1
|
Lu H, Yin H, Harmer J, Xiao M, You J, Chen P, Lin T, Du A, Wang Z, Wang L. Single-Atom Catalysts with p-Block Metals Surpass Transition-Metal Counterparts in the Photocatalytic H 2O 2 Production. Angew Chem Int Ed Engl 2024:e202413769. [PMID: 39313757 DOI: 10.1002/anie.202413769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Growing interest in p-block metal single-atom catalysts (PM-SACs) is driven by their low toxicity, economic viability, and transition metal-like catalytic properties. However, selection criteria for p-block single-atom species and catalytic mechanisms of PM-SACs remain unclear. This study explores the catalytic abilities of PM-SACs and their transition metal counterparts (TM-SACs) based on polymetric carbon nitride (PCN) for photocatalytic hydrogen peroxide (H2O2) production. Using thermodynamic barriers as a key descriptor, it was found that PM-SACs can surpass TM-SACs in H2O2 production due to a lower energy barrier for *OOH intermediate formation resulting from optimized p-p hybridization. Specifically, Sb-SAC based on PCN shows the highest apparent quantum yield of 35.3 % at 400 nm. This study offers a rationale for the utilization of p-block SACs in the context of sustainable chemical synthesis.
Collapse
Affiliation(s)
- Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Hanqing Yin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, 4001, Brisbane, Australia
| | - Jeffrey Harmer
- Centre for Advanced Imaging, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Mu Xiao
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Jiakang You
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Peng Chen
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Tongen Lin
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, 4001, Brisbane, Australia
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Zhan X, Lu Y, Shi Y. Molecular basis for the activation of human spliceosome. Nat Commun 2024; 15:6348. [PMID: 39068178 PMCID: PMC11283556 DOI: 10.1038/s41467-024-50785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
The spliceosome executes pre-mRNA splicing through four sequential stages: assembly, activation, catalysis, and disassembly. Activation of the spliceosome, namely remodeling of the pre-catalytic spliceosome (B complex) into the activated spliceosome (Bact complex) and the catalytically activated spliceosome (B* complex), involves major flux of protein components and structural rearrangements. Relying on a splicing inhibitor, we have captured six intermediate states between the B and B* complexes: pre-Bact, Bact-I, Bact-II, Bact-III, Bact-IV, and post-Bact. Their cryo-EM structures, together with an improved structure of the catalytic step I spliceosome (C complex), reveal how the catalytic center matures around the internal stem loop of U6 snRNA, how the branch site approaches 5'-splice site, how the RNA helicase PRP2 rearranges to bind pre-mRNA, and how U2 snRNP undergoes remarkable movement to facilitate activation. We identify a previously unrecognized key role of PRP2 in spliceosome activation. Our study recapitulates a molecular choreography of the human spliceosome during its catalytic activation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
4
|
Fang Z, Pazienza LT, Zhang J, Tam CP, Szostak JW. Catalytic Metal Ion-Substrate Coordination during Nonenzymatic RNA Primer Extension. J Am Chem Soc 2024; 146:10632-10639. [PMID: 38579124 PMCID: PMC11027144 DOI: 10.1021/jacs.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.
Collapse
Affiliation(s)
- Ziyuan Fang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Lydia T. Pazienza
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jian Zhang
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Pong Tam
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Howard Hughes Medical Institute,
Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Department
of Chemistry, Howard Hughes Medical Institute,
The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Yang WQ, Ge JY, Zhang X, Zhu WY, Lin L, Shi Y, Xu B, Liu RJ. THUMPD2 catalyzes the N2-methylation of U6 snRNA of the spliceosome catalytic center and regulates pre-mRNA splicing and retinal degeneration. Nucleic Acids Res 2024; 52:3291-3309. [PMID: 38165050 PMCID: PMC11014329 DOI: 10.1093/nar/gkad1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Zhang
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064,Zhejiang Province, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Du Y, Chen W, Wang Y, Yu Y, Guo K, Qu G, Zhang J. Quantum Spin Exchange Interactions to Accelerate the Redox Kinetics in Li-S Batteries. NANO-MICRO LETTERS 2024; 16:100. [PMID: 38285199 PMCID: PMC10825106 DOI: 10.1007/s40820-023-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
Spin-engineering with electrocatalysts have been exploited to suppress the "shuttle effect" in Li-S batteries. Spin selection, spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions leading to a significant reduction of the electronic repulsions in the orbitals of catalysts. Herein, we anchor the MgPc molecules on fluorinated carbon nanotubes (MgPc@FCNT), which exhibits the single active Mg sites with axial displacement. According to the density functional theory calculations, the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li-S batteries. As a result, the MgPc@FCNT provides an initial capacity of 6.1 mAh cm-2 even when the high sulfur loading is 4.5 mg cm-2, and still maintains 5.1 mAh cm-2 after 100 cycles. This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Weijie Chen
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yu Wang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Kai Guo
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Gan Qu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Jianan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
7
|
Shin CH, Lee HY, Gyan-Barimah C, Yu JH, Yu JS. Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chem Soc Rev 2023; 52:2145-2192. [PMID: 36799134 DOI: 10.1039/d2cs00810f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Magnesium (Mg) has many unique properties suitable for applications in the fields of energy conversion and storage. These fields presently rely on noble metals for efficient performance. However, among other challenges, noble metals have low natural abundance, which undermines their sustainability. Mg has a high negative standard reduction potential and a unique crystal structure, and its low melting point at 650 °C makes it a good candidate to replace or supplement numerous other metals in various energy applications. These attractive features are particularly helpful for improving the properties and limits of materials in energy systems. However, knowledge of Mg and its practical uses is still limited, despite recent studies which have reported Mg's key roles in synthesizing new structures and modifying the chemical properties of materials. At present, information about Mg chemistry has been rather scattered without any organized report. The present review highlights the chemistry of Mg and its uses in energy applications such as electrocatalysis, photocatalysis, and secondary batteries, among others. Future perspectives on the development of Mg-based materials are further discussed to identify the challenges that need to be addressed.
Collapse
Affiliation(s)
- Cheol-Hwan Shin
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Ha-Young Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Caleb Gyan-Barimah
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jeong-Hoon Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
8
|
Dong K, Liang J, Wang Y, Zhang L, Xu Z, Sun S, Luo Y, Li T, Liu Q, Li N, Tang B, Alshehri AA, Li Q, Ma D, Sun X. Conductive Two-Dimensional Magnesium Metal–Organic Frameworks for High-Efficiency O 2 Electroreduction to H 2O 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kai Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yuanyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Zhaoquan Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Na Li
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
9
|
Hunsicker-Wang LM, Vogt MJ, Hoogstraten CG, Cosper NJ, Davenport AM, Hendon CH, Scott RA, Britt RD, DeRose VJ. Spectroscopic characterization of Mn2+ and Cd2+ coordination to phosphorothioates in the conserved A9 metal site of the hammerhead ribozyme. J Inorg Biochem 2022; 230:111754. [DOI: 10.1016/j.jinorgbio.2022.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
|
10
|
A single m 6A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nat Commun 2021; 12:3244. [PMID: 34050143 PMCID: PMC8163875 DOI: 10.1038/s41467-021-23457-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
N6-methyladenosine (m6A) is a modification that plays pivotal roles in RNA metabolism and function, although its functions in spliceosomal U6 snRNA remain unknown. To elucidate its role, we conduct a large-scale transcriptome analysis of a Schizosaccharomyces pombe strain lacking this modification and found a global change of pre-mRNA splicing. The most significantly impacted introns are enriched for adenosine at the fourth position pairing the m6A in U6 snRNA, and exon sequences weakly recognized by U5 snRNA. This suggests cooperative recognition of 5' splice site by U6 and U5 snRNPs, and also a role of m6A facilitating efficient recognition of the splice sites weakly interacting with U5 snRNA, indicating that U6 snRNA m6A relaxes the 5' exon constraint and allows protein sequence diversity along with explosively increasing number of introns over the course of eukaryotic evolution.
Collapse
|
11
|
Cruz-León S, Grotz KK, Schwierz N. Extended magnesium and calcium force field parameters for accurate ion-nucleic acid interactions in biomolecular simulations. J Chem Phys 2021; 154:171102. [PMID: 34241062 DOI: 10.1063/5.0048113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnesium and calcium play an essential role in the folding and function of nucleic acids. To correctly describe their interactions with DNA and RNA in biomolecular simulations, an accurate parameterization is crucial. In most cases, the ion parameters are optimized based on a set of experimental solution properties such as solvation free energies, radial distribution functions, water exchange rates, and activity coefficient derivatives. However, the transferability of such bulk-optimized ion parameters to quantitatively describe biomolecular systems is limited. Here, we extend the applicability of our previous bulk-optimized parameters by including experimental binding affinities toward the phosphate oxygen on nucleic acids. In particular, we systematically adjust the combination rules that are an integral part of the pairwise interaction potentials of classical force fields. This allows us to quantitatively describe specific ion binding to nucleic acids without changing the solution properties in the most simple and efficient way. We show the advancement of the optimized Lorentz combination rule for two representative nucleic acid systems. For double-stranded DNA, the optimized combination rule for Ca2+ significantly improves the agreement with experiments, while the standard combination rule leads to unrealistically distorted DNA structures. For the add A-riboswitch, the optimized combination rule for Mg2+ improves the structure of two specifically bound Mg2+ ions as judged by the experimental distance to the binding site. Including experimental binding affinities toward specific ion binding sites on biomolecules, therefore, provides a promising perspective to develop a more accurate description of metal cations for biomolecular simulations.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kara K Grotz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Morais P, Adachi H, Yu YT. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021; 12:652129. [PMID: 33737950 PMCID: PMC7960923 DOI: 10.3389/fgene.2021.652129] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are critical components of the spliceosome that catalyze the splicing of pre-mRNA. snRNAs are each complexed with many proteins to form RNA-protein complexes, termed as small nuclear ribonucleoproteins (snRNPs), in the cell nucleus. snRNPs participate in pre-mRNA splicing by recognizing the critical sequence elements present in the introns, thereby forming active spliceosomes. The recognition is achieved primarily by base-pairing interactions (or nucleotide-nucleotide contact) between snRNAs and pre-mRNA. Notably, snRNAs are extensively modified with different RNA modifications, which confer unique properties to the RNAs. Here, we review the current knowledge of the mechanisms and functions of snRNA modifications and their biological relevance in the splicing process.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Wang D, Wu H, Wang C, Gu L, Chen H, Jana D, Feng L, Liu J, Wang X, Xu P, Guo Z, Chen Q, Zhao Y. Self‐Assembled Single‐Site Nanozyme for Tumor‐Specific Amplified Cascade Enzymatic Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongdong Wang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- Hefei National Laboratory for Physical Science at the Microscale Department of Materials Science and Engineering University of Science and Technology of China Hefei 230027 P. R. China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology School of Life Sciences University of Science and Technology of China Hefei 230027 P. R. China
| | - Changlai Wang
- Hefei National Laboratory for Physical Science at the Microscale Department of Materials Science and Engineering University of Science and Technology of China Hefei 230027 P. R. China
| | - Long Gu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Lili Feng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xueying Wang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology School of Life Sciences University of Science and Technology of China Hefei 230027 P. R. China
| | - Pengping Xu
- Hefei National Laboratory for Physical Science at the Microscale Department of Materials Science and Engineering University of Science and Technology of China Hefei 230027 P. R. China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology School of Life Sciences University of Science and Technology of China Hefei 230027 P. R. China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at the Microscale Department of Materials Science and Engineering University of Science and Technology of China Hefei 230027 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
14
|
Wang D, Wu H, Wang C, Gu L, Chen H, Jana D, Feng L, Liu J, Wang X, Xu P, Guo Z, Chen Q, Zhao Y. Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. Angew Chem Int Ed Engl 2020; 60:3001-3007. [PMID: 33091204 DOI: 10.1002/anie.202008868] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 01/08/2023]
Abstract
Nanomaterials with enzyme-mimicking activity (nanozymes) show potential for therapeutic interventions. However, it remains a formidable challenge to selectively kill tumor cells through enzymatic reactions, while leaving normal cells unharmed. Herein, we present a new strategy based on a single-site cascade enzymatic reaction for tumor-specific therapy that avoids off-target toxicity to normal tissues. A copper hexacyanoferrate (Cu-HCF) nanozyme with active single-site copper exhibited cascade enzymatic activity within the tumor microenvironment: Tumor-specific glutathione oxidase activity by the Cu-HCF single-site nanozymes (SSNEs) led to the depletion of intracellular glutathione and the conversion of single-site CuII species into CuI for subsequent amplified peroxidase activity through a Fenton-type Harber-Weiss reaction. In this way, abundant highly toxic hydroxyl radicals were generated for tumor cell apoptosis. The results show that SSNEs could amplify the tumor-killing efficacy of reactive oxygen species and suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.,Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Changlai Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Lili Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Xueying Wang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Pengping Xu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
15
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
16
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
17
|
Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat Commun 2020; 11:938. [PMID: 32071314 PMCID: PMC7028951 DOI: 10.1038/s41467-020-14565-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023] Open
Abstract
It is known that the main-group metals and their related materials show poor catalytic activity due to a broadened single resonance derived from the interaction of valence orbitals of adsorbates with the broad sp-band of main-group metals. However, Mg cofactors existing in enzymes are extremely active in biochemical reactions. Our density function theory calculations reveal that the catalytic activity of the main-group metals (Mg, Al and Ca) in oxygen reduction reaction is severely hampered by the tight-bonding of active centers with hydroxyl group intermediate, while the Mg atom coordinated to two nitrogen atoms has the near-optimal adsorption strength with intermediate oxygen species by the rise of p-band center position compared to other coordination environments. We experimentally demonstrate that the atomically dispersed Mg cofactors incorporated within graphene framework exhibits a strikingly high half-wave potential of 910 mV in alkaline media, turning a s/p-band metal into a highly active electrocatalyst. Although magnesium-based cofactors are highly active in biochemical reactions, magnesium-based materials generally exhibit poor catalytic activity for oxygen reduction. Here the authors enhance electrocatalytic activity of magnesium through atomic dispersion with a graphene framework.
Collapse
|
18
|
O'Connell AA, Hanson JA, McCaskill DC, Moore ET, Lewis DC, Grover N. Thermodynamic examination of pH and magnesium effect on U6 RNA internal loop. RNA (NEW YORK, N.Y.) 2019; 25:1779-1792. [PMID: 31548339 PMCID: PMC6859860 DOI: 10.1261/rna.070466.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
U6 RNA contains a 1 × 2-nt internal loop that folds and unfold during spliceosomal assembly and activation. The 1 × 2 loop consists of a C67•A79 base pair that forms an additional hydrogen bond upon protonation, C67•A+79, and uracil (U80) that coordinates the catalytically essential magnesium ions. We designed a series of RNA and DNA constructs with a 1 × 2 loop sequence contained in the ISL, and its modifications, to measure the thermodynamic effects of protonation and magnesium binding using UV-visible thermal denaturation experiments. We show that the wild-type RNA construct gains 0.43 kcal/mol in 1 M KCl upon lowering the pH from 7.5 to 5.5; the presence of magnesium ions increases its stability by 2.17 kcal/mol at pH 7.5 over 1 M KCl. Modifications of the helix closing base pairs from C-G to U•G causes a loss in protonation-dependent stability and a decrease in stability in the presence of magnesium ions, especially in the C68U construct. A79G single-nucleotide bulge loop construct showed the largest gain in stability in the presence of magnesium ions. The DNA wild-type construct shows a smaller effect on stability upon lowering the pH and in the presence of magnesium ions, highlighting differences in RNA and DNA structures. A U6 RNA 1 × 2 loop sequence is rare in the databases examined.
Collapse
Affiliation(s)
- Allison A O'Connell
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Jared A Hanson
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Darryl C McCaskill
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Ethan T Moore
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Daniel C Lewis
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| | - Neena Grover
- Department of Chemistry and Biochemistry, Colorado College, Colorado Springs, Colorado 80903, USA
| |
Collapse
|
19
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Wan R, Bai R, Shi Y. Molecular choreography of pre-mRNA splicing by the spliceosome. Curr Opin Struct Biol 2019; 59:124-133. [PMID: 31476650 DOI: 10.1016/j.sbi.2019.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
The spliceosome executes eukaryotic precursor messenger RNA (pre-mRNA) splicing to remove noncoding introns through two sequential transesterification reactions, branching and exon ligation. The fidelity of this process is based on the recognition of the conserved sequences in the intron and dynamic compositional and structural rearrangement of this multi-megadalton machinery. Since atomic visualization of the splicing active site in an endogenous Schizosaccharomyces pombe spliceosome in 2015, high-resolution cryoelectron microscopy (cryo-EM) structures of other spliceosome intermediates began to uncover the molecular mechanism. Recent advances in the structural biology of the spliceosome make it clearer the mechanisms of its assembly, activation, disassembly and exon ligation. Together, these discrete structural images give rise to a molecular choreography of the spliceosome.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
21
|
Bao P, Boon KL, Will CL, Hartmuth K, Lührmann R. Multiple RNA-RNA tertiary interactions are dispensable for formation of a functional U2/U6 RNA catalytic core in the spliceosome. Nucleic Acids Res 2019; 46:12126-12138. [PMID: 30335160 PMCID: PMC6294511 DOI: 10.1093/nar/gky966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
The active 3D conformation of the spliceosome's catalytic U2/U6 RNA core is stabilised by a network of secondary and tertiary RNA interactions, but also depends on spliceosomal proteins for its formation. To determine the contribution towards splicing of specific RNA secondary and tertiary interactions in the U2/U6 RNA core, we introduced mutations in critical U6 nucleotides and tested their effect on splicing using a yeast in vitro U6 depletion/complementation system. Elimination of selected RNA tertiary interactions involving the U6 catalytic triad, or deletions of the bases of U6-U80 or U6-A59, had moderate to no effect on splicing, showing that the affected secondary and tertiary interactions are not required for splicing catalysis. However, removal of the base of U6-G60 of the catalytic triad completely blocked splicing, without affecting assembly of the activated spliceosome or its subsequent conversion into a B*-like complex. Our data suggest that the catalytic configuration of the RNA core that allows catalytic metal M1 binding can be maintained by Protein–RNA contacts. However, RNA stacking interactions in the U2/U6 RNA core are required for productive coordination of metal M2. The functional conformation of the U2/U6 RNA core is thus highly buffered, with overlapping contributions from RNA–RNA and Protein–RNA interactions.
Collapse
Affiliation(s)
- Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
22
|
Huang W, Huang Y, Xu J, Liao JL. How Does the Spliceosome Catalyze Intron Lariat Formation? Insights from Quantum Mechanics/Molecular Mechanics Free-Energy Simulations. J Phys Chem B 2019; 123:6049-6055. [DOI: 10.1021/acs.jpcb.9b04377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wenting Huang
- Department of Chemical Physics, University of Science and Technology of China, JinZhai Rd. 96, Hefei, Anhui 230026, China
| | - Yan Huang
- Department of Chemical Physics, University of Science and Technology of China, JinZhai Rd. 96, Hefei, Anhui 230026, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Jie-Lou Liao
- Department of Chemical Physics, University of Science and Technology of China, JinZhai Rd. 96, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Eysmont K, Matylla-Kulińska K, Jaskulska A, Magnus M, Konarska MM. Rearrangements within the U6 snRNA Core during the Transition between the Two Catalytic Steps of Splicing. Mol Cell 2019; 75:538-548.e3. [PMID: 31229405 DOI: 10.1016/j.molcel.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
The RNA catalytic core of spliceosomes as visualized by cryoelectron microscopy (cryo-EM) remains unchanged at different stages of splicing. However, we demonstrate that mutations within the core of yeast U6 snRNA modulate conformational changes between the two catalytic steps. We propose that the intramolecular stem-loop (ISL) of U6 exists in two competing states, changing between a default, non-catalytic conformation and a transient, catalytic conformation. Whereas stable interactions in the catalytic triplex promote catalysis and their disruptions favor exit from the catalytic conformation, destabilization of the lower ISL stem promotes catalysis and its stabilization supports exit from the catalytic conformation. Thus, in addition to the catalytic triplex, U6-ISL acts as an important dynamic component of the catalytic center. The relative flexibility of the lower U6-ISL stem is conserved across eukaryotes. Similar features are found in U6atac and domain V of group II introns, arguing for the generality of the proposed mechanism.
Collapse
Affiliation(s)
- Katarzyna Eysmont
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Agata Jaskulska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Magnus
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Maria M Konarska
- Laboratory of RNA Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
24
|
Wan R, Bai R, Yan C, Lei J, Shi Y. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. Cell 2019; 177:339-351.e13. [PMID: 30879786 DOI: 10.1016/j.cell.2019.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
25
|
Zhang L, Vielle A, Espinosa S, Zhao R. RNAs in the spliceosome: Insight from cryoEM structures. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1523. [PMID: 30729694 DOI: 10.1002/wrna.1523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022]
Abstract
Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex. The spliceosome undergoes dramatic compositional and conformational changes through the splicing cycle, forming at least 10 distinct complexes. Recent high-resolution cryoEM structures of various spliceosomal complexes revealed unprecedented details of this large molecular machine. This review highlights insight into the structure and function of the spliceosomal RNA components obtained from these new structures, with a focus on the yeast spliceosome. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Anne Vielle
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Sara Espinosa
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
26
|
Yan C, Wan R, Shi Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Cold Spring Harb Perspect Biol 2019; 11:11/1/a032409. [PMID: 30602541 DOI: 10.1101/cshperspect.a032409] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is executed by the spliceosome. In the past 3 years, cryoelectron microscopy (cryo-EM) structures have been elucidated for a majority of the yeast spliceosomal complexes and for a few human spliceosomes. During the splicing reaction, the dynamic spliceosome has an immobile core of about 20 protein and RNA components, which are organized around a conserved splicing active site. The divalent metal ions, coordinated by U6 small nuclear RNA (snRNA), catalyze the branching reaction and exon ligation. The spliceosome also contains a mobile but compositionally stable group of about 13 proteins and a portion of U2 snRNA, which facilitate substrate delivery into the splicing active site. The spliceosomal transitions are driven by the RNA-dependent ATPase/helicases, resulting in the recruitment and dissociation of specific splicing factors that enable the reaction. In summary, the spliceosome is a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, Zhejiang Province, China
| |
Collapse
|
27
|
Structural studies of the spliceosome: past, present and future perspectives. Biochem Soc Trans 2018; 46:1407-1422. [PMID: 30420411 DOI: 10.1042/bst20170240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
The spliceosome is a multi-subunit RNA-protein complex involved in the removal of non-coding segments (introns) from between the coding regions (exons) in precursors of messenger RNAs (pre-mRNAs). Intron removal proceeds via two transesterification reactions, occurring between conserved sequences at intron-exon junctions. A tightly regulated, hierarchical assembly with a multitude of structural and compositional rearrangements posed a great challenge for structural studies of the spliceosome. Over the years, X-ray crystallography dominated the field, providing valuable high-resolution structural information that was mostly limited to individual proteins and smaller sub-complexes. Recent developments in the field of cryo-electron microscopy allowed the visualisation of fully assembled yeast and human spliceosomes, providing unprecedented insights into substrate recognition, catalysis, and active site formation. This has advanced our mechanistic understanding of pre-mRNA splicing enormously.
Collapse
|
28
|
Yang L, Zhong Z, Tong C, Jia H, Liu Y, Chen G. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. J Am Chem Soc 2018; 140:8172-8184. [PMID: 29884019 DOI: 10.1021/jacs.8b02970] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wobble A·C pair can be protonated at near physiological pH to form a more stable wobble A+·C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A·C mismatch on the top (near the loop, U22C), middle (U25C), and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A·C pair substitution and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of an apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (∼2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (∼1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Collapse
Affiliation(s)
- Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.,School of Physics, and State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Cailing Tong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yiran Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
29
|
Singh R. RNA-protein interactions that regulate pre-mRNA splicing. Gene Expr 2018; 10:79-92. [PMID: 11868989 PMCID: PMC5977533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Splicing of nuclear precursor messenger RNAs is an important and ubiquitous type of gene regulation in metazoans. Splicing joins the coding sequences called exons by removing the intervening noncoding sequences, introns, from primary transcripts. Alternative splicing generates an enormous repertoire of functional diversity by producing multiple RNAs and proteins from a single gene. In fact, recent genome sequences from several organisms suggest that splicing regulation is likely to provide an important source of functional diversity in more complex organisms. Because splice sites are short sequences at the ends of introns, the functional splice sites have to be distinguished from an excessively large number of sequences in the primary transcripts that resemble a splice site. Furthermore, alternative splice sites have to be correctly chosen at appropriate times. Thus, selection of proper splice sites remains a daunting biological problem. This review focuses on a few examples in which the molecular and biochemical basis for splice site selection is better understood.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 80309, USA.
| |
Collapse
|
30
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
31
|
Galej WP, Toor N, Newman AJ, Nagai K. Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chem Rev 2018; 118:4156-4176. [PMID: 29377672 DOI: 10.1021/acs.chemrev.7b00499] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.
Collapse
Affiliation(s)
- Wojciech P Galej
- EMBL Grenoble , 71 Avenue des Martyrs , 38042 Grenoble Cedex 09 , France
| | - Navtej Toor
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| |
Collapse
|
32
|
Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, Urlaub H, Kastner B, Lührmann R, Stark H. Structure and Conformational Dynamics of the Human Spliceosomal B act Complex. Cell 2018; 172:454-464.e11. [PMID: 29361316 DOI: 10.1016/j.cell.2018.01.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022]
Abstract
The spliceosome is a highly dynamic macromolecular complex that precisely excises introns from pre-mRNA. Here we report the cryo-EM 3D structure of the human Bact spliceosome at 3.4 Å resolution. In the Bact state, the spliceosome is activated but not catalytically primed, so that it is functionally blocked prior to the first catalytic step of splicing. The spliceosomal core is similar to the yeast Bact spliceosome; important differences include the presence of the RNA helicase aquarius and peptidyl prolyl isomerases. To examine the overall dynamic behavior of the purified spliceosome, we developed a principal component analysis-based approach. Calculating the energy landscape revealed eight major conformational states, which we refined to higher resolution. Conformational differences of the highly flexible structural components between these eight states reveal how spliceosomal components contribute to the assembly of the spliceosome, allowing it to generate a dynamic interaction network required for its subsequent catalytic activation.
Collapse
Affiliation(s)
- David Haselbach
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ilya Komarov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dmitry E Agafonov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Graf
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37073 Göttingen, Germany
| | - Berthold Kastner
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Holger Stark
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
33
|
Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R. Structure of the yeast spliceosomal postcatalytic P complex. Science 2017; 358:1278-1283. [PMID: 29146870 PMCID: PMC5828012 DOI: 10.1126/science.aar3462] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.
Collapse
Affiliation(s)
- Shiheng Liu
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiansen Jiang
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yanxiang Cui
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Z Hong Zhou
- Electron Imaging Center for Nanomachines, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver (UCD), Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
35
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Wan R, Yan C, Bai R, Lei J, Shi Y. Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae. Cell 2017; 171:120-132.e12. [PMID: 28919079 DOI: 10.1016/j.cell.2017.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou 310064, Zhejiang Province, China.
| |
Collapse
|
37
|
Abstract
Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520.,Department of Chemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06520;
| |
Collapse
|
38
|
Shi Y. The Spliceosome: A Protein-Directed Metalloribozyme. J Mol Biol 2017; 429:2640-2653. [PMID: 28733144 DOI: 10.1016/j.jmb.2017.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/15/2022]
Abstract
Pre-mRNA splicing is executed by the ribonucleoprotein machinery spliceosome. Nearly 40 years after the discovery of pre-mRNA splicing, the atomic structure of the spliceosome has finally come to light. Four distinct conformational states of the yeast spliceosome have been captured at atomic or near-atomic resolutions. Two catalytic metal ions at the active site are specifically coordinated by the U6 small nuclear RNA (snRNA) and catalyze both the branching reaction and the exon ligation. Of the three snRNAs in the fully assembled spliceosome, U5 and U6, along with 30 contiguous nucleotides of U2 at its 5'-end, remain structurally rigid throughout the splicing reaction. The rigidity of these RNA elements is safeguarded by Prp8 and 16 core protein components, which maintain the same overall conformation in all structurally characterized spliceosomes during the splicing reaction. Only the sequences downstream of nucleotide 30 of U2 snRNA are mobile; their movement, directed by the protein components, delivers the intron branch site into the close proximity of the 5'-splice site for the branching reaction. A set of additional structural rearrangement is required for exon ligation, and the lariat junction is moved out of the active site for recruitment of the 3'-splice site and 3'-exon. The spliceosome is proven to be a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310064, Zhejiang Province, Province, China.
| |
Collapse
|
39
|
Tang HM, Talbot CC, Fung MC, Tang HL. Molecular signature of anastasis for reversal of apoptosis. F1000Res 2017; 6:43. [PMID: 28299189 DOI: 10.12688/f1000research.10568.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis in vitro and in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis - the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
40
|
Abstract
Anastasis (Greek for "rising to life") is a cell recovery phenomenon that rescues dying cells from the brink of cell death. We recently discovered anastasis to occur after the execution-stage of apoptosis
in vitro and
in vivo. Promoting anastasis could in principle preserve injured cells that are difficult to replace, such as cardiomyocytes and neurons. Conversely, arresting anastasis in dying cancer cells after cancer therapies could improve treatment efficacy. To develop new therapies that promote or inhibit anastasis, it is essential to identify the key regulators and mediators of anastasis – the therapeutic targets. Therefore, we performed time-course microarray analysis to explore the molecular mechanisms of anastasis during reversal of ethanol-induced apoptosis in mouse primary liver cells. We found striking changes in transcription of genes involved in multiple pathways, including early activation of pro-cell survival, anti-oxidation, cell cycle arrest, histone modification, DNA-damage and stress-inducible responses, and at delayed times, angiogenesis and cell migration. Validation with RT-PCR confirmed similar changes in the human liver cancer cell line, HepG2, during anastasis. Here, we present the time-course whole-genome gene expression dataset revealing gene expression profiles during the reversal of apoptosis. This dataset provides important insights into the physiological, pathological, and therapeutic implications of anastasis.
Collapse
Affiliation(s)
- Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
41
|
Martin WJ, Reiter NJ. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Biochemistry 2016; 56:3-13. [PMID: 27935277 DOI: 10.1021/acs.biochem.6b01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over billions of years of evolution, nature has embraced proteins as the major workhorse molecules of the cell. However, nearly every aspect of metabolism is dependent upon how structured RNAs interact with proteins, ligands, and other nucleic acids. Key processes, including telomere maintenance, RNA processing, and protein synthesis, require large RNAs that assemble into elaborate three-dimensional shapes. These RNAs can (i) act as flexible scaffolds for protein subunits, (ii) participate directly in substrate recognition, and (iii) serve as catalytic components. Here, we juxtapose the near atomic level interactions of three ribonucleoprotein complexes: ribonuclease P (involved in 5' pre-tRNA processing), the spliceosome (responsible for pre-mRNA splicing), and telomerase (an RNA-directed DNA polymerase that extends the ends of chromosomes). The focus of this perspective is profiling the structural and dynamic roles of RNAs at the core of these enzymes, highlighting how large RNAs contribute to molecular recognition and catalysis.
Collapse
Affiliation(s)
- William J Martin
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
42
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast step II catalytically activated spliceosome. Science 2016; 355:149-155. [PMID: 27980089 DOI: 10.1126/science.aak9979] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of precursor messenger RNA (pre-mRNA) splicing comprises two sequential reactions, first freeing the 5' exon and generating an intron lariat-3' exon and then ligating the two exons and releasing the intron lariat. The second reaction is executed by the step II catalytically activated spliceosome (known as the C* complex). Here, we present the cryo-electron microscopy structure of a C* complex from Saccharomyces cerevisiae at an average resolution of 4.0 angstroms. Compared with the preceding spliceosomal complex (C complex), the lariat junction has been translocated by 15 to 20 angstroms to vacate space for the incoming 3'-exon sequences. The step I splicing factors Cwc25 and Yju2 have been dissociated from the active site. Two catalytic motifs from Prp8 (the 1585 loop and the β finger of the ribonuclease H-like domain), along with the step II splicing factors Prp17 and Prp18 and other surrounding proteins, are poised to assist the second transesterification. These structural features, together with those reported for other spliceosomal complexes, yield a near-complete mechanistic picture on the splicing cycle.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science 2016; 353:904-11. [PMID: 27445306 DOI: 10.1126/science.aag0291] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is carried out by the spliceosome, which undergoes an intricate assembly and activation process. Here, we report an atomic structure of an activated spliceosome (known as the B(act) complex) from Saccharomyces cerevisiae, determined by cryo-electron microscopy at an average resolution of 3.52 angstroms. The final refined model contains U2 and U5 small nuclear ribonucleoprotein particles (snRNPs), U6 small nuclear RNA (snRNA), nineteen complex (NTC), NTC-related (NTR) protein, and a 71-nucleotide pre-mRNA molecule, which amount to 13,505 amino acids from 38 proteins and a combined molecular mass of about 1.6 megadaltons. The 5' exon is anchored by loop I of U5 snRNA, whereas the 5' splice site (5'SS) and the branch-point sequence (BPS) of the intron are specifically recognized by U6 and U2 snRNA, respectively. Except for coordination of the catalytic metal ions, the RNA elements at the catalytic cavity of Prp8 are mostly primed for catalysis. The catalytic latency is maintained by the SF3b complex, which encircles the BPS, and the splicing factors Cwc24 and Prp11, which shield the 5' exon-5'SS junction. This structure, together with those determined earlier, outlines a molecular framework for the pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Wan R, Yan C, Bai R, Huang G, Shi Y. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 2016; 353:895-904. [PMID: 27445308 DOI: 10.1126/science.aag2235] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of pre-messenger RNA splicing, carried out by the spliceosome, comprises two sequential transesterification reactions, which result in the removal of an intron and the joining of two exons. Here we report an atomic structure of a catalytic step I spliceosome (known as the C complex) from Saccharomyces cerevisiae, as determined by cryo-electron microscopy at an average resolution of 3.4 angstroms. In the structure, the 2'-OH of the invariant adenine nucleotide in the branch point sequence (BPS) is covalently joined to the phosphate at the 5' end of the 5' splice site (5'SS), forming an intron lariat. The freed 5' exon remains anchored to loop I of U5 small nuclear RNA (snRNA), and the 5'SS and BPS of the intron form duplexes with conserved U6 and U2 snRNA sequences, respectively. Specific placement of these RNA elements at the catalytic cavity of Prp8 is stabilized by 15 protein components, including Snu114 and the splicing factors Cwc21, Cwc22, Cwc25, and Yju2. These features, representing the conformation of the spliceosome after the first-step reaction, predict structural changes that are needed for the execution of the second-step transesterification reaction.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Zhao C, Pyle AM. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol 2016; 23:558-65. [PMID: 27136328 PMCID: PMC4899126 DOI: 10.1038/nsmb.3224] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
46
|
De I, Schmitzová J, Pena V. The organization and contribution of helicases to RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:259-74. [PMID: 26874649 DOI: 10.1002/wrna.1331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Abstract
Splicing is an essential step of gene expression. It occurs in two consecutive chemical reactions catalyzed by a large protein-RNA complex named the spliceosome. Assembled on the pre-mRNA substrate from five small nuclear proteins, the spliceosome acts as a protein-controlled ribozyme to catalyze the two reactions and finally dissociates into its components, which are re-used for a new round of splicing. Upon following this cyclic pathway, the spliceosome undergoes numerous intermediate stages that differ in composition as well as in their internal RNA-RNA and RNA-protein contacts. The driving forces and control mechanisms of these remodeling processes are provided by specific molecular motors called RNA helicases. While eight spliceosomal helicases are present in all organisms, higher eukaryotes contain five additional ones potentially required to drive a more intricate splicing pathway and link it to an RNA metabolism of increasing complexity. Spliceosomal helicases exhibit a notable structural diversity in their accessory domains and overall architecture, in accordance with the diversity of their task-specific functions. This review summarizes structure-function knowledge about all spliceosomal helicases, including the latter five, which traditionally are treated separately from the conserved ones. The implications of the structural characteristics of helicases for their functions, as well as for their structural communication within the multi-subunits environment of the spliceosome, are pointed out.
Collapse
Affiliation(s)
- Inessa De
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jana Schmitzová
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
47
|
Wan R, Yan C, Bai R, Wang L, Huang M, Wong CCL, Shi Y. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science 2016; 351:466-75. [PMID: 26743623 DOI: 10.1126/science.aad6466] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
Splicing of precursor messenger RNA is accomplished by a dynamic megacomplex known as the spliceosome. Assembly of a functional spliceosome requires a preassembled U4/U6.U5 tri-snRNP complex, which comprises the U5 small nuclear ribonucleoprotein (snRNP), the U4 and U6 small nuclear RNA (snRNA) duplex, and a number of protein factors. Here we report the three-dimensional structure of a Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at an overall resolution of 3.8 angstroms by single-particle electron cryomicroscopy. The local resolution for the core regions of the tri-snRNP reaches 3.0 to 3.5 angstroms, allowing construction of a refined atomic model. Our structure contains U5 snRNA, the extensively base-paired U4/U6 snRNA, and 30 proteins including Prp8 and Snu114, which amount to 8495 amino acids and 263 nucleotides with a combined molecular mass of ~1 megadalton. The catalytic nucleotide U80 from U6 snRNA exists in an inactive conformation, stabilized by its base-pairing interactions with U4 snRNA and protected by Prp3. Pre-messenger RNA is bound in the tri-snRNP through base-pairing interactions with U6 snRNA and loop I of U5 snRNA. This structure, together with that of the spliceosome, reveals the molecular choreography of the snRNAs in the activation process of the spliceosomal ribozyme.
Collapse
Affiliation(s)
- Ruixue Wan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Hudson AJ, Stark MR, Fast NM, Russell AG, Rader SD. Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms. RNA Biol 2015; 12:1-8. [PMID: 26400738 PMCID: PMC4829280 DOI: 10.1080/15476286.2015.1094602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing has been considered one of the hallmarks of eukaryotes, yet its diversity is astonishing: the number of substrate introns for splicing ranges from hundreds of thousands in humans to a mere handful in certain parasites. The catalytic machinery that carries out splicing, the spliceosome, is similarly diverse, with over 300 associated proteins in humans to a few tens in other organisms. In this Point of View, we discuss recent work characterizing the reduced spliceosome of the acidophilic red alga Cyanidioschyzon merolae, which further highlights the diversity of splicing in that it does not possess the U1 snRNP that is characteristically responsible for 5′ splice site recognition. Comparisons to other organisms with reduced spliceosomes, such as microsporidia, trypanosomes, and Giardia, help to identify the most highly conserved splicing factors, pointing to the essential core of this complex machine. These observations argue for increased exploration of important biochemical processes through study of a wider ranger of organisms.
Collapse
Affiliation(s)
- Andrew J Hudson
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Martha R Stark
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| | - Naomi M Fast
- c Biodiversity Research Center and Department of Botany ; University of British Columbia ; Vancouver , British Columbia , Canada
| | - Anthony G Russell
- a Alberta RNA Research and Training Institute and Department of Biological Sciences ; University of Lethbridge ; Lethbridge , Alberta , Canada
| | - Stephen D Rader
- b Department of Chemistry ; University of Northern British Columbia ; Prince George , British Columbia , Canada
| |
Collapse
|
49
|
Hang J, Wan R, Yan C, Shi Y. Structural basis of pre-mRNA splicing. Science 2015; 349:1191-8. [PMID: 26292705 DOI: 10.1126/science.aac8159] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/10/2015] [Indexed: 01/27/2023]
Abstract
Splicing of precursor messenger RNA is performed by the spliceosome. In the cryogenic electron microscopy structure of the yeast spliceosome, U5 small nuclear ribonucleoprotein acts as a central scaffold onto which U6 and U2 small nuclear RNAs (snRNAs) are intertwined to form a catalytic center next to Loop I of U5 snRNA. Magnesium ions are coordinated by conserved nucleotides in U6 snRNA. The intron lariat is held in place through base-pairing interactions with both U2 and U6 snRNAs, leaving the variable-length middle portion on the solvent-accessible surface of the catalytic center. The protein components of the spliceosome anchor both 5' and 3' ends of the U2 and U6 snRNAs away from the active site, direct the RNA sequences, and allow sufficient flexibility between the ends and the catalytic center. Thus, the spliceosome is in essence a protein-directed ribozyme, with the protein components essential for the delivery of critical RNA molecules into close proximity of one another at the right time for the splicing reaction.
Collapse
Affiliation(s)
- Jing Hang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Yan C, Hang J, Wan R, Huang M, Wong CCL, Shi Y. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015; 349:1182-91. [DOI: 10.1126/science.aac7629] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
|