulations. In particular, in our simulations, we include sequence preservation of motors performing stepping and binding obeying a simple exclusion process. We find that limiting the number of binding sites reduces the probability of non-processive motors binding but has a relatively small effect on force-velocity relations. Our analytical and stochastic simulation results compare well to published data from in vitro and in vivo experiments.
Collapse
|
30
|
Wu Y, Fu A, Yossifon G. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906682. [PMID: 32363783 DOI: 10.1002/smll.201906682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Self-propelling micromotors are emerging as a promising microscale tool for single-cell analysis. The authors have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallo-dielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, the application of the mobile floating microelectrode to trap and transport cell organelles in a selective and releasable manner is successfully extended. This selectivity is driven by the different dielectrophoretic (DEP) potential wells on the JP surface that is controlled by the frequency of the electric field, along with the hydrodynamic shearing and size of the trapped organelles. Such selective and directed loading enables purification of targeted organelles of interest from a mixed biological sample while their dynamic release enables their harvesting for further analysis such as gene/RNA sequencing or proteomics. Moreover, the electro-deformation of the trapped nucleus is shown to be in correlation with the DEP force and hence, can act as a promising label-free biomechanical marker. Hence, the active carrier constitutes an important and novel ex vivo platform for manipulation and mechanical probing of subcellular components of potential for single cell analysis.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
31
|
Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32451857 DOI: 10.1007/978-3-030-38062-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Inside the cellular environment, molecular motors can work in concert to conduct a variety of important physiological functions and processes that are vital for the survival of a cell. However, in order to decipher the mechanism of how these molecular motors work, single-molecule microscopy techniques have been popular methods to understand the molecular basis of the emerging ensemble behavior of these motor proteins.In this chapter, we discuss various single-molecule biophysical imaging techniques that have been used to expose the mechanics and kinetics of myosins. The chapter should be taken as a general overview and introductory guide to the many existing techniques; however, since other chapters will discuss some of these techniques more thoroughly, the readership should refer to those chapters for further details and discussions. In particular, we will focus on scattering-based single-molecule microscopy methods, some of which have become more popular in the recent years and around which the work in our laboratories has been centered.
Collapse
|
32
|
Processivity and Velocity for Motors Stepping on Periodic Tracks. Biophys J 2020; 118:1537-1551. [PMID: 32367805 DOI: 10.1016/j.bpj.2020.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022] Open
Abstract
Processive molecular motors enable cargo transportation by assembling into dimers capable of taking several consecutive steps along a cytoskeletal filament. In the well-accepted hand-over-hand stepping mechanism, the trailing motor detaches from the track and binds the filament again in the leading position. This requires fuel consumption in the form of ATP hydrolysis and coordination of the catalytic cycles between the leading and the trailing heads. Alternate stepping pathways also exist, including inchworm-like movements, backward steps, and foot stomps. Whether all the pathways are coupled to ATP hydrolysis remains to be determined. Here, to establish the principles governing the dynamics of processive movement, we present a theoretical framework that includes all of the alternative stepping mechanisms. Our theory bridges the gap between the elemental rates describing the biochemical and structural transitions in each head and the experimentally measurable quantities such as velocity, processivity, and probability of backward stepping. Our results, obtained under the assumption that the track is periodic and infinite, provide expressions that hold regardless of the topology of the network connecting the intermediate states, and are therefore capable of describing the function of any molecular motor. We apply the theory to myosin VI, a motor that takes frequent backward steps and moves forward with a combination of hand-over-hand and inchworm-like steps. Our model quantitatively reproduces various observables of myosin VI motility reported by four experimental groups. The theory is used to predict the gating mechanism, the pathway for backward stepping, and the energy consumption as a function of ATP concentration.
Collapse
|
33
|
Andrew PK, Williams MAK, Avci E. Optical Micromachines for Biological Studies. MICROMACHINES 2020; 11:mi11020192. [PMID: 32069922 PMCID: PMC7074663 DOI: 10.3390/mi11020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area.
Collapse
Affiliation(s)
- Philippa-Kate Andrew
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
| | - Martin A. K. Williams
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence:
| |
Collapse
|
34
|
Kaneko T, Furuta K, Oiwa K, Shintaku H, Kotera H, Yokokawa R. Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars. SCIENCE ADVANCES 2020; 6:eaax7413. [PMID: 32010782 PMCID: PMC6976292 DOI: 10.1126/sciadv.aax7413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.
Collapse
Affiliation(s)
- Taikopaul Kaneko
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Ken’ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
- RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
35
|
Kim J, Martin OJF. Studying the different coupling regimes for a plasmonic particle in a plasmonic trap. OPTICS EXPRESS 2019; 27:38670-38682. [PMID: 31878630 DOI: 10.1364/oe.379435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Plasmonic antennas improve the stiffness and resolution of optical tweezers by producing a strong near-field. When the antenna traps metallic objects, the optically-resonant object affects the near-field trap, and this interaction should be examined to estimate the optical force accurately. We study this effect in detail by evaluating the force using both Maxwell's stress tensor and the dipole approximation. In spite of the strong optical interaction between the particle and the antenna, the results show that the dipole approximation remains accurate for calculating forces on Rayleigh particles. For particles whose sizes exceed the dipole limit, we observe different coupling regimes where the force becomes either attractive or repulsive. The distributions of field amplitudes and polarization charges explain such a behavior.
Collapse
|
36
|
Shi Y, Zhao H, Nguyen KT, Zhang Y, Chin LK, Zhu T, Yu Y, Cai H, Yap PH, Liu PY, Xiong S, Zhang J, Qiu CW, Chan CT, Liu AQ. Nanophotonic Array-Induced Dynamic Behavior for Label-Free Shape-Selective Bacteria Sieving. ACS NANO 2019; 13:12070-12080. [PMID: 31585042 DOI: 10.1021/acsnano.9b06459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Current particle sorting methods such as microfluidics, acoustics, and optics focus on exploiting the differences in the mass, size, refractive index, or fluorescence staining. However, there exist formidable challenges for them to sort label-free submicron particles with similar volume and refractive index yet distinct shapes. In this work, we report an optofluidic nanophotonic sawtooth array (ONSA) that generates sawtooth-like light fields through light coupling, paving the physical foundation for shape-selective sieving. Submicron particles interact with the coupled hotspots which impose different optical torques on the particles according to their shapes. Unstained S. aureus and E. coli are used as a model system to demonstrate this shape-selective sorting mechanism based on the torque-induced body dynamics, which was previously unattainable by other particle sorting technologies. More than 95% of S. aureus is retained within ONSA, while more than 97% of E. coli is removed. This nanophotonic chip offers a paradigm shift in shape-selective sorting of submicron particles and expands the boundary of optofluidics-based particle manipulation.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Haitao Zhao
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Kim Truc Nguyen
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Yi Zhang
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Tongtong Zhu
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore
- School of Optoelectronic Engineering and Instrumentation Science , Dalian University of Technology , Dalian 116024 , China
| | - Yefeng Yu
- School of Electronic and Optical Engineering , Nanjing University of Science and Technology , Nanjing , Jiangsu 210094 , China
| | - Hong Cai
- Institute of Microelectronics , A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, #08-02 Innovis Tower , Singapore 138634 , Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore 308232 , Singapore
| | - Patricia Yang Liu
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Sha Xiong
- School of Information Science & Engineering , Central South University , Changsha 410083 , China
| | - Jingbo Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore
| | - Che Ting Chan
- Department of Physics and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
37
|
Probing the Functional Role of Physical Motion in Development. Dev Cell 2019; 51:135-144. [PMID: 31639366 DOI: 10.1016/j.devcel.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/15/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
Spatiotemporal organization during development has frequently been proposed to be explainable by reaction-transport models, where biochemical reactions couple to physical motion. However, whereas genetic tools allow causality of molecular players to be dissected via perturbation experiments, the functional role of physical transport processes, such as diffusion and cytoplasmic streaming, frequently remains untestable. This Perspective explores the challenges of validating reaction-transport hypotheses and highlights new opportunities provided by perturbation approaches that specifically target physical transport mechanisms. Using these methods, experimental physics may begin to catch up with molecular biology and find ways to test roles of diffusion and flows in development.
Collapse
|
38
|
Arbore C, Perego L, Sergides M, Capitanio M. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 2019; 11:765-782. [PMID: 31612379 PMCID: PMC6815294 DOI: 10.1007/s12551-019-00599-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.
Collapse
Affiliation(s)
- Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Laura Perego
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marios Sergides
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
39
|
Abstract
The 2018 Nobel Prize in Physics has been awarded jointly to Arthur Ashkin for the discovery and development of optical tweezers and their applications to biological systems and to Gérard Mourou and Donna Strickland for the invention of laser chirped pulse amplification. Here we focus on Arthur Ashkin and how his revolutionary work opened a window into the world of molecular mechanics and spurred the rise of single-molecule biophysics.
Collapse
|
40
|
Automated Indirect Transportation of Biological Cells with Optical Tweezers and a 3D Printed Microtool. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical tweezers are widely used for noninvasive and precise micromanipulation of living cells to understand biological processes. By focusing laser beams on cells, direct cell manipulation with optical tweezers can achieve high precision and flexibility. However, direct exposure to the laser beam can lead to negative effects on the cells. These phenomena are also known as photobleaching and photodamage. In this study, we proposed a new indirect cell micromanipulation approach combined with a robot-aided holographic optical tweezer system and 3D nano-printed microtool. The microtool was designed with a V-shaped head and an optical handle part. The V-shaped head can push and trap different sizes of cells as the microtool moves forward by optical trapping of the handle part. In this way, cell exposure to the laser beam can be effectively reduced. The microtool was fabricated with a laser direct writing system by two-photon photopolymerization. A control strategy combined with an imaging processing algorithm was introduced for automated manipulation of the microtool and cells. Experiments were performed to verify the effectiveness of our approach. First, automated microtool transportation and rotation were demonstrated with high precision. Second, indirect optical transportations of cells, with and without an obstacle, were performed to demonstrate the effectiveness of the proposed approach. Third, experiments of fluorescent cell manipulation were performed to confirm that, indicated by the photobleaching effect, indirect manipulation with the microtool could induce less laser exposure compared with direct optical manipulation. The proposed method could be useful in complex biomedical applications where precise cell manipulation and less laser exposure are required.
Collapse
|
41
|
Duś-Szachniewicz K, Drobczyński S, Woźniak M, Zduniak K, Ostasiewicz K, Ziółkowski P, Korzeniewska AK, Agrawal AK, Kołodziej P, Walaszek K, Bystydzieński Z, Rymkiewicz G. Differentiation of single lymphoma primary cells and normal B-cells based on their adhesion to mesenchymal stromal cells in optical tweezers. Sci Rep 2019; 9:9885. [PMID: 31285461 PMCID: PMC6614388 DOI: 10.1038/s41598-019-46086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
We have adapted a non-invasive method based on optical tweezers technology to differentiate between the normal B-cells and the B-cell non-Hodgkin lymphoma (B-NHL) cells derived from clinical samples. Our approach bases on the nascent adhesion between an individual B-cell and a mesenchymal stromal cell. In this study, a single B-cell was trapped and optically seeded on a mesenchymal stromal cell and kept in a direct contact with it until a stable connection between the cells was formed in time scale. This approach allowed us to avoid the introduction of any exogenous beads or chemicals into the experimental setup which would have affected the cell-to-cell adhesion. Here, we have provided new evidence that aberrant adhesive properties found in transformed B-cells are related to malignant neoplasia. We have demonstrated that the mean time required for establishing adhesive interactions between an individual normal B-cell and a mesenchymal stromal cell was 26.7 ± 16.6 s, while for lymphoma cell it was 208.8 ± 102.3 s, p < 0.001. The contact time for adhesion to occur ranged from 5 to 90 s and from 60 to 480 s for normal B-cells and lymphoma cells, respectively. This method for optically controlled cell-to-cell adhesion in time scale is beneficial to the successful differentiation of pathological cells from normal B-cells within the fine needle aspiration biopsy of a clinical sample. Additionally, variations in time-dependent adhesion among subtypes of B-NHL, established here by the optical trapping, confirm earlier results pertaining to cell heterogeneity.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland.
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marta Woźniak
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Krzysztof Zduniak
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Katarzyna Ostasiewicz
- Department of Statistics, Wrocław University of Economics, Komandorska 118/120, 53-345, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Aleksandra K Korzeniewska
- Department of Optics and Photonics, Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anil K Agrawal
- 2nd Department of General and Oncological Surgery, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Paweł Kołodziej
- Division of Pathology, Sokołowski Hospital Wałbrzych, Sokołowskiego 4, 58-309, Wałbrzych, Poland
| | - Kinga Walaszek
- Department of Pathology, Wrocław Medical University, Marcinkowskiego 1, 50-368, Wrocław, Poland
| | - Zbigniew Bystydzieński
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute-Oncology Centre, Wilhelma Konrada Roentgena 5, 02-781, Warsaw, Poland
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Institute-Oncology Centre, Wilhelma Konrada Roentgena 5, 02-781, Warsaw, Poland
| |
Collapse
|
42
|
Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H, Brandt J, Kaverina I, Straube A. PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat Commun 2019; 10:2693. [PMID: 31217419 PMCID: PMC6584639 DOI: 10.1038/s41467-019-10644-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
The kinesin-3 KIF1C is a fast organelle transporter implicated in the transport of dense core vesicles in neurons and the delivery of integrins to cell adhesions. Here we report the mechanisms of autoinhibition and release that control the activity of KIF1C. We show that the microtubule binding surface of KIF1C motor domain interacts with its stalk and that these autoinhibitory interactions are released upon binding of protein tyrosine phosphatase PTPN21. The FERM domain of PTPN21 stimulates dense core vesicle transport in primary hippocampal neurons and rescues integrin trafficking in KIF1C-depleted cells. In vitro, human full-length KIF1C is a processive, plus-end directed motor. Its landing rate onto microtubules increases in the presence of either PTPN21 FERM domain or the cargo adapter Hook3 that binds the same region of KIF1C tail. This autoinhibition release mechanism allows cargo-activated transport and might enable motors to participate in bidirectional cargo transport without undertaking a tug-of-war.
Collapse
Affiliation(s)
- Nida Siddiqui
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Alexander James Zwetsloot
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- MRC-DTP in Interdisciplinary Biomedical Research, Warwick Medical School, Coventry, CV4 7AL, UK
| | - Alice Bachmann
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel Roth
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Hamdi Hussain
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jonathan Brandt
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
43
|
The 2018 Nobel Prize in Physics: optical tweezers and chirped pulse amplification. Anal Bioanal Chem 2019; 411:5001-5005. [PMID: 31143967 DOI: 10.1007/s00216-019-01913-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
The 2018 Nobel Prize in Physics was awarded to Arthur Ashkin (prize share ½), Gérard Mourou (prize share ¼), and Donna Strickland (prize share ¼) for "groundbreaking inventions in the field of laser physics." This feature article summarizes the development of "optical tweezers and their application to biological systems" by Arthur Ashkin, as well as the Mourou/Strickland method of "generating high-intensity, ultrashort optical pulses" known as chirped pulse amplification. Further developments are also briefly discussed.
Collapse
|
44
|
Tych K, Hechtl VK, Mandal S. The Power of Light: Nobel Prize in Physics 2018. IEEE Pulse 2019; 10:14-19. [PMID: 31021752 DOI: 10.1109/mpuls.2019.2899703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 2018 Nobel Prize in Physics was awarded to three scientists in the field of laser science: Dr. Arthur Ashkin for his invention of the optical tweezers and their application to biological systems, and Dr. Gérard Mourou and Dr. Donna Strickland for their method of generating high-intensity, ultrashort optical pulses. The awards integrate the far reaches of time and intensity scales in laser technologies, from the extremely high-intensity chirped pulse lasers (by Mourou and Strickland) to the ultralow-power beams (by Ashkin) that are capable of handling delicate biological objects and molecules [1], [2]. The IEEE family is indeed delighted to see two of its Life Fellows, Arthur Ashkin and Gérard Mourou, as co-recipients of the awards from the Royal Swedish Academy of Science. Mourou is a past recipient of the IEEE Photonics Quantum Electronics Award and the IEEE David Sarnoff Award. Strickland has been an active author in the IEEE Journal of Quantum Electronics and IEEE Journal of Selected Topics in Quantum Electronics.
Collapse
|
45
|
Bottier M, Thomas KA, Dutcher SK, Bayly PV. How Does Cilium Length Affect Beating? Biophys J 2019; 116:1292-1304. [PMID: 30878201 PMCID: PMC6451027 DOI: 10.1016/j.bpj.2019.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video microscopy of uniciliated mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The frequency of cilia beating was estimated from the motion of the cell body and of the cilium. Key features of the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. Most notably, periodic beating did not emerge until the cilium reached a critical length between 2 and 4 μm. Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths with only a slight decrease in frequency as length increased from 4 μm to the normal length of 10-12 μm. The waveform average curvature (rad/μm) was also conserved as the cilium grew. The mechanical metrics of ciliary propulsion (force, torque, and power) all increased in proportion to length. The mechanical efficiency of beating appeared to be maximal at the normal wild-type length of 10-12 μm. These quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, may help distinguish competing hypotheses of the underlying mechanism of oscillation.
Collapse
Affiliation(s)
- Mathieu Bottier
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kyle A Thomas
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
46
|
Hanasaki I, Nemoto T, Tanaka YY. Soft trapping lasts longer: Dwell time of a Brownian particle varied by potential shape. Phys Rev E 2019; 99:022119. [PMID: 30934295 DOI: 10.1103/physreve.99.022119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 06/09/2023]
Abstract
It is often regarded that the dwell time (or residence time, escape time, trapping duration) of trapped Brownian particles is described by the multiplication of two separate factors, i.e., the diffusive traveling time of the trapping domain size without taking into account the trapping force, and the stochastic event of overcoming the trapping energy by thermal one instantaneously. However, we show that the ratio of dwell time to the typical traveling time for the trapping domain size depends on the shape of the force field. The shape of the trapping potential affects this ratio even if the trapping energy gap is the same and the smooth potential has a single minimum. Our finding suggests the possible application of the potential shape to realize the desired trapping characteristics.
Collapse
Affiliation(s)
- Itsuo Hanasaki
- Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Takahiro Nemoto
- Philippe Meyer Institute for Theoretical Physics, Physics Department, École Normale Supérieure & PSL Research University, 24, rue Lhomond, 75231 Paris Cedex 05, France
| | - Yoshito Y Tanaka
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
47
|
Abstract
The Nobel Prize in Physics 2018, “For groundbreaking inventions in the field of laser physics”, went to Arthur Ashkin and Gérard Mourou and Donna Strickland. Their inventions have revolutionized laser physics and greatly promoted the development of laser instruments, which have penetrated into many aspects of people’s daily lives. However, for the purpose of protecting human eyes or optical instruments from being damaged by both pulsed and continuous wave laser radiation, the research on laser protective materials is of particular significance. Due to the intriguing and outstanding physical, chemical, and structural properties, two-dimensional (2D) nanomaterials have been extensively studied as optical limiting (OL) materials owing to their broadband nonlinear optical (NLO) response and fast carrier relaxation dynamics that are important for reducing the laser intensity. This review systematically describes the OL mechanisms and the recent progress in 2D nanomaterials for laser protection.
Collapse
|
48
|
Nadappuram BP, Cadinu P, Barik A, Ainscough AJ, Devine MJ, Kang M, Gonzalez-Garcia J, Kittler JT, Willison KR, Vilar R, Actis P, Wojciak-Stothard B, Oh SH, Ivanov AP, Edel JB. Nanoscale tweezers for single-cell biopsies. NATURE NANOTECHNOLOGY 2019; 14:80-88. [PMID: 30510280 DOI: 10.1038/s41565-018-0315-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/19/2018] [Indexed: 05/19/2023]
Abstract
Much of the functionality of multicellular systems arises from the spatial organization and dynamic behaviours within and between cells. Current single-cell genomic methods only provide a transcriptional 'snapshot' of individual cells. The real-time analysis and perturbation of living cells would generate a step change in single-cell analysis. Here we describe minimally invasive nanotweezers that can be spatially controlled to extract samples from living cells with single-molecule precision. They consist of two closely spaced electrodes with gaps as small as 10-20 nm, which can be used for the dielectrophoretic trapping of DNA and proteins. Aside from trapping single molecules, we also extract nucleic acids for gene expression analysis from living cells without affecting their viability. Finally, we report on the trapping and extraction of a single mitochondrion. This work bridges the gap between single-molecule/organelle manipulation and cell biology and can ultimately enable a better understanding of living cells.
Collapse
Affiliation(s)
| | - Paolo Cadinu
- Department of Chemistry, Imperial College London, London, UK
| | - Avijit Barik
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexander J Ainscough
- Department of Chemistry, Imperial College London, London, UK
- Department of Experimental Medicine and Toxicology, Imperial College London, London, UK
| | - Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Minkyung Kang
- Department of Chemistry, Imperial College London, London, UK
| | | | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, UK
| | - Paolo Actis
- School of Electronic and Electrical Engineering, Pollard Institute, University of Leeds, Leeds, UK
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | - Joshua B Edel
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
49
|
Differential effect of multiple kinesin motors on run length, force and microtubule binding rate. Biophys Chem 2018; 242:28-33. [DOI: 10.1016/j.bpc.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 11/23/2022]
|
50
|
|