1
|
Sonnentag SJ, Jenne F, Orian-Rousseau V, Nesterov-Mueller A. High-throughput screening for cell binding and repulsion peptides on multifunctionalized surfaces. Commun Biol 2024; 7:870. [PMID: 39020032 PMCID: PMC11255233 DOI: 10.1038/s42003-024-06541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
The adhesion of cells to the extracellular matrix engages cell surface receptors such as integrins, proteoglycans and other types of cell adhesion molecules such as CD44. To closely examine the determinants of cell adhesion, herein we describe the generation of high-density peptide arrays and test the growth of cells on these multifunctionalized surfaces. The peptide library used consists of over 11,000 different sequences, either random or derived from existing proteins. By applying this screen to SW620 mCherry colorectal cancer cells, we select for peptides with both maximum cell adhesion and maximum cell repulsion. All of these extreme properties are based on unique combinations of amino acids. Here, we identify peptides with maximum cell repulsion on secreted frizzled- and Dickkopf-related proteins. Peptides with strong cell repulsion are found at the poles of the TNF-alpha homotrimer. The formation of cellular patterns on alternating highly repulsive and adhesive peptides are examined. Our screen allows the identification of peptides suitable for biomedical and tissue engineering applications.
Collapse
Affiliation(s)
- Steffen J Sonnentag
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Felix Jenne
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Véronique Orian-Rousseau
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
| | - Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
2
|
Bae SJ, Lee SJ, Im DJ. Simultaneous Separating, Splitting, Collecting, and Dispensing by Droplet Pinch-Off for Droplet Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309062. [PMID: 38009759 DOI: 10.1002/smll.202309062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Simultaneous separating, splitting, collecting, and dispensing a cell suspension droplet has been demonstrated by aspiration and subsequent droplet pinch-off for use in microfluidic droplet cell culture systems. This method is applied to cell manipulations including aliquots and concentrations of microalgal and mammalian cell suspensions. Especially, medium exchange of spheroid droplets is successfully demonstrated by collecting more than 99% of all culture medium without damaging the spheroids, demonstrating its potential for a 3D cell culture system. Through dimensional analysis and systematic parametric studies, it is found that initial mother droplet size together with aspiration flow rate determines three droplet pinch-off regimes. By observing contact angle changes during aspiration, the difference in the large and the small droplet pinch-off can be quantitatively explained using force balance. It is found that the capillary number plays a significant role in droplet pinch-off, but the Bond number and the Ohnesorge number have minor effects. Since the dispensed droplet size is mainly determined by the capillary number, the dispensed droplet size can be controlled simply by adjusting the aspiration flow rate. It is hoped that this method can contribute to various fields using droplets, such as droplet cell culture and digital microfluidics, beyond the generation of small droplets.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Seon Jun Lee
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| |
Collapse
|
3
|
Norden DM, Navia CT, Sullivan JT, Doranz BJ. The emergence of cell-based protein arrays to test for polyspecific off-target binding of antibody therapeutics. MAbs 2024; 16:2393785. [PMID: 39180756 PMCID: PMC11346545 DOI: 10.1080/19420862.2024.2393785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.
Collapse
|
4
|
Chastagnier L, Marquette C, Petiot E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol Adv 2023; 68:108211. [PMID: 37463610 DOI: 10.1016/j.biotechadv.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Various research fields use the transfection of mammalian cells with genetic material to induce the expression of a target transgene or gene silencing. It is a tool widely used in biological research, bioproduction, and therapy. Current transfection protocols are usually performed on 2D adherent cells or suspension cultures. The important rise of new gene therapies and regenerative medicine in the last decade raises the need for new tools to empower the in situ transfection of tissues and 3D cell cultures. This review will present novel in situ transfection methods based on a chemical or physical non-viral transfection of cells in tissues and 3D cultures, discuss the advantages and remaining gaps, and propose future developments and applications.
Collapse
Affiliation(s)
- Laura Chastagnier
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Christophe Marquette
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Emma Petiot
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France.
| |
Collapse
|
5
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
6
|
Shi L, Liu S, Li X, Huang X, Luo H, Bai Q, Li Z, Wang L, Du X, Jiang C, Liu S, Li C. Droplet microarray platforms for high-throughput drug screening. Mikrochim Acta 2023; 190:260. [PMID: 37318602 DOI: 10.1007/s00604-023-05833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
High-throughput screening platforms are fundamental for the rapid and efficient processing of large amounts of experimental data. Parallelization and miniaturization of experiments are important for improving their cost-effectiveness. The development of miniaturized high-throughput screening platforms is essential in the fields of biotechnology, medicine, and pharmacology. Currently, most laboratories use 96- or 384-well microtiter plates for screening; however, they have disadvantages, such as high reagent and cell consumption, low throughput, and inability to avoid cross-contamination, which need to be further optimized. Droplet microarrays, as novel screening platforms, can effectively avoid these shortcomings. Here, the preparation method of the droplet microarray, method of adding compounds in parallel, and means to read the results are briefly described. Next, the latest research on droplet microarray platforms in biomedicine is presented, including their application in high-throughput culture, cell screening, high-throughput nucleic acid screening, drug development, and individualized medicine. Finally, the challenges and future trends in droplet microarray technology are summarized.
Collapse
Affiliation(s)
- Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Sutong Liu
- Juxing College of Digital Economics, Haikou University of Economics, Haikou, 570100, China
| | - Xue Li
- Sichuan Hanyuan County People's Hospital, Hanyuan, 625300, China
| | - Xiwei Huang
- Ministry of Education Key Lab of RFCircuits and Systems, Hangzhou Dianzi University, Hangzhou, 310038, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563002, China
| | - Qianwen Bai
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563002, China
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu, 610054, China
| | - Cheng Jiang
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
7
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
8
|
Otsuka H. Nanofabrication Technologies to Control Cell and Tissue Function in Three-Dimension. Gels 2023; 9:gels9030203. [PMID: 36975652 PMCID: PMC10048556 DOI: 10.3390/gels9030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
In the 2000s, advances in cellular micropatterning using microfabrication contributed to the development of cell-based biosensors for the functional evaluation of newly synthesized drugs, resulting in a revolutionary evolution in drug screening. To this end, it is essential to utilize cell patterning to control the morphology of adherent cells and to understand contact and paracrine-mediated interactions between heterogeneous cells. This suggests that the regulation of the cellular environment by means of microfabricated synthetic surfaces is not only a valuable endeavor for basic research in biology and histology, but is also highly useful to engineer artificial cell scaffolds for tissue regeneration. This review particularly focuses on surface engineering techniques for the cellular micropatterning of three-dimensional (3D) spheroids. To establish cell microarrays, composed of a cell adhesive region surrounded by a cell non-adherent surface, it is quite important to control a protein-repellent surface in the micro-scale. Thus, this review is focused on the surface chemistries of the biologically inspired micropatterning of two-dimensional non-fouling characters. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single-cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., fibers and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. These important approaches to cell engineering result in their applications to tissue regeneration, where the cell-biomaterial composite is injected into diseased area. This approach allows the operating surgeon to implant the cell and polymer combinations with minimum invasiveness. The polymers utilized in hydrogels are structurally similar to components of the extracellular matrix in vivo, and are considered biocompatible. This review will provide an overview of the critical design to make hydrogels when used as cell scaffolds for tissue engineering. In addition, the new strategy of injectable hydrogel will be discussed as future directions.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
9
|
Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:85-164. [PMID: 35871897 DOI: 10.1016/bs.apcsb.2022.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.
Collapse
Affiliation(s)
- R Hephzibah Cathryn
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
10
|
Arai T, Aiki Y, Sato T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J 2022. [DOI: 10.1038/s41428-021-00603-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Satpathi NS, Malik L, Ramasamy AS, Sen AK. Drop Impact on a Superhydrophilic Spot Surrounded by a Superhydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14195-14204. [PMID: 34802243 DOI: 10.1021/acs.langmuir.1c02654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial variation in the wettability of a surface can have a significant effect on the spreading and retraction behavior of an impacting droplet and hence the overall impact dynamics. Although composite surfaces have proven applications, there is a lack of understanding of droplet impact on surfaces with a sudden jump in wettability. Here, we study the behavior of a liquid drop impacting a composite surface having a superhydrophilic (SHL) spot surrounded by a superhydrophobic (SHB) region. We find that the droplet exhibits different regimes: no-splitting, jetting, and splashing, depending upon the spot size (βs) and the Weber number (We). At a smaller βs, the behavior shifts from the stable to jetting regime and then to the splashing regime, with increasing We. We find that by increasing the value of βs, one can avoid the undesirable splashing and jetting regimes and attain a stable regime even at a higher We. Our study reveals that βs has a significant influence on the maximum spreading diameter βmax at a smaller We but a negligible effect at a higher We. We show that the dominance of capillary energy at a smaller We and viscous energy at a higher We underpins the phenomena. We employ an energy conservation approach to develop an analytical model to predict βmax on a composite SHL-SHB surface by considering the total energy of the system before the impact and at the maximum spread position. We find K = (Re1/2/We) emerges as a key parameter in the model that accurately predicts the experimentally measured βmax. Our study reveals the existence of an inertia-viscous dominated regime at a smaller K and an inertia-capillary dominated regime at a larger K. The outcome of our study may find applications in stable and precise positioning of impacting droplets.
Collapse
Affiliation(s)
- Niladri Sekhar Satpathi
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Lokesh Malik
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Alwar Samy Ramasamy
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Ashis Kumar Sen
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| |
Collapse
|
12
|
Carstens MR, Wasserfall CH, Acharya AP, Lewis J, Agrawal N, Koenders K, Bracho-Sanchez E, Keselowsky BG. GRAS-microparticle microarrays identify dendritic cell tolerogenic marker-inducing formulations. LAB ON A CHIP 2021; 21:3598-3613. [PMID: 34346460 PMCID: PMC8725777 DOI: 10.1039/d1lc00096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays, miniaturized platforms used for high-content studies, provide potential advantages over traditional in vitro investigation in terms of time, cost, and parallel analyses. Recently, microarrays have been leveraged to investigate immune cell biology by providing a platform with which to systematically investigate the effects of various agents on a wide variety of cellular processes, including those giving rise to immune regulation for application toward curtailing autoimmunity. A specific embodiment incorporates dendritic cells cultured on microarrays containing biodegradable microparticles. Such an approach allows immune cell and microparticle co-localization and release of compounds on small, isolated populations of cells, enabling a quick, convenient method to quantify a variety of cellular responses in parallel. In this study, the microparticle microarray platform was utilized to investigate a small library of sixteen generally regarded as safe (GRAS) compounds (ascorbic acid, aspirin, capsaicin, celastrol, curcumin, epigallocatechin-3-gallate, ergosterol, hemin, hydrocortisone, indomethacin, menadione, naproxen, resveratrol, retinoic acid, α-tocopherol, vitamin D3) for their ability to induce suppressive phenotypes in murine dendritic cells. Two complementary tolerogenic index ranking systems were proposed to summarize dendritic cell responses and suggested several lead compounds (celastrol, ergosterol, vitamin D3) and two secondary compounds (hemin, capsaicin), which warrant further investigation for applications toward suppression and tolerance.
Collapse
Affiliation(s)
- Matthew R Carstens
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jamal Lewis
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Nikunj Agrawal
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Kevin Koenders
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Shrestha S, Lekkala VKR, Acharya P, Siddhpura D, Lee MY. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Essays Biochem 2021; 65:481-489. [PMID: 34296737 PMCID: PMC9270997 DOI: 10.1042/ebc20200150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates. In general, cell spheroids are formed in a relatively short period of culture, in the absence of extracellular matrices (ECMs), via gravity-driven self-aggregation, thus having limited ability to self-organization in layered structure. On the other hand, multicellular tissue cultures including miniature tissues derived from pluripotent stem cells and adult stem cells (a.k.a. 'organoids') and 3D bioprinted tissue constructs require biomimetic hydrogels or ECMs and show highly ordered structure due to spontaneous self-organization of cells during differentiation and maturation processes. In this short review article, we summarize traditional methods of spheroid and multicellular tissue cultures as well as their technical challenges, and introduce how droplet-based, miniature 3D bioprinting ('microarray 3D bioprinting') can be used to improve assay throughput and reproducibility for high-throughput, predictive screening of compounds. Several platforms including a micropillar chip and a 384-pillar plate developed to facilitate miniature spheroid and tissue cultures via microarray 3D bioprinting are introduced. We excluded microphysiological systems (MPSs) in this article although they are important tissue models to simulate multiorgan interactions.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Vinod Kumar Reddy Lekkala
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Darshita Siddhpura
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, Ohio 44115, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
14
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
15
|
Noiri M, Goto Y, Sato Y, Nakamura N, Ishihara K, Teramura Y. Exogenous Cell Surface Modification with Cell Penetrating Peptide-Conjugated Lipids Causes Spontaneous Cell Adhesion. ACS APPLIED BIO MATERIALS 2021; 4:4598-4606. [DOI: 10.1021/acsabm.1c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Noiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuya Goto
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Yuya Sato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala SE-751 85, Sweden
| |
Collapse
|
16
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2021; 8:8101-8115. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superhydrophilic and superhydrophobic surfaces are prevalent in nature and have received tremendous attention due to their importance in both fundamental research and practical applications. With the high interdisciplinary research and great development of microfabrication techniques, artificial wettable-nonwettable micropatterns inspired by the water-collection behavior of desert beetles have been successfully fabricated. A combination of the two extreme states of superhydrophilicity and superhydrophobicity on the same surface precisely, wettable-nonwettable micropatterns possess unique functionalities, such as controllable superwetting, anisotropic wetting, oriented adhesion, and other properties. In this review, we briefly describe the methods for fabricating wettable-nonwettable patterns, including self-assembly, electrodeposition, inkjet printing, and photolithography. We also highlight some of the emerging applications such as water collection, controllable bioadhesion, cell arrays, microreactors, printing techniques, and biosensors combined with various detection methods. Finally, the current challenges and prospects of this renascent and rapidly developing field are proposed and discussed.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China. and School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Mendrek B, Fus-Kujawa A, Teper P, Botor M, Kubacki J, Sieroń AL, Kowalczuk A. Star polymer-based nanolayers with immobilized complexes of polycationic stars and DNA for deposition gene delivery and recovery of intact transfected cells. Int J Pharm 2020; 589:119823. [PMID: 32861771 DOI: 10.1016/j.ijpharm.2020.119823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
We designed a novel thermoresponsive system of nanolayers composed of star poly[oligo(ethylene glycol) methacrylate]s (S-POEGMA) covalently bonded to a solid support and covered with polyplexes of cationic star polymers and plasmid DNA (pDNA). S-POEGMA stars were attached to the solid support via a UV-mediated "grafting to" method. To the best of our knowledge, for the first time, the conformational changes of obtained star nanolayers, occurring with changes in temperature, were studied using a quartz crystal microbalance technique. Next, the polyplexes of star poly[N,N'-dimethylaminoethyl methacrylate-ran-di(ethylene glycol) methacrylate] (S-P(DMAEMA-DEGMA)) with pDNA, exhibiting a phase transition temperature (TCP) in culture medium DMEM, were deposited on S-POEGMA layers when the temperature increased above the TCP of polyplex. The thermoresponsivity of the system was then the main mechanism for controlling the adhesion, proliferation, transfection and detachment of HT-1080 cells. The nanolayers promoted the effective cell culture and delivered nucleic acids into cells, with a transfection efficiency several times higher than that of the control. The detachment of the transfected cells was regulated only by the change of temperature. The studies demonstrated that we obtained a novel and effective system, based on a star polymer architecture, useful for gene delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Agnieszka Fus-Kujawa
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Jerzy Kubacki
- A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
19
|
Werley CA, Boccardo S, Rigamonti A, Hansson EM, Cohen AE. Multiplexed Optical Sensors in Arrayed Islands of Cells for multimodal recordings of cellular physiology. Nat Commun 2020; 11:3881. [PMID: 32753572 PMCID: PMC7403318 DOI: 10.1038/s41467-020-17607-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Cells typically respond to chemical or physical perturbations via complex signaling cascades which can simultaneously affect multiple physiological parameters, such as membrane voltage, calcium, pH, and redox potential. Protein-based fluorescent sensors can report many of these parameters, but spectral overlap prevents more than ~4 modalities from being recorded in parallel. Here we introduce the technique, MOSAIC, Multiplexed Optical Sensors in Arrayed Islands of Cells, where patterning of fluorescent sensor-encoding lentiviral vectors with a microarray printer enables parallel recording of multiple modalities. We demonstrate simultaneous recordings from 20 sensors in parallel in human embryonic kidney (HEK293) cells and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and we describe responses to metabolic and pharmacological perturbations. Together, these results show that MOSAIC can provide rich multi-modal data on complex physiological responses in multiple cell types.
Collapse
Affiliation(s)
- Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Q-State Biosciences, Cambridge, MA, 02139, USA
| | - Stefano Boccardo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Nobel Biocare AG, Kloten, Switzerland
| | - Alessandra Rigamonti
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
| | - Emil M Hansson
- Integrated Cardio Metabolic Centre, Department of Medicine Huddinge, Karolinska Institute, Huddinge, Sweden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
20
|
Mechanistic dissection of the PD-L1:B7-1 co-inhibitory immune complex. PLoS One 2020; 15:e0233578. [PMID: 32497097 PMCID: PMC7272049 DOI: 10.1371/journal.pone.0233578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1:B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.
Collapse
|
21
|
Yao L, Weng W, Cheng K, Wang L, Dong L, Lin J, Sheng K. Novel Platform for Surface-Mediated Gene Delivery Assisted with Visible-Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17290-17301. [PMID: 32208666 DOI: 10.1021/acsami.0c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-mediated gene delivery has attracted more and more attentions in biomedical research and applications because of its characteristics of low toxicity and localized delivery. Herein, a novel visible-light-regulated, surface-mediated gene-delivery platform is exhibited, arising from the photoinduced surface-charge accumulation on silicon. Silicon with a pn junction is used and tested subsequently for the behavior of surface-mediated gene delivery under visible-light illumination. It is found that positive-charge accumulation under light illumination changes the surface potential and then facilitates the delivery of gene-loaded carriers. As a result, the gene-expression efficiency shows a significant improvement from 6% to 28% under a 10 min visible-light illumination. Such improvement is ascribed to the increase in surface potential caused by light illumination, which promotes both the release of gene-loaded carriers and the cellular uptake. This work suggests that silicon with photovoltaic effect could offer a new strategy for surface-mediated, gene-delivery-related biomedical research and applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, P. R. China
| | - Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital of Medical College, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jun Lin
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, P. R. China
| | - Kuang Sheng
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
22
|
Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface. J Colloid Interface Sci 2020; 565:582-591. [DOI: 10.1016/j.jcis.2020.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
|
23
|
Hamann A, Thomas AK, Kozisek T, Farris E, Lück S, Zhang Y, Pannier AK. Screening a chemically defined extracellular matrix mimetic substrate library to identify substrates that enhance substrate-mediated transfection. Exp Biol Med (Maywood) 2020; 245:606-619. [PMID: 32183552 DOI: 10.1177/1535370220913501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonviral gene delivery, though limited by inefficiency, has extensive utility in cell therapy, tissue engineering, and diagnostics. Substrate-mediated gene delivery (SMD) increases efficiency and allows transfection at a cell-biomaterial interface, by immobilizing and concentrating nucleic acid complexes on a surface. Efficient SMD generally requires substrates to be coated with serum or other protein coatings to mediate nucleic acid complex immobilization, as well as cell adhesion and growth; however, this strategy limits reproducibility and may be difficult to translate for clinical applications. As an alternative, we screened a chemically defined combinatorial library of 20 different extracellular matrix mimetic substrates containing combinations of (1) different sulfated polysaccharides that are essential extracellular matrix glycosaminoglycans (GAGs), with (2) mimetic peptides derived from adhesion proteins, growth factors, and cell-penetrating domains, for use as SMD coatings. We identified optimal substrates for DNA lipoplex and polyplex SMD transfection of fibroblasts and human mesenchymal stem cells. Optimal extracellular matrix mimetic substrates varied between cell type, donor source, and transfection reagent, but typically contained Heparin GAG and an adhesion peptide. Multiple substrates significantly increased transgene expression (i.e. 2- to 20-fold) over standard protein coatings. Considering previous research of similar ligands, we hypothesize extracellular matrix mimetic substrates modulate cell adhesion, proliferation, and survival, as well as plasmid internalization and trafficking. Our results demonstrate the utility of screening combinatorial extracellular matrix mimetic substrates for optimal SMD transfection towards application- and patient-specific technologies. Impact statement Substrate-mediated gene delivery (SMD) approaches have potential for modification of cells in applications where a cell-material interface exists. Conventional SMD uses ill-defined serum or protein coatings to facilitate immobilization of nucleic acid complexes, cell attachment, and subsequent transfection, which limits reproducibility and clinical utility. As an alternative, we screened a defined library of extracellular matrix mimetic substrates containing combinations of different glycosaminoglycans and bioactive peptides to identify optimal substrates for SMD transfection of fibroblasts and human mesenchymal stem cells. This strategy could be utilized to develop substrates for specific SMD applications in which variability exists between different cell types and patient samples.
Collapse
Affiliation(s)
- Andrew Hamann
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Alvin K Thomas
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Tyler Kozisek
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Steffen Lück
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 41, Dresden 01307, Germany
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
24
|
Yang CG, Cheng L, Ye WQ, Zheng DH, Xu ZR. Preparation of encoded bar-like core-shell microparticles on a microfluidic chip. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Yao L, Wang X, Weng W, Fu Y, Cheng K. Bioactive nanocomposite coatings under visible light illumination promoted surface-mediated gene delivery. Biomater Sci 2020; 8:3685-3696. [DOI: 10.1039/d0bm00123f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive coatings with photothermal conversion ability were used to spatially and temporally control surface-mediated gene delivery under visible light illumination.
Collapse
Affiliation(s)
- Lili Yao
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- Zhejiang University
- Hangzhou
| | - Xiaozhao Wang
- Department of Orthopaedic Surgery
- Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Wenjian Weng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- Zhejiang University
- Hangzhou
| | - Yongqing Fu
- Faculty of Engineering & Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| | - Kui Cheng
- School of Materials Science and Engineering
- State Key Laboratory of Silicon Materials
- Cyrus Tang Center for Sensor Materials and Applications
- Zhejiang University
- Hangzhou
| |
Collapse
|
26
|
Serçin Ö, Reither S, Roidos P, Ballin N, Palikyras S, Baginska A, Rein K, Llamazares M, Halavatyi A, Winter H, Muley T, Jurkowska RZ, Abdollahi A, Zenke FT, Neumann B, Mardin BR. A solid-phase transfection platform for arrayed CRISPR screens. Mol Syst Biol 2019; 15:e8983. [PMID: 31885201 PMCID: PMC6926425 DOI: 10.15252/msb.20198983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.
Collapse
Affiliation(s)
| | - Sabine Reither
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | | | | | | | | | | | - Aliaksandr Halavatyi
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Hauke Winter
- Department of SurgeryThoraxklinik at University Hospital HeidelbergHeidelbergGermany
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
| | - Thomas Muley
- Translational Lung Research Center (TLRC) HeidelbergMember of the German Center for Lung Research (DZL)HeidelbergGermany
- Thoraxklinik at University Hospital HeidelbergHeidelbergGermany
| | | | - Amir Abdollahi
- Division of Molecular and Translational Radiation OncologyNational Center for Tumor Diseases (NCT)and German Cancer Research Center (DKFZ), Heidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Consortium (DKTK) Core Center HeidelbergHeidelbergGermany
| | - Frank T Zenke
- Translational Innovation Platform OncologyMerck KGaADarmstadtGermany
| | - Beate Neumann
- Advanced Light Microscopy FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | |
Collapse
|
27
|
Cheng JW, Sip CG, Lindstedt PR, Boitano R, Bluestein BM, Gamble LJ, Folch A. “Chip-on-a-Transwell” Devices for User-Friendly Control of the Microenvironment of Cultured Cells. ACS APPLIED BIO MATERIALS 2019; 2:4998-5011. [DOI: 10.1021/acsabm.9b00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Cheng
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Christopher G. Sip
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Philip R. Lindstedt
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Ross Boitano
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Blake M. Bluestein
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Lara J. Gamble
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195-5061, United States
| |
Collapse
|
28
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|
29
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
30
|
Zhang J, Hu Y, Wang X, Liu P, Chen X. High-Throughput Platform for Efficient Chemical Transfection, Virus Packaging, and Transduction. MICROMACHINES 2019; 10:mi10060387. [PMID: 31185602 PMCID: PMC6631631 DOI: 10.3390/mi10060387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023]
Abstract
Intracellular gene delivery is normally required to study gene functions. A versatile platform able to perform both chemical transfection and viral transduction to achieve efficient gene modification in most cell types is needed. Here we demonstrated that high throughput chemical transfection, virus packaging, and transduction can be conducted efficiently on our previously developed superhydrophobic microwell array chip (SMAR-chip). A total of 169 chemical transfections were successfully performed on the chip in physically separated microwells through a few simple steps, contributing to the convenience of DNA delivery and media change on the SMAR-chip. Efficiencies comparable to the traditional transfection in multi-well plates (~65%) were achieved while the manual operations were largely reduced. Two transfection procedures, the dry method amenable for the long term storage of the transfection material and the wet method for higher efficiencies were developed. Multiple transfections in a scheduled manner were performed to further increase the transfection efficiencies or deliver multiple genes at different time points. In addition, high throughput virus packaging integrated with target cell transduction were also proved which resulted in a transgene expression efficiency of >70% in NIH 3T3 cells. In summary, the SMAR-chip based high throughput gene delivery is efficient and versatile, which can be used for large scale genetic modifications in a variety of cell types.
Collapse
Affiliation(s)
- Jianxiong Zhang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaoqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaofang Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
31
|
Wood L, Wright GJ. Approaches to identify extracellular receptor–ligand interactions. Curr Opin Struct Biol 2019; 56:28-36. [DOI: 10.1016/j.sbi.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022]
|
32
|
Zhong X, Ren J, Chong KSL, Ong KS, Duan F. Wetting Transition at a Threshold Surfactant Concentration of Evaporating Sessile Droplets on a Patterned Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4509-4517. [PMID: 30865459 DOI: 10.1021/acs.langmuir.9b00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wetting transitions induced by varying the components in a solution of a drying droplet can lead to its evolving shape on a textured surface. It can provide new insights on liquid pattern control through manipulating droplet solutions. We show the pronounced transitions of wetting for surfactant solution droplets drying on a micropyramid-patterned surface. At low initial surfactant concentrations, the droplet maintains an octagonal shape until the end of drying. At intermediate initial surfactant concentrations, the early octagon spreads to a square, which later evolves to a stretched rectangle. At high initial surfactant concentrations, the droplet mainly exhibits the "octagon-to-square" transition, and the square shape is maintained until the end. The octagon-to-square transition occurs at similar temporal volume-averaged surfactant concentrations for the various initial surfactant concentrations. It results from the dependence of the surface energy change of spread over the micropyramid structure on the temporal volume-averaged surfactant concentration. At high initial surfactant concentrations, the accumulation of the surfactant near the contact line driven by outward flows could raise the local viscosity and enhance the pinning effect, leading to the great suppression of the "square-to-rectangle" transition.
Collapse
Affiliation(s)
- Xin Zhong
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Junheng Ren
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Karen Siew-Ling Chong
- Institute of Materials Research and Engineering, A*Star , 2 Fusionopolis Way, Innovis, Level 9 , Singapore 138634 , Singapore
| | - Kian-Soo Ong
- Institute of Materials Research and Engineering, A*Star , 2 Fusionopolis Way, Innovis, Level 9 , Singapore 138634 , Singapore
| | - Fei Duan
- School of Mechanical and Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
33
|
|
34
|
Starkuviene V, Kallenberger SM, Beil N, Lisauskas T, Schumacher BSS, Bulkescher R, Wajda P, Gunkel M, Beneke J, Erfle H. High-Density Cell Arrays for Genome-Scale Phenotypic Screening. SLAS DISCOVERY 2019; 24:274-283. [PMID: 30682322 DOI: 10.1177/2472555218818757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to high associated costs and considerable time investments of cell-based screening, there is a strong demand for new technologies that enable preclinical development and tests of diverse biologicals in a cost-saving and time-efficient manner. For those reasons we developed the high-density cell array (HD-CA) platform, which miniaturizes cell-based screening in the form of preprinted and ready-to-run screening arrays. With the HD-CA technology, up to 24,576 samples can be tested in a single experiment, thereby saving costs and time for microscopy-based screening by 75%. Experiments on the scale of the entire human genome can be addressed in a real parallel manner, with screening campaigns becoming more comfortable and devoid of robotics infrastructure on the user side. The high degree of miniaturization enables working with expensive reagents and rare and difficult-to-obtain cell lines. We have also optimized an automated imaging procedure for HD-CA and demonstrate the applicability of HD-CA to CRISPR-Cas9- and RNAi-mediated phenotypic assessment of the gene function.
Collapse
Affiliation(s)
- Vytaute Starkuviene
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,2 Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Stefan M Kallenberger
- 1 BioQuant, Heidelberg University, Heidelberg, Germany.,3 Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Beil
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Piotr Wajda
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jürgen Beneke
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- 1 BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Dennhardt S, Finke KR, Huwiler A, Coldewey SM. Sphingosine-1-phosphate promotes barrier-stabilizing effects in human microvascular endothelial cells via AMPK-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2019; 1865:774-781. [PMID: 30660683 DOI: 10.1016/j.bbadis.2018.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
Breakdown of the endothelial barrier is a critical step in the development of organ failure in severe inflammatory conditions such as sepsis. Endothelial cells from different tissues show phenotypic variations which are often neglected in endothelial research. Sphingosine-1-phosphate (S1P) and AMP-dependent kinase (AMPK) have been shown to protect the endothelium and phosphorylation of AMPK by S1P was shown in several cell types. However, the role of the S1P-AMPK interrelationship for endothelial barrier stabilization has not been investigated. To assess the role of the S1P-AMPK signalling axis in this context, we established an in vitro model allowing real-time monitoring of endothelial barrier function in human microvascular endothelial cells (HMEC-1) and murine glomerular endothelial cells (GENCs) with the electric cell-substrate impedance sensing (ECIS™) system. Following the disruption of the cell barrier by co-administration of LPS, TNF-α, IL-1ß, IFN-γ, and IL-6, we demonstrated self-recovery of the disrupted barrier in HMEC-1, while the barrier remained compromised in GENCs. Under physiological conditions we observed a rapid phosphorylation of AMPK in HMEC-1 stimulated with S1P, but not in GENCs. Consistently, S1P enhanced the basal endothelial barrier in HMEC-1 exclusively. siRNA-mediated knockdown of AMPK in HMEC-1 led to a less pronounced barrier enhancement. Thus we present evidence for a functional role of AMPK in S1P-mediated barrier stabilization in HMEC-1 and we provide insight into cell-type specific differences of the S1P-AMPK-interrelationship, which might influence the development of interventional strategies targeting endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Sophie Dennhardt
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Septomics Research Centre, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Karl R Finke
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, Bern, Switzerland
| | - Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Septomics Research Centre, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| |
Collapse
|
36
|
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. Mol Psychiatry 2019; 24:345-363. [PMID: 30470799 PMCID: PMC6514885 DOI: 10.1038/s41380-018-0266-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
In addition to the devastating symptoms of dementia, Alzheimer's disease (AD) is characterized by accumulation of the processing products of the amyloid-β (Aβ) peptide precursor protein (APP). APP's non-pathogenic functions include regulating intracellular iron (Fe) homeostasis. MicroRNAs are small (~ 20 nucleotides) RNA species that instill specificity to the RNA-induced silencing complex (RISC). In most cases, RISC inhibits mRNA translation through the 3'-untranslated region (UTR) sequence. By contrast, we report a novel activity of miR-346: specifically, that it targets the APP mRNA 5'-UTR to upregulate APP translation and Aβ production. This upregulation is reduced but not eliminated by knockdown of argonaute 2. The target site for miR-346 overlaps with active sites for an iron-responsive element (IRE) and an interleukin-1 (IL-1) acute box element. IREs interact with iron response protein1 (IRP1), an iron-dependent translational repressor. In primary human brain cultures, miR-346 activity required chelation of Fe. In addition, miR-346 levels are altered in late-Braak stage AD. Thus, miR-346 plays a role in upregulation of APP in the CNS and participates in maintaining APP regulation of Fe, which is disrupted in late stages of AD. Further work will be necessary to integrate other metals, and IL-1 into the Fe-miR-346 activity network. We, thus, propose a "FeAR" (Fe, APP, RNA) nexus in the APP 5'-UTR that includes an overlapping miR-346-binding site and the APP IRE. When a "healthy FeAR" exists, activities of miR-346 and IRP/Fe interact to maintain APP homeostasis. Disruption of an element that targets the FeAR nexus would lead to pathogenic disruption of APP translation and protein production.
Collapse
Affiliation(s)
- Justin M. Long
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bryan Maloney
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, MGH, Harvard Medical School, Charlestown, MA 02129 USA
| | - Debomoy K. Lahiri
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
37
|
Küblbeck J, Honkakoski P. A Reverse Transfection Method for Screening of Nuclear Receptor Activators. Methods Mol Biol 2019; 1966:163-173. [PMID: 31041746 DOI: 10.1007/978-1-4939-9195-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reporter assays are useful to study nuclear receptor activation and for example to evaluate the propensity of novel drug candidates to cause induction of drug-metabolizing cytochrome P450 enzymes. Here, we describe a protocol for a reverse transfection system to study the activation of human nuclear receptors constitutive androstane receptor and pregnane X receptor. The system provides long-term stability and uniformity of DNA-carrier complexes, thus avoiding the inherent variation in conventional transfection methods. Further, the system is easily adaptable for different studies. It offers reproducible and reliable results for early drug development and mechanistic studies related to nuclear receptor activation and resulting changes in gene expression.
Collapse
Affiliation(s)
- Jenni Küblbeck
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Paavo Honkakoski
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
38
|
Chen CY, Li HH, Chu HY, Wang CM, Chang CW, Lin LE, Hsu CC, Liao WS. Finely Tunable Surface Wettability by Two-Dimensional Molecular Manipulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41814-41823. [PMID: 30412374 DOI: 10.1021/acsami.8b16424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local molecular environment governs material interface properties, especially the substrate's exposing behavior and overall functionality expression. Although current techniques can provide efficient surface property modification, challenges in molecule spatial distribution and composition controls limited the generation of homogeneous and finely tunable molecular environment. In this study, Au-thiolate rupturing operation in chemical lift-off lithography (CLL) is used to manipulate the substrate interface molecular environment. The creation of randomly distributed artificial self-assembled monolayer defects generates vacancies for substrate property modification through back-insertion of molecules with opposite functionalities. Surface wettability adjustment is utilized as an example, where well-controllable molecule distribution provides finely tunable substrate affinity toward liquids with different physical properties. The distinct property difference between two surface regions assists microdroplet formation when liquids flow through, not only water solution but also low-surface-tension organic liquids. These microdroplet arrays become a template to guide material assembly in its formation process and act as pH-sensitive platforms for high-throughput detection. Furthermore, the tunability of the molecular pattern in this approach helps minimize the coffee-ring effect and the sweet-spot issue in matrix-assisted laser desorption/ionization mass spectrometry. Two-dimensional molecular manipulation in the CLL operation, therefore, holds the capability toward controlling homogeneous material surface property and toward exhibiting behavior adjustments.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiang-Hua Li
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiao-Yuan Chu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Chang-Ming Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Che-Wei Chang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Li-En Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
39
|
Abstract
A micro-level technique so-called “microfluidic technology or simply microfluidic” has gained a special place as a powerful tool in bioengineering and biomedical engineering research due to its core advantages in modern science and engineering. Microfluidic technology has played a substantial role in numerous applications with special reference to bioscience, biomedical and biotechnological research. It has facilitated noteworthy development in various sectors of bio-research and upsurges the efficacy of research at the molecular level, in recent years. Microfluidic technology can manipulate sample volumes with precise control outside cellular microenvironment, at micro-level. Thus, enable the reduction of discrepancies between in vivo and in vitro environments and reduce the overall reaction time and cost. In this review, we discuss various integrations of microfluidic technologies into biotechnology and its paradigmatic significance in bio-research, supporting mechanical and chemical in vitro cellular microenvironment. Furthermore, specific innovations related to the application of microfluidics to advance microbial life, solitary and co-cultures along with a multiple-type cell culturing, cellular communications, cellular interactions, and population dynamics are also discussed.
Collapse
|
40
|
Su KC, Tsang MJ, Emans N, Cheeseman IM. CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Mol Biol Cell 2018; 29:2370-2377. [PMID: 30091644 PMCID: PMC6233062 DOI: 10.1091/mbc.e18-04-0214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
A key goal for cell biological analyses is to assess the phenotypes that result from eliminating a target gene. Since the early 1990s, the predominant strategy utilized in human tissue culture cells has been RNA interference (RNAi)-mediated protein depletion. However, RNAi suffers well-documented off-target effects as well as incomplete and reversible protein depletion. The implementation of CRISPR/Cas9-based DNA cleavage has revolutionized the capacity to conduct functional studies in human cells. However, this approach is still underutilized for conducting visual phenotypic analyses, particularly for essential genes that require conditional strategies to eliminate their gene products. Optimizing this strategy requires effective and streamlined approaches to introduce the Cas9 guide RNA into target cells. Here we assess the efficacy of synthetic guide RNA transfection to eliminate gene products for cell biological studies. On the basis of three representative gene targets (KIF11, CENPN, and RELA), we demonstrate that transfection of synthetic single guide RNA (sgRNA) and CRISPR RNA (crRNA) guides works comparably for protein depletion as cell lines stably expressing lentiviral-delivered RNA guides. We additionally demonstrate that synthetic sgRNAs can be introduced by reverse transfection on an array. Together, these strategies provide a robust, flexible, and scalable approach for conducting functional studies in human cells.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
41
|
Microfluidic Transfection for High-Throughput Mammalian Protein Expression. Methods Mol Biol 2018. [PMID: 30242688 DOI: 10.1007/978-1-4939-8730-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mammalian synthetic biology and cell biology would greatly benefit from improved methods for highly parallel transfection, culturing, and interrogation of mammalian cells. Transfection is routinely performed on high-throughput microarrays, but this setup requires manual cell culturing and precludes precise control over the cell environment. As an alternative, microfluidic transfection devices streamline cell loading and culturing. Up to 280 transfections can be implemented on the chip at high efficiency. The culturing environment is tightly regulated and chambers physically separate the transfection reactions, preventing cross-contamination. Unlike typical biological assays that rely on end-point measurements, the microfluidic chip can be integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time.
Collapse
|
42
|
Wu H, Wu L, Zhou X, Liu B, Zheng B. Patterning Hydrophobic Surfaces by Negative Microcontact Printing and Its Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802128. [PMID: 30133159 DOI: 10.1002/smll.201802128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/15/2018] [Indexed: 05/04/2023]
Abstract
Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA-coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high-throughput chemical and biological screening and analysis.
Collapse
Affiliation(s)
- Han Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liang Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaohu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Baishu Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
43
|
Dyett B, Zychowski L, Bao L, Meikle TG, Peng S, Yu H, Li M, Strachan J, Kirby N, Logan A, Conn CE, Zhang X. Crystallization of Femtoliter Surface Droplet Arrays Revealed by Synchrotron Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9470-9476. [PMID: 30021434 DOI: 10.1021/acs.langmuir.8b01252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The crystallization of oil droplets is critical in the processing and storage of lipid-based food and pharmaceutical products. Arrays of femtoliter droplets on a surface offer a unique opportunity to study surfactant-free colloidlike systems. In this work, the crystal growth process in these confined droplets was followed by cooling a model lipid (trimyristin) from a liquid state utilizing synchrotron small-angle X-ray scattering (SAXS). The measurements by SAXS demonstrated a reduced crystallization rate and a greater degree of supercooling required to trigger lipid crystallization in droplets compared to those of bulk lipids. These results suggest that surface droplets crystallize in a stochastic manner. Interestingly, the crystallization rate is slower for larger femtoliter droplets, which may be explained by the onset of crystallization from the three-phase contact line. The larger surface nanodroplets exhibit a smaller ratio of droplet volume to the length of three-phase contact line and hence a slower crystallization rate.
Collapse
Affiliation(s)
| | - Lisa Zychowski
- CSIRO Agriculture and Food , Werribee , Victoria 3030 , Australia
| | | | | | | | | | | | | | - Nigel Kirby
- Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3169 , Australia
| | - Amy Logan
- CSIRO Agriculture and Food , Werribee , Victoria 3030 , Australia
| | | | - Xuehua Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , T6G1H9 Alberta , Canada
| |
Collapse
|
44
|
Park D, Kang M, Choi JW, Paik SM, Ko J, Lee S, Lee Y, Son K, Ha J, Choi M, Park W, Kim HY, Jeon NL. Microstructure guided multi-scale liquid patterning on an open surface. LAB ON A CHIP 2018; 18:2013-2022. [PMID: 29873341 DOI: 10.1039/c7lc01288h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Liquid patterning is a quintessential aspect in cell-based screening. While there are a variety of methods to handle microliquids utilizing surface treatments, complex microfluidic systems, and automated dispensing, most of the stated methods are both expensive and difficult to implement. Here, we present a fast multi-scale microliquid-patterning method on an open surface using embossed microstructures without surface modification. Arrays of micropillars can trap microliquids when a bulk drop is swept by an elastic sweeper on polystyrene (PS) substrates. The patterning mechanism on a basic form of a 2 × 2 rectangular array of circular pillars is analyzed theoretically and verified with experiments. Nanoliter-to-microliter volumes of liquids are patterned into various shapes by arranging the pillars based on the analysis. Furthermore, an array of geometrically modified pillars can capture approximately 8000 droplets on a large substrate (55 mm × 55 mm) in one step. Given the simplistic method of wipe patterning, the proposed platform can be utilized in both manual benchtop and automated settings. We will provide proof of concept experiments of single colony isolation using nanoliter-scale liquid patterning and of human angiogenic vessel formation using sequential patterning of microliter-scale liquids.
Collapse
Affiliation(s)
- Dohyun Park
- Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Goel M, Verma A, Gupta S. Electric-field driven assembly of live bacterial cell microarrays for rapid phenotypic assessment and cell viability testing. Biosens Bioelectron 2018; 111:159-165. [DOI: 10.1016/j.bios.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
|
46
|
A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity. Nat Commun 2018; 9:2430. [PMID: 29934631 PMCID: PMC6014984 DOI: 10.1038/s41467-018-04575-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/07/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) regulate a majority of protein-coding genes, affecting nearly all biological pathways. However, the quantitative dimensions of miRNA-based regulation are not fully understood. In particular, the implications of miRNA target site location, composition rules for multiple target sites, and cooperativity limits for genes regulated by many miRNAs have not been quantitatively characterized. We explore these aspects of miRNA biology at a quantitative single-cell level using a library of 620 miRNA sensors and reporters that are regulated by many miRNA target sites at different positions. Interestingly, we find that miRNA target site sets within the same untranslated region exhibit combined miRNA activity described by an antagonistic relationship while those in separate untranslated regions show synergy. The resulting antagonistic/synergistic computational model enables the high-fidelity prediction of miRNA sensor activity for sensors containing many miRNA targets. These findings may help to accelerate the development of sophisticated sensors for clinical and research applications.
Collapse
|
47
|
Becker AK, Erfle H, Gunkel M, Beil N, Kaderali L, Starkuviene V. Comparison of Cell Arrays and Multi-Well Plates in Microscopy-Based Screening. High Throughput 2018; 7:ht7020013. [PMID: 29762489 PMCID: PMC6023461 DOI: 10.3390/ht7020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
Multi-well plates and cell arrays enable microscopy-based screening assays in which many samples can be analysed in parallel. Each of the formats possesses its own strengths and weaknesses, but reference comparisons between these platforms and their application rationale is lacking. We aim to fill this gap by comparing two RNA interference (RNAi)-mediated fluorescence microscopy-based assays, namely epidermal growth factor (EGF) internalization and cell cycle progression, on both platforms. Quantitative analysis revealed that both platforms enabled the generation of data with the appearance of the expected phenotypes significantly distinct from the negative controls. The measurements of cell cycle progression were less variable in multi-well plates. The result can largely be attributed to higher cell numbers resulting in less data variability when dealing with the assay generating phenotypic cell subpopulations. The EGF internalization assay with a uniform phenotype over nearly the whole cell population performed better on cell arrays than in multi-well plates. The result was achieved by scoring five times less cells on cell arrays than in multi-well plates, indicating the efficiency of the cell array format. Our data indicate that the choice of the screening platform primarily depends on the type of the cellular assay to achieve a maximum data quality and screen efficiency.
Collapse
Affiliation(s)
- Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Holger Erfle
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Manuel Gunkel
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Nina Beil
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany.
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Biosciences, Vilnius University Life Sciences Center, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
48
|
Peng B, Yu C, Du S, Liew SS, Mao X, Yuan P, Na Z, Yao SQ. MSN-on-a-Chip: Cell-Based Screenings Made Possible on a Small-Molecule Microarray of Native Natural Products. Chembiochem 2018; 19:986-996. [PMID: 29465822 DOI: 10.1002/cbic.201800101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Standard small-molecule microarrays (SMMs) are not well-suited for cell-based screening assays. Of the few attempts made thus far to render SMMs cell-compatible, all encountered major limitations. Here we report the first mesoporous silica nanoparticle (MSN)-on-a-chip platform capable of allowing high-throughput cell-based screening to be conducted on SMMs. By making use of a glass surface on which hundreds of MSNs, each encapsulated with a different native natural product, were immobilized in spatially defined manner, followed by on-chip mammalian cell growth and on-demand compound release, high-content screening was successfully carried out with readily available phenotypic detection methods. By combining this new MSN-on-a-chip system with small interfering RNA technology for the first time, we discovered that (+)-usniacin possesses synergistic inhibitory properties similar to those of olaparib (an FDA-approved drug) in BRCA1-knockdown cancer cells.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Si S Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| |
Collapse
|
49
|
Roth AD, Lama P, Dunn S, Hong S, Lee MY. Polymer coating on a micropillar chip for robust attachment of PuraMatrix peptide hydrogel for 3D hepatic cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:634-644. [PMID: 29853133 DOI: 10.1016/j.msec.2018.04.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
For better mimicking tissues in vivo and developing predictive cell models for high-throughput screening (HTS) of potential drug candidates, three-dimensional (3D) cell cultures have been performed in various hydrogels. In this study, we have investigated several polymer coating materials to robustly attach PuraMatrix peptide hydrogel on a micropillar chip for 3D culture of Hep3B human hepatic cells, which can be used as a tool for high-throughput assessment of compound hepatotoxicity. Among several amphiphilic polymers with maleic anhydride groups tested, 0.01% (w/v) poly(maleic anhydride-alt-1-octadecene) (PMA-OD) provided superior coating properties with no PuraMatrix spot detachment from the micropillar chip and no air bubble entrapment in a complementary microwell chip. To maintain Hep3B cell viability in PuraMatrix gel on the chip, gelation conditions were optimized in the presence of additional salts, at different seeding densities, and for growth medium washes. As a result, salts in growth media were sufficient for gelation, and relatively high cell seeding at 6 million cells/mL and two media washes for pH neutralization were required. With optimized 3D cell culture conditions, controlled gene expression and compound toxicity assessment were successfully demonstrated by using recombinant adenoviruses carrying genes for green and red fluorescent proteins as well as six model compounds. Overall, PuraMatrix hydrogel on the chip was suitable for 3D cell encapsulation, gene expression, and rapid toxicity assessment.
Collapse
Affiliation(s)
- Alexander David Roth
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Pratap Lama
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Stephen Dunn
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Stephen Hong
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Fenn Hall Room 455, 1960 East 24th Street, Cleveland, OH 44115, United States.
| |
Collapse
|
50
|
Ni S, Isa L, Wolf H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. SOFT MATTER 2018; 14:2978-2995. [PMID: 29611588 DOI: 10.1039/c7sm02496g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, capillary assembly in topographical templates has evolved into an efficient method for the heterogeneous integration of micro- and nano-scale objects on a variety of surfaces. This assembly route has been applied to a large spectrum of materials of micrometer to nanometer dimensions, supplied in the form of aqueous colloidal suspensions. Using systems produced via bulk synthesis affords a huge flexibility in the choice of materials, holding promise for the realization of novel superior devices in the fields of optics, electronics and health, if they can be integrated into surface structures in a fast, simple, and reliable way. In this review, the working principles of capillary assembly and its fundamental process parameters are first presented and discussed. We then examine the latest developments in template design and tool optimization to perform capillary assembly in more robust and efficient ways. This is followed by a focus on the broad range of functional materials that have been realized using capillary assembly, from single components to large-scale heterogeneous multi-component assemblies. We then review current applications of capillary assembly, especially in optics, electronics, and in biomaterials. We conclude with a short summary and an outlook for future developments.
Collapse
Affiliation(s)
- Songbo Ni
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
| | | | | |
Collapse
|