1
|
Acchioni C, Sandini S, Acchioni M, Sgarbanti M. Co-Infections and Superinfections between HIV-1 and Other Human Viruses at the Cellular Level. Pathogens 2024; 13:349. [PMID: 38787201 PMCID: PMC11124504 DOI: 10.3390/pathogens13050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Co-infection or superinfection of the host by two or more virus species is a common event, potentially leading to viral interference, viral synergy, or neutral interaction. The simultaneous presence of two or more viruses, even distantly related, within the same cell depends upon viral tropism, i.e., the entry of viruses via receptors present on the same cell type. Subsequently, productive infection depends on the ability of these viruses to replicate efficiently in the same cellular environment. HIV-1 initially targets CCR5-expressing tissue memory CD4+ T cells, and in the absence of early cART initiation, a co-receptor switch may occur, leading to the infection of naïve and memory CXCR4-expressing CD4+ T cells. HIV-1 infection of macrophages at the G1 stage of their cell cycle also occurs in vivo, broadening the possible occurrence of co-infections between HIV-1 and other viruses at the cellular level. Moreover, HIV-1-infected DCs can transfer the virus to CD4+ T cells via trans-infection. This review focuses on the description of reported co-infections within the same cell between HIV-1 and other human pathogenic, non-pathogenic, or low-pathogenic viruses, including HIV-2, HTLV, HSV, HHV-6/-7, GBV-C, Dengue, and Ebola viruses, also discussing the possible reciprocal interactions in terms of virus replication and virus pseudotyping.
Collapse
Affiliation(s)
| | | | | | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| |
Collapse
|
2
|
Zhang H, Wang Y, Ma Y, Tang K, Zhang C, Wang M, Zhang X, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Chen L, Zhang Y, Zhang Y. Increased CD4 +CD8 + Double Positive T Cells during Hantaan Virus Infection. Viruses 2022; 14:2243. [PMID: 36298798 PMCID: PMC9611689 DOI: 10.3390/v14102243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Hantaan virus (HTNV) infection causes an epidemic of hemorrhagic fever with renal syndrome (HFRS) mainly in Asia. It is well known that T cells mediated anti-viral immune response. Although previous studies showed that double positive T (DP T) cells, a little portion of T lymphocytes, were involved in adaptive immune response during virus infection, their kinetic changes and roles in HTNV infection have not yet been explored. In this study, we characterized DP T cells from HFRS patients based on flow cytometry data combined with scRNA-seq data. We showed that HTNV infection caused the upregulation of DP T cells in the peripheral blood, which were correlated with disease stage. The scRNA-seq data clustered DP T cells, unraveled their gene expression profile, and estimated the ordering of these cells. The production of granzyme B and CD107a from DP T cells and the abundant TCR distribution indicated the anti-viral property of DP T cells. In conclusion, this study identified, for the first time, an accumulation of DP T cells in the peripheral blood of HFRS patients and suggested these DP T cells belonging to CD8+T cells lineage. The DP T cells shared the similar characteristics with cytotoxic T cells (CTL) and exerted an anti-viral role in HFRS.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Yazhen Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Kang Tang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Xiyue Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | - Manling Xue
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an University, Yan’an 716000, China
| | | | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
3
|
Nazim F, Kayani HA, Ali Nathwani A, Mir F, Abidi SH. CMV and EBV Co-Infection in HIV-Infected Children: Infection Rates and Analysis of Differential Expression of Cytokines in HIV Mono- and HIV-CMV-EBV Co-Infected Groups. Viruses 2022; 14:1823. [PMID: 36016445 PMCID: PMC9414517 DOI: 10.3390/v14081823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: CMV and EBV co-infections can affect the HIV disease progression by modulating the immune system. The disease dynamics can differ in HIV-positive adults and children. In Pakistan, HIV is rapidly expanding, especially in children; however, the prevalence of CMV and EBV co-infection and the effect on immune modulation in HIV-positive children are not known. This study aimed to bridge this gap by estimating the rate of active CMV and EBV co-infection in HIV-positive children, followed by the analysis of differential expression of cytokines in HIV mono- and HIV/CMV/EBV co-infected children. (2) Methods: DNA samples from 319 HIV-positive children, previously recruited as part of a study to investigate the HIV outbreak in Larkana, Pakistan, in 2019, were screened for CMV and EBV through qPCR. Subsequently, differences in HIV viral loads and CD4 counts were analyzed between the HIV mono- and HIV/CMV/EBV co-infected groups. The RNA samples were used to determine the differential expression of both pro- and anti-inflammatory cytokines in the mono- and co-infected groups using RT-qPCR, while unpaired T-test and Pearson correlation test were applied to, respectively, analyze the differential cytokine expression and correlation between cytokine in the two groups. (3) Results: Of 319 samples, the rate of active EBV and CMV co-infection in HIV-positive children was observed in 79.9% and 38.9%, respectively. A significant difference was observed in HIV viral load between HIV mono- and co-infected groups. IFN-γ expression was found to be lower in the HIV mono-infected group, while higher in all other three co-infected groups. Meanwhile, mRNA expression of TGF-β1 was found to be lower in HIV mono- and HIV-CMV-EBV co-infected groups, while higher in HIV-CMV and HIV-EBV co-infected groups. IFN-γ and IL-2 exhibited a significant positive correlation in all except HIV-CMV co-infected group. (4) Conclusions: The study suggests that the presence of EBV/CMV co-infection can affect the HIV viral loads and expression of certain cytokines (IFN-γ and TGF-β1), which may affect the HIV disease dynamics in infected children.
Collapse
Affiliation(s)
- Fizza Nazim
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi 75600, Pakistan
| | - Hammad Afzal Kayani
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi 75600, Pakistan
| | - Apsara Ali Nathwani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Fatima Mir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
4
|
Mysore KR, Phan TL, Himes RW, Schady D, Eldin KW, Prusty BK, Munoz FM. Human Herpesvirus 6 Infection in Pediatric Liver Transplantation: Single-Center Study of Incidence, Outcomes, and Management. J Pediatric Infect Dis Soc 2021; 10:599-606. [PMID: 33491073 PMCID: PMC8163056 DOI: 10.1093/jpids/piaa166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Distinctions between HHV-6 primary infection in seronegative patients and HHV-6 reactivation in seropositive patients remains largely undescribed in pediatric liver transplant (LT) recipients. METHODS We implemented pretransplant serology testing of HHV-6 in a large pediatric hospital and retrospectively assessed the incidence, manifestations and outcomes of HHV-6 infections over a 3-year period. RESULTS Among 101 pediatric LT recipients, 96 had pretransplant HHV-6 serologies; 34 (35.4%) were seronegative and 62 (64.6%) seropositive. Posttransplantation, 8/25 (32%) seronegative patients had HHV-6 DNAemia (primary infection) compared to 2/48 (4%) seropositive patients (p=0.002). Compared to seropositive patients, seronegative patients with HHV-6 DNAemia were younger, and had symptoms of fever and/or elevated aminotransferases in association with higher viral loads, in the first month post-transplant. More than 90% of seronegative patients and 77.8% of seropositive patients had HHV-6 detected by PCR in liver biopsy obtained for concerns of allograft rejection, but most had no detectable concomitant DNAemia. Active replication of virus in the liver was confirmed by in situ hybridization in select cases. While HHV-6 infection occurred among patients on prophylaxis doses of antivirals for CMV, HHV-6 DNAemia and presenting symptoms resolved on treatment doses. CONCLUSIONS HHV-6 DNA-emia occurred more frequently in seronegative pediatric LT recipients, usually in the early posttransplant period, and was subsequently detected in allograft biopsies. HHV-6 cannot be ruled out as a cause of hepatitis in the absence of allograft tissue testing and specialized virological assays, as HHV-6 may disrupt local allograft immune homeostasis while evading traditional screening methods using blood or plasma. The assessment of pre-transplant HHV-6 serological status may be important for risk stratification and post-transplant management of pediatric LT recipients.
Collapse
Affiliation(s)
- Krupa R Mysore
- Department of Pediatrics, Section of Pediatric Gastroenterology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Tuan L Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- HHV-6 Foundation, Santa Barbara, California, USA
| | - Ryan W Himes
- Department of Pediatrics, Section of Gastroenterology & Hepatology, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Deborah Schady
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Karen W Eldin
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bhupesh K Prusty
- Institut für Virologie und Immunobiologie, Julius-Maximilians Universität Würzburg, Würzburg, Germany
| | - Flor M Munoz
- Department of Pediatrics, Section of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Volkers SM, Meisel C, Terhorst-Molawi D, Burbach GJ, Schürmann D, Suttorp N, Sander LE. Clonal expansion of CD4 +CD8 + T cells in an adult patient with Mycoplasma pneumoniae-associated Erythema multiforme majus. Allergy Asthma Clin Immunol 2021; 17:17. [PMID: 33568212 PMCID: PMC7877069 DOI: 10.1186/s13223-021-00520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Background Erythema multiforme (EM) is an acute, immune-mediated mucocutaneous disease, most often preceded by herpes simplex virus (HSV) infection or reactivation. Mycoplasma pneumoniae (Mp) is considered the second major trigger of EM and is often associated with an atypical and more severe presentation of disease, characterized by prominent mucosal involvement. However, contrary to HSV-associated Erythema multiforme (HAEM), immunological mechanisms of Mp-associated EM remain unclear. Case presentation We present the case of a 50-year-old male patient presenting with community-acquired pneumonia (CAP) and erythema multiforme majus (EMM). Acute Mp infection was diagnosed by seroconversion, with no evidence of HSV infection as a cause of EMM. We performed immune phenotyping of blister fluid (BF) and peripheral blood (PB) T cells and detected a clonally expanded TCRVβ2+ T cell population that was double positive for CD4 and CD8, and expressed the cytotoxic markers granulysin and perforin. This CD4+CD8+ population comprised up to 50.7% of BF T cells and 24.9% of PB T cells. Two years prior to the onset of disease, the frequency of PB CD4+CD8+T cells had been within normal range and it gradually returned to baseline levels with the resolution of symptoms, suggesting an involvement of this population in EMM disease pathophysiology. Conclusions This report is the first to provide a phenotypic description of lesional T cells in Mp-associated EMM. Characterizing the local immune response might help to address pathophysiological questions and warrants further systematic research.
Collapse
Affiliation(s)
- Sarah M Volkers
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Department of Dermatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Guido J Burbach
- Dermatology/Dermato-Oncology Out-Patient Clinic, Vivantes Ambulatory Health Care Centers Berlin-Spandau, Berlin, Germany
| | - Dirk Schürmann
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
6
|
Oktafiani D, Megasari NLA, Ana EF, Nasronudin, Lusida MI, Soetjipto. First Report on HHV-6 Infection Among HIV-Infected Individuals Residing in Surabaya, Indonesia. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2020; 12:107-112. [PMID: 32231441 PMCID: PMC7085325 DOI: 10.2147/hiv.s232146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022]
Abstract
Background Morbidity and mortality from acquired immunodeficiency syndrome (AIDS) are often associated with the reactivation of a herpes virus infection. Human herpesvirus-6 (HHV-6) is usually common in childhood infections that remain latent and can act as opportunists during immunosuppression to reactivate and cause disease. In human immunodeficiency virus (HIV)-infected patients, the impact of HHV-6 infection can be an up-regulator of HIV replication and accelerate progress towards AIDS. However, studies on HHV-6 infection have never been done in Surabaya, Indonesia. Purpose To determine the presence of HHV-6 infection among HIV-infected individuals residing in Surabaya, Indonesia. Patients and Methods Plasma and peripheral blood mononuclear cells (PBMCs) were collected from 85 HIV-infected individuals in Universitas Airlangga Hospital, Surabaya, as well as 85 healthy controls. DNA extracted from PBMCs was subjected to PCR to determine HHV-6 infection, while plasma of HIV-infected individuals was used for viral RNA quantification using real-time PCR. Results HHV-6 infection was detected in 17.6% (15/85) of HIV-infected individuals, and in 3.53% (3/85) of healthy controls. Thus, HHV-6 infection was more likely to be found in HIV-infected individuals than in healthy controls (odds ratio 5.85; 95% confidence interval, 1.6–21). The HHV-6B was the most common subtype identified in both HIV-infected individuals (12/15) and healthy controls (3/3). The HHV-6A and co-infection between HHV-6A and HHV-6B were only found in HIV-infected individuals (2/15 and 1/15, respectively). Viral RNA load of HIV-infected individuals was not correlated to HHV-6 infection. Conclusion Our results indicate the emergence of HHV-6 infection among HIV-infected individuals residing in Surabaya, Indonesia, and the risk of HHV-6 infection was higher in HIV-infected individuals than in healthy controls.
Collapse
Affiliation(s)
- Devi Oktafiani
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ni Luh Ayu Megasari
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Elsa Fitri Ana
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nasronudin
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Universitas Airlangga Hospital, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Soetjipto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Universitas Airlangga Hospital, Surabaya, Indonesia.,Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Bortolotti D, Gentili V, Rotola A, Cultrera R, Marci R, Di Luca D, Rizzo R. HHV-6A infection of endometrial epithelial cells affects immune profile and trophoblast invasion. Am J Reprod Immunol 2019; 82:e13174. [PMID: 31338899 DOI: 10.1111/aji.13174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
PROBLEM We first reported human herpesvirus (HHV)-6A DNA presence in 43% of endometrial cells from women with idiopathic infertility, whereas no fertile control women harbored the virus. We investigated the effect of HHV-6A infection on the immunological status of the endometrium. METHOD OF STUDY Endometrial biopsies, uterine flushing, and whole blood samples were collected from 67 idiopathic infertile women (mid-secretory phase). We analyzed the endometrial immunological status evaluating: (a) the effect of HHV-6A infection on endometrial immune profile analyzing the ratio of interleukin (IL)-15/ fibroblast growth factor-inducible 14 (Fn-14) and IL-18/ TNF-related weak inducer of apoptosis (TWEAK) mRNA as a biomarker of endometrial (e)natural killer activation/maturation, angiogenesis, and Th1/Th2 balance; (b) endometrial receptivity to trophoblasts in endometrial 3D in vitro model; (c) natural killer (NK) cells and T cells percentage and subpopulations by flow cytometry. RESULTS We confirmed the presence of HHV-6A infection in a 40% of idiopathic infertile women, characterized by an immune profile reflecting eNK cell cytotoxic activation and a decrease in CD4+ CD25+ CD127dim/- regulatory T cells. The co-culture of endometrial epithelial cells with spheroids generated from the extravillous trophoblast-derived cell line JEG3 showed a twofold expansion of spheroids on endometrial epithelial-stromal cells (ESC) culture surface from HHV-6A negative women while no expansion was observed on the surface of ESC from HHV-6A positive women. CONCLUSION The identification of an effect of HHV-6A infection on endometrial immune status opens new perspectives in idiopathic infertile women care management. In addition, it would be possible to select antiviral therapies as novel, non-hormonal therapeutic approaches to those idiopathic infertile women characterized by the presence of endometrial HHV-6A infection, to increase their pregnancy rate.
Collapse
Affiliation(s)
- Daria Bortolotti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Rotola
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosario Cultrera
- Department of Medical Sciences, Section of Dermathology and Infective Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, Section of Orthopedics, Obstetrics and Gynecology and Anesthesiology and Reanimation Ferrara, University of Ferrara, Ferrara, Italy.,School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Atypical CD4 +/CD8 + Lymphocytosis and Prolonged Pancytopenia Associated With Human Herpesvirus 6 Reactivation After Autologous Peripheral Blood Stem Cell Transplantation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:531-535. [PMID: 31053550 DOI: 10.1016/j.clml.2019.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022]
|
9
|
HHV-6B infection, T-cell reconstitution, and graft-vs-host disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:1508-1517. [PMID: 29795424 DOI: 10.1038/s41409-018-0225-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Successful and sustained CD4+ T-cell reconstitution is associated with increased survival after hematopoietic cell transplantation (HCT), but opportunistic infections may adversely affect the time and extent of immune reconstitution. Human herpesvirus 6B (HHV-6B) efficiently infects CD4+ T cells and utilizes as a receptor CD134 (OX40), a member of the TNF superfamily that antagonizes regulatory T-cell (Treg) activity. Reactivation of HHV-6B has been associated with aberrant immune reconstitution and acute graft-versus-host disease (aGVHD) after HCT. Given that Treg counts are negatively correlated with aGVHD severity, we postulate that one mechanism for the poor CD4+ T-cell reconstitution observed shortly after transplant may be HHV-6B infection and depletion of peripheral (extra-thymic) CD4+ T cells, including a subpopulation of Treg cells. In turn, this may trigger a series of adverse events resulting in poor clinical outcomes such as severe aGVHD. In addition, recent evidence has linked HHV-6B reactivation with aberrant CD4+ T-cell reconstitution late after transplantation, which may be mediated by a different mechanism, possibly related to central (thymic) suppression of T-cell reconstitution. These observations suggest that aggressive management of HHV-6B reactivation in transplant patients may facilitate CD4+ T-cell reconstitution and improve the quality of life and survival of HCT patients.
Collapse
|
10
|
Caselli E, Bortolotti D, Marci R, Rotola A, Gentili V, Soffritti I, D'Accolti M, Lo Monte G, Sicolo M, Barao I, Di Luca D, Rizzo R. HHV-6A Infection of Endometrial Epithelial Cells Induces Increased Endometrial NK Cell-Mediated Cytotoxicity. Front Microbiol 2017; 8:2525. [PMID: 29326672 PMCID: PMC5736868 DOI: 10.3389/fmicb.2017.02525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background: We have recently reported the presence of Human herpesvirus-6A (HHV-6A) DNA in the 43% of endometrial epithelial cells from primary idiopathic infertile women, with no positivity in fertile women. To investigate the possible effect of HHV-6A infection in endometrial (e)NK cells functions, we examined activating/inhibitory receptors expressed by eNK cells and the corresponding ligands on endometrial cells during HHV-6A infection. Methods: Endometrial biopsies and uterine flushing samples during the secretory phase were obtained from 20 idiopathic infertile women and twenty fertile women. HHV-6A infection of endometrial epithelial cells was analyzed by Real-Time PCR, immunofluorescence and flow cytometry. eNKs receptors and endometrial ligands expression were evaluated by immunofluorescence and flow cytometry. Results: We observed the presence of HHV-6A infection (DNA, protein) of endometrial epithelial cells in the 40% of idiopathic infertile women. The eNK from all the subgroups expressed high levels of NKG2D and NKG2A receptors. Functional studies showed that NKG2D activating receptor and FasL are involved in the acquired cytotoxic function of eNK cells during HHV-6A infection of endometrial epithelial cells. In the presence of HHV-6A infection, eNK cells increased expression of CCR2, CXCR3 and CX3CR1 chemokine receptors (p = 0.01) and endometrial epithelial cells up-modulated the corresponding ligands: MCP1 (Monocyte chemotactic protein 1, CCL2), IP-10 (Interferon gamma-induced protein 10, CXCL10) and Eotaxin-3 (CCL26). Conclusion: Our results, for the first time, showed the implication of eNK cells in controlling HHV-6A endometrial infection and clarify the mechanisms that might be implicated in female idiopathic infertility.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Marci
- School of Medicine, University of Geneva, Geneva, Switzerland
| | - Antonella Rotola
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Mariangela Sicolo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Isabel Barao
- School of Medicine, University of Nevada, Reno, NV, United States
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Rizzo R, Soffritti I, D'Accolti M, Bortolotti D, Di Luca D, Caselli E. HHV-6A/6B Infection of NK Cells Modulates the Expression of miRNAs and Transcription Factors Potentially Associated to Impaired NK Activity. Front Microbiol 2017; 8:2143. [PMID: 29163428 PMCID: PMC5671584 DOI: 10.3389/fmicb.2017.02143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells have a critical role in controlling virus infections, and viruses have evolved several mechanisms to escape NK cell functions. In particular, Human herpesvirus 6 (HHV-6) is associated with diseases characterized by immune dysregulation and has been reported to infect NK cells. We recently found that HHV-6 in vitro infection of human thyroid follicular epithelial cells and T-lymphocytes modulates several miRNAs associated with alterations in immune response. Since miRNAs are key regulators of many immune pathways, including NK cell functions, we aimed to study the impact of HHV-6A and -6B in vitro infection on the intracellular mediators correlated to NK cell function. To this purpose, a human NK cell line (NK-92) was infected in vitro with HHV-6A or 6B and analyzed for alterations in the expression of miRNAs and transcription factors. The results showed that both viruses establish lytic replication in NK-92 cells, as shown by the presence of viral DNA, expression of lytic transcripts and antigens, and by the induction of an evident cytopathic effect. Notably, both viruses, although with species-specific differences, induced significant modifications in miRNA expression of miRNAs known for their role in NK cell development, maturation and effector functions (miR-146, miR-155, miR-181, miR-223), and on at least 13 miRNAs with recognized role in inflammation and autoimmunity. Also the expression of transcription factors was significantly modified by HHV-6A/6B infection, with an early increase of ATF3, JUN and FOXA2 by both species, whereas HHV-6A specifically induced a 15-fold decrease of POU2AF1, and HHV-6B an increase of FOXO1 and a decrease of ESR1. Overall, our data show that HHV-6A and -6B infections have a remarkable effect on the expression of miRNAs and transcription factors, which might be important in the induction of NK cell function impairment, virus escape strategies and related pathologies.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
EBV and HHV-6 Circulating Subtypes in People Living with HIV in Burkina Faso, Impact on CD4 T cell count and HIV Viral Load. Mediterr J Hematol Infect Dis 2017; 9:e2017049. [PMID: 28894558 PMCID: PMC5584768 DOI: 10.4084/mjhid.2017.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022] Open
Abstract
Epstein Barr Virus (EBV) and Human Herpes Virus 6 (HHV-6) are responsible for severe diseases, particularly in immunocompromised persons. There is limited data of the infection of these opportunistic viruses in Burkina Faso. The purpose of this study was to characterize EBV and HHV-6 subtypes and to assess their impact on CD4 T cell count, HIV-1 viral load and antiretroviral treatment in people living with HIV-1. The study population consisted of 238 HIV-positive patients with information on the CD4 T cell count, HIV-1 viral load and HAART. Venous blood samples collected in EDTA tubes were used for EBV and HHV-6 Real Time PCR subtyping. An infection rate of 6.7% (16/238) and 7.1% (17/238) were found respectively for EBV and HHV-6 in the present study. Among EBV infections, similar prevalence was noted for both subtypes (3.9% (9/238) for EBV-1 vs 4.6% (11/238) for EBV-2) with 2.1% (5/238) of co-infection. HHV-6A infection represented 6.3% (15/238) of the study population against 5.0% (12/238) for HHV-6B. EBV-2 infection was significantly higher in patients with CD4 T cell count ≥ 500 compared to those with CD4 T cell count less than 500 cells (1.65% vs 8.56%, p = 0,011). The prevalence of EBV and HHV-6 infections was almost similar in HAART-naive and HAART-experienced patients. The present study provides information on the prevalence of EBV and HHV-6 subtypes in people living with HIV-1 in Burkina Faso. The study also suggests that HAART treatment has no effect on infection with these opportunistic viruses in people living with HIV-1.
Collapse
|
13
|
Ongrádi J, Ablashi DV, Yoshikawa T, Stercz B, Ogata M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J Neurovirol 2017; 23:1-19. [PMID: 27538995 PMCID: PMC5329081 DOI: 10.1007/s13365-016-0473-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/15/2016] [Accepted: 07/17/2016] [Indexed: 01/26/2023]
Abstract
The roseoloviruses, human herpesvirus (HHV)-6A, HHV-6B, and HHV-7, can cause severe encephalitis or encephalopathy. In immunocompetent children, primary HHV-6B infection is occasionally accompanied by diverse clinical forms of encephalitis. Roseolovirus coinfections with heterologous viruses and delayed primary HHV-7 infection in immunocompetent adults result in very severe neurological and generalized symptoms. Recovery from neurological sequelae is slow and sometimes incomplete. In immunocompromised patients with underlying hematological malignancies and transplantation, frequent single or simultaneous reactivation of roseoloviruses elicit severe, lethal organ dysfunctions, including damages in the limbic system, brain stem, and hippocampus. Most cases have been due to HHV-6B with HHV-6A accounting for 2-3%. The most severe manifestation of HHV-6B reactivation is post-transplantation limbic encephalitis. Seizures, cognitive problems, and abnormal EEG are common. Major risk factors for HHV-6B-associated encephalitis include unrelated cord blood cell transplantation and repeated hematopoietic stem cell transplantation. Rare genetic disorders, male gender, certain HLA constellation, and immune tolerance to replicating HHV-6 in persons carrying chromosomally integrated HHV-6 might also predispose an individual to roseolovirus-associated brain damage. At this time, little is known about the risk factors for HHV-7-associated encephalitis. Intrathecal glial cell destruction due to virus replication, overexpression of proinflammatory cytokines, and viral mimicry of chemokines all contribute to brain dysfunction. High virus load in the cerebrospinal fluid, hippocampal astrogliosis, and viral protein expression in HHV-6B-associated cases and multiple microscopic neuronal degeneration in HHV-7-associated cases are typical laboratory findings. Early empirical therapy with ganciclovir or foscarnet might save the life of a patient with roseolovirus-associated encephalitis.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Dharam V Ablashi
- HHV-6 Foundation, 1482 East Valley Road, Santa Barbara, CA, 93101, USA
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kotsukake-cho, Dengakugakolo, Toyoake, Aichi, 470-1192, Japan
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Masao Ogata
- Department of Medical Oncology and Hematology, Oita University Hospital, Hasama-machi, Yufu City, 879-5593, Japan
| |
Collapse
|
14
|
Abstract
There is now extensive evidence that herpesviruses can interact with human immunodeficiency virus (HIV) in vitro. To determine if such interactions could be operative in vivo, evidence from AIDS autopsy series are reviewed. Using basic histopathological techniques, cytomegalovirus (CMV) and HIV coinfection of various individual ceils has been demonstrated. Using cell culture, CMV has been detected in 66% and herpes simplex virus in 11% of patients. Using immunocytochemistry, human herpesvirus type 6 (HHV-6) has been found in virtually all tissue sections. The hypothesis that these viruses contribute to the death of individuals with AIDS is supported by the results of two double-blind, placebo-controlled randomized trials of high-dose aciclovir and an observational study of the same drug. All three studies have shown improved survival. Thus, the case is made that herpesviruses act as co-factors of HIV disease, and that inhibition of such infections represents a potential way of reducing mortality in those with AIDS. This paper was presented as the case for in a debate on ‘Herpesviruses as co-factors of HIV disease’. The case against was made by Don Jeffries (see page 22)
Collapse
Affiliation(s)
- P. D. Griffiths
- Division of Pathology and Communicable Diseases, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
15
|
Abstract
Factors other than human immunodeficiency virus (HIV) may be important in determining disease progression in AIDS. The concept that viruses may act as co-factors in HIV pathogenesis has been based on in vitro studies of potential molecular or biological interactions between HIV and other viruses, some epidemiological evidence for an adverse effect of cytomegalovirus on progression to AIDS, and the apparent survival advantage conferred by aciclovir prophylaxis in people with AIDS. It is possible that molecular or cellular interaction between herpesviruses or other infectious agents and HIV are necessary to encourage the virus into maximal production or to amplify pre-existing replication. However, there is no evidence as yet that this occurs, and studies that claim to show such an effect cannot be convincing unless they take account of the significant associations of progression with virus phenotype, host response, age and genetic factors. This paper was presented as the case against in a debate on ‘Herpesviruses as co-factors of HIV disease’. The case for was made by Paul Griffiths (see page 17)
Collapse
Affiliation(s)
- D. J. Jeffries
- Dept of Virology, St Bartholomew's Hospital, 51–53 Bartholomew Close, London EC1A 7BE, UK
| |
Collapse
|
16
|
Böttiger D, Öberg B. Effect of Herpesvirus Inhibition on Primary SIV Infection in Cynomolgus Monkeys. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029600700306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Foscarnet and (-)9-[4-hydroxy-2-(hydroxymethyl)butyl] guanine (H2G) have already been shown to inhibit herpesviruses in vitro and also to inhibit viral antigen production in primary SIV infection in monkeys. Attempts have been made to determine if these invivo effects on SIV were due to a direct effect on SIV or were mediated through inhibition of endogenous transactivating herpesviruses. The possible involvement of herpesviruses in primary SIVsm infection in monkeys was studied by the use of various inhibitors of herpesvirus replication. Subcutaneous injections of 3 × 5 mg kg−1 day−1 of aciclovir, 3 × 5 mg kg−1 day−1 of ganciclovir and 3 × 28 mg kg−1 day−1 of phosphonoacetic acid had no effect on primary SIVsm infection in cynomolgus monkeys. These doses of aciclovir, ganciclovir and phosphonoacetic acid are inhibitory to several herpesviruses. The results suggest that the effects of foscarnet and H2G on primary SIVsm infection in monkeys are direct and not mediated through inhibition of a replicating herpesvirus.
Collapse
Affiliation(s)
- D. Böttiger
- Department of Virology, Karolinska Institute, Stockholm, Sweden
| | - B. Öberg
- Department of Virology, Karolinska Institute, Stockholm, Sweden
- Medivir AB, Huddinge, Sweden
| |
Collapse
|
17
|
Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 2015; 97:543-560. [PMID: 26669819 DOI: 10.1099/jgv.0.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Anne Tanner
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Eric W Stutz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
18
|
Hellard E, Fouchet D, Vavre F, Pontier D. Parasite-Parasite Interactions in the Wild: How To Detect Them? Trends Parasitol 2015; 31:640-652. [PMID: 26440785 DOI: 10.1016/j.pt.2015.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/06/2015] [Accepted: 07/31/2015] [Indexed: 01/26/2023]
Abstract
Inter-specific interactions between parasites impact on parasite intra-host dynamics, host health, and disease management. Identifying and understanding interaction mechanisms in the wild is crucial for wildlife disease management. It is however complex because several scales are interlaced. Parasite-parasite interactions are likely to occur via mechanisms at the within-host level, but also at upper levels (host population and community). Furthermore, interactions occurring at one level of organization spread to upper levels through cascade effects. Even if cascade effects are important confounding factors, we argue that we can also benefit from them because upper scales often provide a way to survey a wider range of parasites at lower cost. New protocols and theoretical studies (especially across scales) are necessary to take advantage of this opportunity.
Collapse
Affiliation(s)
- Eléonore Hellard
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - David Fouchet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| | - Fabrice Vavre
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon I, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5558, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne, France; LabEx Ecofect, Ecoevolutionary Dynamics of Infectious Diseases, University of Lyon, France
| |
Collapse
|
19
|
Kamata M, Kim PY, Ng HL, Ringpis GEE, Kranz E, Chan J, O'Connor S, Yang OO, Chen ISY. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation. Biochem Biophys Res Commun 2015; 463:216-21. [PMID: 25998390 DOI: 10.1016/j.bbrc.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance.
Collapse
Affiliation(s)
- Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Patrick Y Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hwee L Ng
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gene-Errol E Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joshua Chan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sean O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Otto O Yang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA; AIDS Healthcare Foundation, Los Angeles, CA, USA
| | - Irvin S Y Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA
| |
Collapse
|
20
|
Horvat B, Berges BK, Lusso P. Recent developments in animal models for human herpesvirus 6A and 6B. Curr Opin Virol 2014; 9:97-103. [PMID: 25462440 DOI: 10.1016/j.coviro.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
Progress in the identification of suitable animal models for human herpesvirus (HHV)-6A and HHV-6B infections has been slow. Recently, new models have been established, mainly for HHV-6A, which reproduce some pathological features seen in humans. Neuroinflammatory signs were observed in infected marmosets and CD46-transgenic mice; although viral replication was not prominent, persistence of viral DNA and specific immunologic responses were detected, suggesting an immune-mediated pathogenic mechanism. Pig-tailed macaques showed robust viral replication concomitant with acute-phase symptoms, and provided a model to study the effects of HHV-6A on AIDS progression. In humanized mice, viral replication was less evident, but infection led to T-cell alterations. Altogether, these recent developments have opened new perspectives for studying the pathogenic role of HHV-6A in humans.
Collapse
Affiliation(s)
- Branka Horvat
- CIRI, International Center for Infectiology Research, France; Inserm, U1111, Lyon, France; CNRS, UMR5308, Lyon, France; Université Lyon 1, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
de Camargo CC, Tasca KI, Mendes MB, Miot HA, de Souza LDR. Prevalence of Anogenital Warts in Men with HIV/AIDS and Associated Factors. Open AIDS J 2014; 8:25-30. [PMID: 25317220 PMCID: PMC4195172 DOI: 10.2174/1874613601408010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023] Open
Abstract
Abstract:
Collapse
Affiliation(s)
- Caio Cavassan de Camargo
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Karen Ingrid Tasca
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Monica Banwart Mendes
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiology, Botucatu Medical School, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Lenice do Rosário de Souza
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu Medical School, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
22
|
Inhibition of interleukin-2 gene expression by human herpesvirus 6B U54 tegument protein. J Virol 2014; 88:12452-63. [PMID: 25122797 DOI: 10.1128/jvi.02030-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a ubiquitous pathogen causing lifelong infections in approximately 95% of humans worldwide. To persist within its host, HHV-6B has developed several immune evasion mechanisms, such as latency, during which minimal proteins are expressed, and the ability to disturb innate and adaptive immune responses. The primary cellular targets of HHV-6B are CD4(+) T cells. Previous studies by Flamand et al. (L. Flamand, J. Gosselin, I. Stefanescu, D. Ablashi, and J. Menezes, Blood 85:1263-1271, 1995) reported on the capacity of HHV-6A as well as UV-irradiated HHV-6A to inhibit interleukin-2 (IL-2) synthesis in CD4(+) lymphocytes, suggesting that viral structural components could be responsible for this effect. In the present study, we identified the HHV-6B U54 tegument protein (U54) as being capable of inhibiting IL-2 expression. U54 binds the calcineurin (CaN) phosphatase enzyme, causing improper dephosphorylation and nuclear translocation of NFAT (nuclear factor of activated T cells) proteins, resulting in suboptimal IL-2 gene transcription. The U54 GISIT motif (amino acids 293 to 297), analogous to the NFAT PXIXIT motif, contributed to the inhibition of NFAT activation. IMPORTANCE Human herpesvirus 6A (HHV-6A) and HHV-6B are associated with an increasing number of pathologies. These viruses have developed strategies to avoid the immune response allowing them to persist in the host. Several studies have illustrated mechanisms by which HHV-6A and HHV-6B are able to disrupt host defenses (reviewed in L. Dagna, J. C. Pritchett, and P. Lusso, Future Virol. 8:273-287, 2013, doi:10.2217/fvl.13.7). Previous work informed us that HHV-6A is able to suppress synthesis of interleukin-2 (IL-2), a key immune growth factor essential for adequate T lymphocyte proliferation and expansion. We obtained evidence that HHV-6B also inhibits IL-2 gene expression and identified the mechanisms by which it does so. Our work led us to the identification of U54, a virion-associated tegument protein, as being responsible for suppression of IL-2. Consequently, we have identified HHV-6B U54 protein as playing a role in immune evasion. These results further contribute to our understanding of HHV-6 interactions with its human host and the efforts deployed to ensure its long-term persistence.
Collapse
|
23
|
Arnolds KL, Spencer JV. CXCR4: a virus's best friend? INFECTION GENETICS AND EVOLUTION 2014; 25:146-56. [PMID: 24793563 DOI: 10.1016/j.meegid.2014.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Viruses are dependent on their hosts for replication and dispersal in the environment; thus, the most successful viruses are those that co-evolve with their hosts. CXCR4 is a cellular chemokine receptor that plays central roles in development, hematopoiesis, and immune surveillance through signaling induced by its ligand, CXCL12. The CXCR4-CXCL12 axis has been besieged by many pathogens that employ a range of strategies to modify or exploit CXCR4 activity. While CXCR4 was identified as a critical co-factor for entry of HIV into CD4+ T cells early on, other viruses may utilize CXCR4 to gain cell entry as well. Moreover, several viruses have been found to modulate CXCR4 expression or alter its functional activity, with direct effects on cell trafficking, immune responses, cell proliferation, and cell survival. Because CXCR4 is targeted by a diverse group of viral pathogens, modification of host CXCR4 signaling activity is emerging as a common theme in virus persistence and is likely to be important for subversion of the host immune system. This review highlights major viral pathogens that use and abuse CXCR4 and explores the possible reasons why this chemokine receptor has become "a virus's best friend".
Collapse
Affiliation(s)
- Kathleen L Arnolds
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States.
| |
Collapse
|
24
|
Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, Flamand L, Frenkel N, Gallo R, Gompels UA, Höllsberg P, Jacobson S, Luppi M, Lusso P, Malnati M, Medveczky P, Mori Y, Pellett PE, Pritchett JC, Yamanishi K, Yoshikawa T. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 2014; 159:863-70. [PMID: 24193951 PMCID: PMC4750402 DOI: 10.1007/s00705-013-1902-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/18/2013] [Indexed: 12/18/2022]
Abstract
Shortly after the discovery of human herpesvirus 6 (HHV-6), two distinct variants, HHV-6A and HHV-6B, were identified. In 2012, the International Committee on Taxonomy of Viruses (ICTV) classified HHV-6A and HHV-6B as separate viruses. This review outlines several of the documented epidemiological, biological, and immunological distinctions between HHV-6A and HHV-6B, which support the ICTV classification. The utilization of virus-specific clinical and laboratory assays for distinguishing HHV-6A and HHV-6B is now required for further classification. For clarity in biological and clinical distinctions between HHV-6A and HHV-6B, scientists and physicians are herein urged, where possible, to differentiate carefully between HHV-6A and HHV-6B in all future publications.
Collapse
|
25
|
Human herpesvirus 6A infection and immunopathogenesis in humanized Rag2⁻/⁻ γc⁻/⁻ mice. J Virol 2013; 87:12020-8. [PMID: 24006442 DOI: 10.1128/jvi.01556-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although serious human diseases have been correlated with human herpesvirus 6A (HHV-6A) and HHV-6B, the lack of animal models has prevented studies which would more definitively link these viral infections to disease. HHV-6A and HHV-6B have recently been classified as two distinct viruses, and in this study we focused specifically on developing an in vivo model for HHV-6A. Here we show that Rag2⁻/⁻γc⁻/⁻ mice humanized with cord blood-derived human hematopoietic stem cells produce human T cells that express the major HHV-6A receptor, CD46. Both cell-associated and cell-free viral transmission of HHV-6A into the peritoneal cavity resulted in detectable viral DNA in at least one of the samples (blood, bone marrow, etc.) analyzed from nearly all engrafted mice. Organs and cells positive for HHV-6A DNA were the plasma and cellular blood fractions, bone marrow, lymph node, and thymic samples; control mice had undetectable viral DNA. We also noted viral pathogenic effects on certain T cell populations. Specific thymocyte populations, including CD3⁻ CD4⁺ CD8⁻ and CD3⁺ CD4⁻ cells, were significantly modified in humanized mice infected by cell-associated transmission. In addition, we detected significantly increased proportions of CD4⁺ CD8⁺ cells in the blood of animals infected by cell-free transmission. These findings provide additional evidence that HHV-6A may play a role in human immunodeficiencies. These results indicate that humanized mice can be used to study HHV-6A in vivo infection and replication as well as aspects of viral pathogenesis.
Collapse
|
26
|
Clark DJ, Catusse J, Stacey A, Borrow P, Gompels UA. Activation of CCR2+ human proinflammatory monocytes by human herpesvirus-6B chemokine N-terminal peptide. J Gen Virol 2013; 94:1624-1635. [PMID: 23535574 DOI: 10.1099/vir.0.050153-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human monocytes expressing CCR2 with CD14 and CD16 can mediate antigen presentation, and promote inflammation, brain infiltration and immunosenescence. Recently identified roles are in human immunodeficiency virus infection, tuberculosis and parasitic disease. Human herpesvirus 6B (HHV-6B) encodes a chemokine, U83B, which is monospecific for CCR2, and is distinct from the related HHV-6A U83A, which activates CCR1, CCR4, CCR5, CCR6 and CCR8 on immune effector cells and dendritic cells. These differences could alter leukocyte-subset recruitment for latent/lytic replication and associated neuroinflammatory pathology. Therefore, cellular interactions between U83A and U83B could help dictate potential tropism differences between these viruses. U83A specificity is maintained in the 38-residue N-terminal spliced-truncated form. Here, we sought to determine the basis for the chemokine receptor specificity differences and identify possible applications. To do this we first analysed variation in a natural host population in sub-Saharan Africa where both viruses are equally prevalent and compared these to global strains. Analyses of U83 N-terminal variation in 112 HHV-6A and HHV-6B infections identified 6/38 U83A or U83B-specific residues. We also identified a unique single U83A-specific substitution in one U83B sequence, 'U83BA'. Next, the variation effects were tested by deriving N-terminal (NT) 17-mer peptides and assaying activation of ex vivo human leukocytes, the natural host and cellular target. Chemotaxis of CCR2+ leukocytes was potently induced by U83B-NT, but not U83BA-NT or U83A-NT. Analyses of the U83B-NT activated population identified migrated CCR2+, but not CCR5+, leukocytes. The U83BA-NT asparagine-lysine14 substitution disrupted activity, thus defining CCR2 specificity and acting as a main determinant for HHV-6A/B differences in cellular interactions. A flow-cytometry-based shape-change assay was designed, and used to provide further evidence that U83B-NT could activate CCR2+CD14+CD16+ monocytes. This defines a potential antiviral target for HHV-6A/B disease and novel peptide immunomodulator for proinflammatory monocytes.
Collapse
Affiliation(s)
- D J Clark
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, University of London, Keppel St., London WC1E 7HT, UK
| | - J Catusse
- University Clinic of Freiburg, Department of Hematology and Oncology, Freiburg, Germany.,Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, University of London, Keppel St., London WC1E 7HT, UK
| | - A Stacey
- Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - P Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - U A Gompels
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, University of London, Keppel St., London WC1E 7HT, UK
| |
Collapse
|
27
|
Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol 2013; 8:273-287. [PMID: 24163703 PMCID: PMC3806647 DOI: 10.2217/fvl.13.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Department of Medicine & Clinical Immunology, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Sola P, Merelli E, Levani M, Giovannetti R, Barozzi P. Human herpes virus 6 (HHV-6) in amyotrophic lateral sclerosis: a polymerase chain reaction (PCR) study. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1996.tb00223.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Murakami Y, Tanimoto K, Fujiwara H, An J, Suemori K, Ochi T, Hasegawa H, Yasukawa M. Human herpesvirus 6 infection impairs Toll-like receptor signaling. Virol J 2010; 7:91. [PMID: 20459723 PMCID: PMC2874541 DOI: 10.1186/1743-422x-7-91] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/10/2010] [Indexed: 01/19/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) has a tropism for immunocompetent cells, including T lymphocytes, monocytes/macrophages, and dendritic cells (DCs) suggesting that HHV-6 infection affects the immunosurveillance system. Toll-like receptor (TLR) system plays an important role in innate immunity against various pathogens. In the present study, we investigated the effect of HHV-6 infection on the expression and intracellular signaling of TLRs in DCs. Although expression levels of TLRs were not decreased or slightly elevated following HHV-6 infection, the amounts of cytokines produced following stimulation with ligands for TLRs appeared to be dramatically decreased in HHV-6-infected DCs as compared to mock-infected DCs. Similarly, phosphorylation levels of TAK-1, IκB kinase, and IκB-α following stimulation of HHV-6-infected DCs with lipopolysaccharide, which is the ligand for TLR4, appeared to be decreased. These data show that HHV-6 impairs intracellular signaling through TLRs indicating the novel mechanism of HHV-6-mediated immunomodulation.
Collapse
Affiliation(s)
- Yuichi Murakami
- Departmemt of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
DaPalma T, Doonan BP, Trager NM, Kasman LM. A systematic approach to virus-virus interactions. Virus Res 2010; 149:1-9. [PMID: 20093154 PMCID: PMC7172858 DOI: 10.1016/j.virusres.2010.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 01/02/2010] [Accepted: 01/06/2010] [Indexed: 02/02/2023]
Abstract
A virus–virus interaction is a measurable difference in the course of infection of one virus as a result of a concurrent or prior infection by a different species or strain of virus. Many such interactions have been discovered by chance, yet they have rarely been studied systematically. Increasing evidence suggests that virus–virus interactions are common and may be critical to understanding viral pathogenesis in natural hosts. In this review we propose a system for classifying virus–virus interactions by organizing them into three main categories: (1) direct interactions of viral genes or gene products, (2) indirect interactions that result from alterations in the host environment, and (3) immunological interactions. We have so far identified 15 subtypes of interaction and assigned each to one of these categories. It is anticipated that this framework will provide for a more systematic approach to investigating virus–virus interactions, both at the cellular and organismal levels.
Collapse
Affiliation(s)
- T DaPalma
- Dept. of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | | | | |
Collapse
|
31
|
Hellqvist E, Kvarnström M, Söderberg A, Vrethem M, Ernerudh J, Rosén A. Myelin protein zero is naturally processed in the B cells of monoclonal gammopathy of undetermined significance of immunoglobulin M isotype: aberrant triggering of a patient's T cells. Haematologica 2009; 95:627-36. [PMID: 20015874 DOI: 10.3324/haematol.2009.015123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Monoclonal gammopathy of undetermined significance of immunoglobulin M isotype is a condition with clonally expanded B cells, recently suggested to have an infectious origin. This monoclonal gammopathy is frequently associated with polyneuropathy and antibodies against myelin protein zero, whereas the role of the T cells remains largely unknown. We analyzed protein zero-specific B cells, as antigen-presenting cells, and their capacity to activate T helper cells. DESIGN AND METHODS We used a well-characterized monoclonal gammopathy of undetermined significance-derived B-cell line, TJ2, expressing anti-protein zero immunoglobulin M. The ability of TJ2 cells to bind, endocytose, process, and present protein zero was investigated by receptor-clustering and immunofluorescence. The activation of protein zero-specific autologous T cells was studied by measuring interleukin-2 and interferon-gamma with flow cytometry, immunobeads, and enzyme-linked immunospot assays. RESULTS Surface-receptor clustering and endocytosis of receptor-ligand (immunoglobulin M/protein zero) complexes were pronounced after exposure to protein zero. Naturally processed or synthetic protein zero peptide (194-208)-pulsed TJ2 cells significantly induced interleukin-2 secretion from autologous T cells compared to control antigen-pulsed cells (P<0.001). The numbers of interferon-gamma-producing T helper cells, including CD4(+)/CD8(+) cells, were also significantly increased (P=0.0152). Affinity-isolated naturally processed myelin peptides were potent interferon-gamma stimulators for autologous peripheral blood mononuclear cells, but not for control peripheral blood mononuclear cells. CONCLUSIONS We show for the first time that myelin protein zero is naturally processed in B cells from monoclonal gammopathy of undetermined significance of immunoglobulin M isotype, acting as aberrant antigen-presenting cells in activation of a patient's T helper cells. Our findings cast new light on the important role of autoreactive protein zero-specific B cells in the induction of the pathogenic T-cell responses found in nerve lesions of patients with monoclonal gammopathy of undetermined significance with peripheral neuropathy.
Collapse
Affiliation(s)
- Eva Hellqvist
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Biancotto A, Grivel JC, Lisco A, Vanpouille C, Markham PD, Gallo RC, Margolis LB, Lusso P. Evolution of SIV toward RANTES resistance in macaques rapidly progressing to AIDS upon coinfection with HHV-6A. Retrovirology 2009; 6:61. [PMID: 19573243 DOI: 10.1186/1742-4690-6-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Progression to AIDS is often associated with the evolution of HIV-1 toward increased virulence and/or pathogenicity. Evidence suggests that a virulence factor for HIV-1 is resistance to CCR5-binding chemokines, most notably RANTES, which are believed to play a role in HIV-1 control in vivo. HIV-1 can achieve RANTES resistance either by phenotypic switching from an exclusive CCR5 usage to an expanded coreceptor specificity, or by the acquisition of alternative modalities of CCR5 usage. An infectious agent that might promote the evolution of HIV-1 toward RANTES resistance is human herpesvirus 6A (HHV-6A), which is frequently reactivated in HIV-1-infected patients and is a potent RANTES inducer in lymphoid tissue. RESULTS SIV isolates obtained from pig-tailed macaques (M. nemestrina) after approximately one year of single infection with SIV(smE660) or dual infection with SIV(smE660) and HHV-6A(GS) were characterized for their growth capacity and sensitivity to HHV-6A- and RANTES-mediated inhibition in human or macaque lymphoid tissues ex vivo. Four out of 4 HHV-6A-coinfected macaques, all of which progressed to full-blown AIDS within 2 years of infection, were found to harbor SIV variants with a reduced sensitivity to both HHV-6A and RANTES, despite maintaining an exclusive CCR5 coreceptor specificity; viruses derived from two of these animals replicated even more vigorously in the presence of exogenous HHV-6A or RANTES. The SIV variants that emerged in HHV-6A-coinfected macaques showed an overall reduced ex vivo replication capacity that was partially reversed upon addition of exogenous RANTES, associated with suppressed IL-2 and enhanced IFN-gamma production. In contrast, SIV isolates obtained from two singly-infected macaques, none of which progressed to AIDS, maintained HHV-6A/RANTES sensitivity, whereas the only AIDS progressor among singly-infected macaques developed an SIV variant with partial HHV-6A/RANTES resistance and increased replication capacity, associated with expanded coreceptor usage. CONCLUSION These results provide in vivo evidence of SIV evolution toward RANTES resistance in macaques rapidly progressing to AIDS. RANTES resistance may represent a common virulence factor allowing primate immunodeficiency retroviruses to evade a critical mechanism of host antiviral defense.
Collapse
Affiliation(s)
- Angélique Biancotto
- Laboratory of Molecular and Cellular Biophysics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bernstein HB, Wang G, Plasterer MC, Zack JA, Ramasastry P, Mumenthaler SM, Kitchen CMR. CD4+ NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology 2009; 387:59-66. [PMID: 19251297 DOI: 10.1016/j.virol.2009.01.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/19/2008] [Accepted: 01/23/2009] [Indexed: 12/21/2022]
Abstract
NK cells mediate the innate immune response, and HIV-infected individuals demonstrate altered NK cell phenotype and function. We find that CD4+ NK cells are susceptible to HIV infection; this could account for the NK cell dysfunction seen in HIV-infected individuals. CD4+ NK cells express CXCR4 and can be infected with X4-tropic viruses and some primary R5-utilizing viral isolates. Treatment with the CXCR4 ligands AMD3100 and SDF-1alpha partially blocks infection with X4-tropic virus, treatment with anti-CCL Igs upregulates CCR5 surface expression and enables infection with HIV-Bal. HIV infection of NK cells results in CD4 downregulation and the production of infectious virus. HIV-infected CD4+ NK cells mediate NK cell cytotoxicity, however, HIV infection is associated with decreased chemotaxis towards IL-16. Thus, HIV infection of CD4+ NK cells could account for the NK cell dysfunction observed in HIV-infected individuals. Furthermore infected NK cells could serve as a viral reservoir of HIV in vivo.
Collapse
Affiliation(s)
- Helene B Bernstein
- Department of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Tan DHS, Kaul R, Walsmley S. Left out but not forgotten: Should closer attention be paid to coinfection with herpes simplex virus type 1 and HIV? THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2009; 20:e1-7. [PMID: 20190881 PMCID: PMC2690523 DOI: 10.1155/2009/965263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are among the most common coinfections seen in individuals infected with HIV-1. Most research on HSV-HIV coinfection has focused on HSV-2, and in particular, on its impact on HIV transmission. HSV-2 is associated with micro- and macroulcerations in genital mucosal surfaces, increased numbers of HIV target cells in genital mucosal tissue and increases in plasma HIV viral load of up to 0.5 log(10) copies/mL, such that HSV-2 infection increases the risk of both HIV acquisition and transmission. Because plasma HIV RNA levels are a major determinant of rates of CD4 cell decline, HSV-2 coinfection may also adversely affect the progression of HIV disease. Anti-HSV medications have in fact been associated with reciprocal decreases in HIV viral load in short-term studies. These findings have led to the development of several clinical trials of HSV-2 suppression as strategies for preventing HIV transmission and slowing the rate of HIV disease progression. HSV-1 coinfection has largely been ignored from this growing body of research, yet there are several reasons that this coinfection remains an important issue for study. First, the seroprevalence of HSV-1 is consistently higher than that of HSV-2 among both HIV-infected and HIV-uninfected populations, underscoring the relevance of HSV-1 coinfection to the majority of HIV-infected persons. Second, pre-existing HSV-1 antibodies in individuals may modulate the course of subsequently acquired HSV-2 infection; the implications of such changes on HSV-HIV coinfection remain unexplored. Third, HSV-1 and HSV-2 are closely related viruses that share 83% genetic homology. Their virological and pathobiological similarities suggest that their implications on HIV pathogenesis may be similar as well. Finally, HSV-1 is becoming increasingly relevant because the incidence of genital HSV-1 has risen. Although genital herpes is traditionally associated with HSV-2, recent studies have shown that the majority of serologically confirmed primary genital herpes in some settings is attributable to HSV-1. Because the genital tract is an important site of biological interaction between HSV and HIV, this epidemiological change may be clinically important.
Collapse
Affiliation(s)
- Darrell H S Tan
- Division of Infectious Diseases, University Health Network, Toronto, Ontario
| | - Rupert Kaul
- Division of Infectious Diseases, University Health Network, Toronto, Ontario
| | - Sharon Walsmley
- Division of Infectious Diseases, University Health Network, Toronto, Ontario
| |
Collapse
|
35
|
|
36
|
Grande SR, Imbronito AV, Okuda OS, Lotufo RFM, Magalhães MHG, Nunes FD. Herpes viruses in periodontal compromised sites: comparison between HIV-positive and -negative patients. J Clin Periodontol 2008; 35:838-45. [DOI: 10.1111/j.1600-051x.2008.01307.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Janossy G, Jani I, Göhde W. Affordable CD4+
T-cell counts on ‘single-platform’ flow cytometers I. Primary CD4 gating. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.2000.02433.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Van de Perre P, Segondy M, Foulongne V, Ouedraogo A, Konate I, Huraux JM, Mayaud P, Nagot N. Herpes simplex virus and HIV-1: deciphering viral synergy. THE LANCET. INFECTIOUS DISEASES 2008; 8:490-7. [DOI: 10.1016/s1473-3099(08)70181-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
|
40
|
Davidson I, Borovskaya A, Perl S, Malkinson M. Use of the polymerase chain reaction for the diagnosis of natural infection of chickens and turkeys with Marek's disease virus and reticuloendotheliosis virus. Avian Pathol 2007; 24:69-94. [PMID: 18645767 DOI: 10.1080/03079459508419050] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Straus SE. Studies of herpesvirus infection in chronic fatigue syndrome. CIBA FOUNDATION SYMPOSIUM 2007; 173:132-9; discussion 139-45. [PMID: 8387907 DOI: 10.1002/9780470514382.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The relationship of herpesviruses to chronic fatigue syndrome has received considerable attention over the past decade. Data suggesting an association fall into three major categories. First, among acute precipitants of the syndrome are primary infections with some herpesviruses, most notably Epstein-Barr virus and cytomegalovirus. Second, a series of studies have detailed elevations of antibodies to most herpesviruses in selected chronic fatigue syndrome populations, with Epstein-Barr virus and human herpes type 6 being the objects of most scrutiny. Third, one recent study reported a greater ease of recovery of human herpes virus type 6 from chronic fatigue syndrome patients. This review article critically examines the cumulative data regarding an association between one or more herpesviruses and the chronic fatigue syndrome in the context of the known biology and epidemiology of these agents. In view of these, and additional considerations regarding study methodologies, the conclusion is drawn that herpesviruses are not dominant causes of the chronic fatigue syndrome and may not even be necessary to the perpetuation of the illness, but it is premature to dismiss entirely this latter possibility.
Collapse
Affiliation(s)
- S E Straus
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Abstract
Clinical and experimental evidence indicates that human herpesvirus 6 (HHV-6) can interfere with the function of the host immune system through a variety of mechanisms. Both HHV-6A and B can infect, either productively or nonproductively, several types of immune cells. The primary target for HHV-6 replication, both in vitro and in vivo, is the CD4+ T lymphocyte, a pivotal cell in the generation of humoral and cell-mediated adaptive immune responses. HHV-6A, but not B, also replicates in various cytotoxic effector cells, such as CD8+ T cells, gammadelta T cells and natural killer cells. In professional antigen-presenting cells like macrophages and dendritic cells, HHV-6 infection is typically nonproductive; yet, it induces dramatic functional abnormalities, including a selective suppression of IL-12, a critical cytokine in the generation of Th1-polarized antiviral immune responses. This and other immunomodulatory effects seem to be mediated by the engagement of the primary HHV-6 receptor, CD46. Moreover, HHV-6 infection results in a generalized loss of CD46 expression in lymphoid tissue, which may lead to an aberrant activation of autologous complement. Additional mechanisms of immunomodulation by HHV-6 include alterations in cell surface receptor expression and cytokine/chemokine production. HHV-6 can also modulate influence responses through the expression of virally-encoded homologs of chemokines and chemokine receptors. By modulating specific antiviral immune responses, HHV-6 can facilitate its own spread and persistence in vivo, as well as enhance the pathogenic effects of other agents, such as human immunodeficiency virus.
Collapse
Affiliation(s)
- Paolo Lusso
- Unit of Human Virology, Department of Biological and Technical Research (DIBIT), San Rafaele Scientific Institute, Milano, Italy.
| |
Collapse
|
43
|
Lusso P, Crowley RW, Malnati MS, Di Serio C, Ponzoni M, Biancotto A, Markham PD, Gallo RC. Human herpesvirus 6A accelerates AIDS progression in macaques. Proc Natl Acad Sci U S A 2007; 104:5067-72. [PMID: 17360322 PMCID: PMC1829265 DOI: 10.1073/pnas.0700929104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Indexed: 11/18/2022] Open
Abstract
Although HIV is the necessary and sufficient causative agent of AIDS, genetic and environmental factors markedly influence the pace of disease progression. Clinical and experimental evidence suggests that human herpesvirus 6A (HHV-6A), a cytopathic T-lymphotropic DNA virus, fosters the progression to AIDS in synergy with HIV-1. In this study, we investigated the effect of coinfection with HHV-6A on the progression of simian immunodeficiency virus (SIV) disease in pig-tailed macaques (Macaca nemestrina). Inoculation of HHV-6A resulted in a rapid appearance of plasma viremia associated with transient clinical manifestations and followed by antibody seroconversion, indicating that this primate species is susceptible to HHV-6A infection. Whereas animals infected with HHV-6A alone did not show any long-term clinical and immunological sequelae, a progressive loss of CD4(+) T cells was observed in all of the macaques inoculated with SIV. However, progression to full-blown AIDS was dramatically accelerated by coinfection with HHV-6A. Rapid disease development in dually infected animals was heralded by an early depletion of both CD4(+) and CD8(+) T cells. These results provide in vivo evidence that HHV-6A may act as a promoting factor in AIDS progression.
Collapse
Affiliation(s)
| | - Richard W. Crowley
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | | | | | - Maurilio Ponzoni
- Pathology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelique Biancotto
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Robert C. Gallo
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
44
|
Niiya H, Lei J, Guo Y, Azuma T, Yakushijin Y, Sakai I, Hato T, Tohyama M, Hashimoto K, Yasukawa M. Human herpesvirus 6 impairs differentiation of monocytes to dendritic cells. Exp Hematol 2006; 34:642-53. [PMID: 16647570 DOI: 10.1016/j.exphem.2006.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 01/23/2006] [Accepted: 02/01/2006] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Monocyte-derived dendritic cells (DCs) play important roles in the immune response against infections and malignancies. Human herpesvirus 6 (HHV-6) infects monocytes and is reactivated in immunodeficient patients. To clarify the mechanisms of HHV-6-induced immunodeficiency, we investigated the effect of HHV-6 infection on differentiation of monocytes to DCs. METHODS Monocytes were inoculated with or without HHV-6 and then allowed to differentiate to myeloid DCs in culture medium containing granulocyte-macrophage colony-stimulating factor and interleukin (IL)-4. The expression of cell surface molecules on DCs and the capacity of the DCs for antigen capture were examined by flow cytometric analysis. Alteration of antigen-presenting capacity induced by HHV-6 infection was examined. RESULTS The morphology of HHV-6-infected monocyte-derived DCs was distinctly different from that of the DCs derived from mock-infected monocytes. Although expression levels of DC-associated surface antigens, including CD80, CD83, and CD86, were significantly higher on HHV-6-infected monocyte-derived DCs than on DCs derived from mock-infected monocytes, antigen-presenting capacity was significantly lower in the former group. Addition of culture supernatant of HHV-6-infected monocytes resulted in suppression of the T-lymphocyte proliferative response, and anti-IL-10 neutralizing antibody partly inhibited this suppressive effect. The antigen-presenting capacity of DCs generated from a patient with severe HHV-6 reactivation was significantly lower than that of DCs generated from the same patient in the recovery phase. CONCLUSIONS HHV-6 infection induces immunodeficiency via impaired differentiation of DCs. These results present a new concept for the pathogenesis of HHV-6-induced immunodeficiency.
Collapse
Affiliation(s)
- Hironari Niiya
- First Department of Internal Medicine, Ehime University School of Medicine Shitsukawa, Toon, Ehime, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Janelle ME, Flamand L. Phenotypic alterations and survival of monocytes following infection by human herpesvirus-6. Arch Virol 2006; 151:1603-14. [PMID: 16474928 PMCID: PMC7087170 DOI: 10.1007/s00705-005-0715-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 12/16/2005] [Indexed: 11/03/2022]
Abstract
Freshly isolated monocytes rapidly undergo physiological changes in vitro, resulting in programmed cell death (apoptosis). Activation of monocytes, which promotes differentiation into macrophages, is known to inhibit apoptotic processes. In the present study, we report that human herpesvirus-6 (HHV-6) prevents monocytes from undergoing spontaneous apoptosis during the first 72 hours of culture. Furthermore, significant alterations in cell-surface phenotype were observed after 72 hours of infection with HHV-6. HHV-6-infected monocyte cultures have considerably reduced levels of CD14, CD64 (FcgammaRI) and HLA-DR antigen on their surface, while CD32 (FcgammaRII) expression is unaffected. On the basis of these results, we hypothesize that HHV-6 promotes monocytes survival and causes phenotypic modifications that could favor immune evasion and ensure its persistence within the infected host.
Collapse
Affiliation(s)
- M-E Janelle
- Laboratory of Virology, Rheumatology and Immunology Research Center, CHUL Research Center and Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
46
|
Meireles-de-Souza LR, Shattock RJ. Therapeutic role of CD8+ T cells in HIV-1 infection: targets and suppressors of viral replication. Expert Opin Biol Ther 2005; 5:321-32. [PMID: 15833070 DOI: 10.1517/14712598.5.3.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD8+ T cells are pivotal in controlling viral replication in HIV-1-infected subjects. However, in chronic infection, HIV-1-specific CD8+ T cells fail to adequately control infection, presenting incomplete maturation and more severe functional impairment with advanced disease. Accumulating evidence has shown that CD8+ T cells can also be productively infected by HIV-1. Whether HIV-1 infection of CD8+ T lymphocytes impacts on their antiviral activity remains to be determined. This review explores the potential mechanisms of HIV-1 infection of CD8+ T cells, its likely contribution to the immunopathogenesis of HIV-1 infection and potential therapeutic interventions.
Collapse
|
47
|
Mbopi-Keou FX, Mbu RE, Gonsu Kamga H, Kalla GCM, Monny Lobe M, Teo CG, Leke RJ, Ndumbe PM, Belec L. Interactions between human immunodeficiency virus and herpes viruses within the oral mucosa. Clin Microbiol Infect 2005; 11:83-5. [PMID: 15679480 DOI: 10.1111/j.1469-0691.2004.00984.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is evidence from clinical case reports and epidemiological studies that human immunodeficiency virus (HIV) can be transmitted through oral sex. Herpes viruses that appear in the oral mucosa might influence the oral replication of HIV. A review of data suggesting that interactions occur between HIV and herpes viruses indicates that such interactions might operate in the oral mucosa. Defining the mechanisms by which herpes viruses interact with HIV in the oral mucosa should permit intervention measures to be targeted more precisely.
Collapse
|
48
|
Kitchen SG, Whitmire JK, Jones NR, Galic Z, Kitchen CMR, Ahmed R, Zack JA. The CD4 molecule on CD8+ T lymphocytes directly enhances the immune response to viral and cellular antigens. Proc Natl Acad Sci U S A 2005; 102:3794-9. [PMID: 15731353 PMCID: PMC553300 DOI: 10.1073/pnas.0406603102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8+ T lymphocytes play a major role in cellular-mediated immune responses to foreign antigen. We have previously demonstrated that costimulation of purified human CD8+ T cells induces de novo expression of the CD4 molecule and that ligation of CD4 on this cell type modulates CD8+ T cell activity in vitro. Herein, we investigate how the CD4 molecule expressed on murine CD8+ T cells contributes to CD8+ cell responses in vivo by employing adoptive transfer of CD8 cells from CD4 knockout mice into severe combined immunodeficient (SCID) recipients. Transfer of these cells into syngeneic SCID mice resulted in a decreased immune response to infection by lymphocytic choriomeningitis virus. These decreased responses occurred even in the presence of CD4+ T cells, indicating that this was truly a CD8-cell defect. Similarly, transfer of CD8+ T cells incapable of expressing CD4 into allogeneic SCID mice resulted in a decreased response to alloantigens compared with that of normal CD8+ T cells. Therefore, CD4 expression on CD8 T lymphocytes modulates cytotoxic T lymphocyte function and is critical in vivo for optimal cell-mediated immunity to viral and alloantigens.
Collapse
Affiliation(s)
- Scott G Kitchen
- Department of Medicine, and UCLA AIDS Institute, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Földes-Papp Z, Egerer R, Birch-Hirschfeld E, Striebel HM, Demel U, Tilz GP, Wutzler P. Detection of multiple human herpes viruses by DNA microarray technology. ACTA ACUST UNITED AC 2005; 8:1-9. [PMID: 15230636 DOI: 10.1007/bf03260041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The detailed characterization of virus DNA is a challenge, and the genotyping that has been achieved to date has only been possible because researchers have sent a great deal of time and effort to do so. Instead of the simultaneous detection of hundreds of viruses on a single high-density DNA-chip at very high costs per chip, we present here an alternative approach using a well-designed and tailored microarray which can establish whether or not a handful of viral genes are present in a clinical sample. METHODS In this study we applied a new concept of microarray-based, optimized and robust biochemistry for molecular diagnostics of the herpesviruses. For comparison, all samples were genotyped using standard procedures. RESULTS The biochemical procedure of a knowledge-based, low-density microarray was established based on the molecular diagnostics of human herpes viruses: herpes simplex virus (HSV) HSV-1, HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and HHV-6. The study attempted to optimize parameters of microarray design, surface chemistry, oligonucleotide probe spotting, sample labeling and DNA hybridization to the developed DNA microarray. The results of 12 900 hybridization reactions on about 150 configured herpes virus microarrays showed that the established microarray-based typing procedure was reproducible, virus-specific and sufficiently sensitive with a lower limit of 100 viral copies per mL sample. CONCLUSIONS The developed method utilizes low-fluorescence background coverslips, epoxy surface chemistry, standardized oligonucleotide probe spotting, PCR-labeling with Cy3 of isolated DNA, array hybridization, and detecting of specific spot fluorescence by an automatic microarray reader. We expect the configured microarray approach to be the method for high-throughput associated studies on human herpes viruses.
Collapse
Affiliation(s)
- Zeno Földes-Papp
- Clinical Immunology and Jean Dausset Laboratory, Graz University Medical School, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
50
|
De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18:217-45. [PMID: 15653828 PMCID: PMC544175 DOI: 10.1128/cmr.18.1.217-245.2005] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a betaherpesvirus that is closely related to human cytomegalovirus. It was discovered in 1986, and HHV-6 literature has expanded considerably in the past 10 years. We here present an up-to-date and complete overview of the recent developments concerning HHV-6 biological features, clinical associations, and therapeutic approaches. HHV-6 gene expression regulation and gene products have been systematically characterized, and the multiple interactions between HHV-6 and the host immune system have been explored. Moreover, the discovery of the cellular receptor for HHV-6, CD46, has shed a new light on HHV-6 cell tropism. Furthermore, the in vitro interactions between HHV-6 and other viruses, particularly human immunodeficiency virus, and their relevance for the in vivo situation are discussed, as well as the transactivating capacities of several HHV-6 proteins. The insight into the clinical spectrum of HHV-6 is still evolving and, apart from being recognized as a major pathogen in transplant recipients (as exemplified by the rising number of prospective clinical studies), its role in central nervous system disease has become increasingly apparent. Finally, we present an overview of therapeutic options for HHV-6 therapy (including modes of action and resistance mechanisms).
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|