1
|
Soto I, McManus R, Navarrete W, Kasanga EA, Doshier K, Nejtek VA, Salvatore MF. Aging accelerates locomotor decline in PINK1 knockout rats in association with decreased nigral, but not striatal, dopamine and tyrosine hydroxylase expression. Exp Neurol 2024; 376:114771. [PMID: 38580154 DOI: 10.1016/j.expneurol.2024.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.
Collapse
Affiliation(s)
- Isabel Soto
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Robert McManus
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Walter Navarrete
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Ella A Kasanga
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Kirby Doshier
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Vicki A Nejtek
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America.
| |
Collapse
|
2
|
Chuah JJ, Daugherty MR, Smith DM. Occupancy of the HbYX hydrophobic pocket is sufficient to induce gate opening in the archaeal 20S proteasomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595185. [PMID: 38826226 PMCID: PMC11142061 DOI: 10.1101/2024.05.21.595185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Enhancing proteasome function has been a long-standing but challenging target of interest for the potential treatment of neurodegenerative diseases, emphasizing the importance of understanding proteasome activation mechanisms. Most proteasome activator complexes use the C-terminal HbYX motif to bind and trigger gate-opening in the 20S proteasome. This study defines a critical molecular interaction in the HbYX mechanism that triggers gate opening. Here, we focus on the Hb site interaction and find it plays a surprisingly central and crucial role in driving the allosteric conformational changes that induce gate opening in the archaeal 20S. We examined the cryo-EM structure of two mutant archaeal proteasomes, αV24Y T20S and αV24F T20S. These two mutants were engineered to place a bulky aromatic residue in the HbYX hydrophobic pocket and both mutants are highly active, though their mechanisms of activation are undefined. Collectively, our findings indicate that the interaction between the Hb group of the HbYX motif and its corresponding hydrophobic pocket is sufficient to induce gate opening in a mechanistically similar way to the HbYX motif. The involved activation mechanism appears to involve expansion of this hydrophobic binding site affecting the state of the IT switch to triggering gate-opening. Furthermore, we show that the canonical αK66 residue, understood to be critical for proteasome activator binding, plays a key role in stabilizing the open gate, irrespective of activator binding. This study differentiates between the residues in the HbYX motif that support binding interactions ("YX") versus those that allosterically contribute to gate opening (Hb). The insights reported here will guide future drug development efforts, particularly in designing small molecule proteasome activators, by targeting the identified hydrophobic pocket.
Collapse
Affiliation(s)
- Janelle J.Y. Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
| | - Madalena R. Daugherty
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV USA
| |
Collapse
|
3
|
Chen X, Raiff A, Li S, Guo Q, Zhang J, Zhou H, Timms RT, Yao X, Elledge SJ, Koren I, Zhang K, Xu C. Mechanism of Ψ-Pro/C-degron recognition by the CRL2 FEM1B ubiquitin ligase. Nat Commun 2024; 15:3558. [PMID: 38670995 PMCID: PMC11053023 DOI: 10.1038/s41467-024-47890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.
Collapse
Affiliation(s)
- Xinyan Chen
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Qiong Guo
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hualin Zhou
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
4
|
Sheikh AM, Yano S, Tabassum S, Nagai A. The Role of the Vascular System in Degenerative Diseases: Mechanisms and Implications. Int J Mol Sci 2024; 25:2169. [PMID: 38396849 PMCID: PMC10889477 DOI: 10.3390/ijms25042169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Degenerative diseases, encompassing a wide range of conditions affecting various organ systems, pose significant challenges to global healthcare systems. This comprehensive review explores the intricate interplay between the vascular system and degenerative diseases, shedding light on the underlying mechanisms and profound implications for disease progression and management. The pivotal role of the vascular system in maintaining tissue homeostasis is highlighted, as it serves as the conduit for oxygen, nutrients, and immune cells to vital organs and tissues. Due to the vital role of the vascular system in maintaining homeostasis, its dysfunction, characterized by impaired blood flow, endothelial dysfunction, and vascular inflammation, emerges as a common denominator of degenerative diseases across multiple systems. In the nervous system, we explored the influence of vascular factors on neurodegenerative diseases such as Alzheimer's and Parkinson's, emphasizing the critical role of cerebral blood flow regulation and the blood-brain barrier. Within the kidney system, the intricate relationship between vascular health and chronic kidney disease is scrutinized, unraveling the mechanisms by which hypertension and other vascular factors contribute to renal dysfunction. Throughout this review, we emphasize the clinical significance of understanding vascular involvement in degenerative diseases and potential therapeutic interventions targeting vascular health, highlighting emerging treatments and prevention strategies. In conclusion, a profound appreciation of the role of the vascular system in degenerative diseases is essential for advancing our understanding of degenerative disease pathogenesis and developing innovative approaches for prevention and treatment. This review provides a comprehensive foundation for researchers, clinicians, and policymakers seeking to address the intricate relationship between vascular health and degenerative diseases in pursuit of improved patient outcomes and enhanced public health.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Atsushi Nagai
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| |
Collapse
|
5
|
Soto I, McManus R, Navarrete-Barahona W, Kasanga EA, Doshier K, Nejtek VA, Salvatore MF. Aging hastens locomotor decline in PINK1 knockout rats in association with decreased nigral, but not striatal, dopamine and tyrosine hydroxylase expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578317. [PMID: 38352365 PMCID: PMC10862808 DOI: 10.1101/2024.02.01.578317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA content in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor impairment.
Collapse
|
6
|
Kamboj S, Sharma P, Kamboj R, Kamboj S, Hariom, Girija, Guarve K, Dutt R, Verma I, Dua K, Rani N. Exploring the Therapeutic Potential of Phytoconstituents for Addressing Neurodegenerative Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:129-144. [PMID: 38265386 DOI: 10.2174/0118715249273015231225091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 01/25/2024]
Abstract
Neurodegenerative disorder is a serious condition that is caused by abnormal or no neurological function. Neurodegenerative disease is a major growing cause of mortality and morbidity worldwide, especially in the elderly. After World War Ⅱ, eugenics term was exterminated from medicines. Neurodegenerative disease is a genetically inherited disease. Lifestyle changes, environmental factors, and genetic modification, together or alone, are involved in the occurrence of this disorder. The major examples of neurodegenerative disorders are Alzheimer's and Parkinson's disease, in which apoptosis and necrosis are the two major death pathways for neurons. It has been determined from various studies that the etiology of the neurodegenerative disease involves the role of oxidative stress and anti-oxidant defence system, which are prime factors associated with the activation of signal transduction pathway that is responsible for the formation of synuclein in the brain and manifestation of toxic reactions in the form of functional abnormality, which ultimately leads to the dysfunction of neuronal pathway or cell. There has not been much success in the discovery of effective therapy to treat neurodegenerative diseases because the main cause of abnormal functioning or death of neurons is not well known. However, the use of natural products that are derived from plants has effective therapeutic potential against neurodegenerative disease. The natural compounds with medicinal properties to prevent neurological dysfunction are curcumin, wolfberry, ginseng, and Withania somnifera. The selection and use of natural compounds are based on their strong anti-inflammatory and anti-oxidant properties against neurodegenerative disease. Herbal products have active constituents that play an important role in the prevention of communication errors between neurons and neurotransmitters and their respective receptors in the brain, which influence their function. Considering this, natural products have great potential against neurodegenerative diseases. This article reviews the natural compounds used to treat neurodegenerative diseases and their mechanisms of action.
Collapse
Affiliation(s)
- Sweta Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Shikha Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Hariom
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Girija
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala, India
| | - Inderjeet Verma
- MM College of Pharmacy, MM (Deemed to be University), Mullana, Ambala, India
| | - Kamal Dua
- Discipline of Pharmacy Graduate of Technology, Sydney, Australia
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| |
Collapse
|
7
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
8
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
9
|
Subramaniam MD, Aishwarya Janaki P, Abishek Kumar B, Gopalarethinam J, Nair AP, Mahalaxmi I, Vellingiri B. Retinal Changes in Parkinson's Disease: A Non-invasive Biomarker for Early Diagnosis. Cell Mol Neurobiol 2023; 43:3983-3996. [PMID: 37831228 DOI: 10.1007/s10571-023-01419-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Parkinson's disease (PD) is caused due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) which leads to the depletion of dopamine in the body. The lack of dopamine is mainly due to aggregation of misfolded α-synuclein which causes motor impairment in PD. Dopamine is also required for normal retinal function and the light-dark vision cycle. Misfolded α-synuclein present in inner retinal layers causes vision-associated problems in PD patients. Hence, individuals with PD also experience structural and functional changes in the retina. Mutation in LRRK2, PARK2, PARK7, PINK1, or SNCA genes and mitochondria dysfunction also play a role in the pathophysiology of PD. In this review, we discussed the different etiologies which lead to PD and future prospects of employing non-invasive techniques and retinal changes to diagnose the onset of PD earlier.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600 006, India.
| | - P Aishwarya Janaki
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600 006, India
| | - B Abishek Kumar
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600 006, India
| | - Janani Gopalarethinam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600 006, India
| | - Aswathy P Nair
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 600 006, India
| | - I Mahalaxmi
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Jung JE, Cárdenas V, Petre BA. Epitope identification of a Lys63 linkage ubiquitin antibody by mass spectrometric epitope excision and extraction approaches. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:348-358. [PMID: 37724023 DOI: 10.1177/14690667231199012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Ubiquitin, a conserved protein in eukaryotic cells, exists as a monomer or polyubiquitin chains known as isopeptide-linked polymers. These chains are attached to a substrate or other ubiquitin molecules through a covalent bond between the α-amino group of lysine in ubiquitin and glycine in the C-terminal of the subsequent ubiquitin unit. The choice of the specific lysine residue in ubiquitin for forming ubiquitin-ubiquitin chains determines its biochemical and biological function. A detailed chemical structure-function evaluation of the respective polyubiquitin chain is required. Interestingly, specific lysine linkage polyubiquitin chains become covalently bonded to many pathological inclusions seen in serious human disease states which appear to be resistant to normal degradation, so the interaction between polyubiquitin chains and ubiquitin antibodies is very useful. For example, the neurofibrillary tangles of Alzheimer's disease and the Lewy bodies seen in Parkinson's disease are heavily ubiquitinated and can be readily visualized using specific ubiquitin antibodies. This study utilized synthetic ubiquitin building block peptides that contained various lysine residues (K6, K11, K33, K48, and K63) linked to a Gly-Gly dipeptide, with the aim of exploring the recognition specificity of the Lys63-polyubiquitin antibody. The interaction studies between different ubiquitin building blocks and the specific Lys63-ubiquitin (K63-Ub) antibody were performed by affinity-mass spectrometry (Affinity-MS) and immunoblotting which enables direct protein identification from biological material with unprecedented selectivity. Affinity-MS and dot blot data proved the specific binding of the K63-Ub antibody to the ubiquitin peptides containing Lys6 or Lys63 residues. In epitope excision for mass spectrometric epitope identification, the ubiquitin building block with Lys63 residue bound to the immobilized K63-Ub antibody was proteolytically cleaved using pronase. The resulting epitope and non-epitope fractions were subjected to matrix-assisted laser desorption/ionization-time of flight analysis, revealing that the epitope is located within the sequence ubiquitin(60-66). Epitope extraction-MS consistently confirmed these findings.
Collapse
Affiliation(s)
- Ji Eun Jung
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul, Korea
| | - Vanessa Cárdenas
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Brîndușa Alina Petre
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
- Laboratory of Biochemistry, Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
12
|
Chen C, McDonald D, Blain A, Mossman E, Atkin K, Marusich MF, Capaldi R, Bone L, Smith A, Filby A, Erskine D, Russell O, Hudson G, Vincent AE, Reeve AK. Parkinson's disease neurons exhibit alterations in mitochondrial quality control proteins. NPJ Parkinsons Dis 2023; 9:120. [PMID: 37553379 PMCID: PMC10409763 DOI: 10.1038/s41531-023-00564-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Mossman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiera Atkin
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Chuah JJY, Rexroad MS, Smith DM. High resolution structures define divergent and convergent mechanisms of archaeal proteasome activation. Commun Biol 2023; 6:733. [PMID: 37454196 PMCID: PMC10349882 DOI: 10.1038/s42003-023-05123-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Considering the link between neurodegenerative diseases and impaired proteasome function, and the neuro-protective impact of enhanced proteasome activity in animal models, it's crucial to understand proteasome activation mechanisms. A hydrophobic-tyrosine-any residue (HbYX) motif on the C-termini of proteasome-activating complexes independently triggers gate-opening of the 20S core particle for protein degradation; however, the causal allosteric mechanism remains unclear. Our study employs a structurally irreducible dipeptide HbYX mimetic to investigate the allosteric mechanism of gate-opening in the archaeal proteasome. High-resolution cryo-EM structures pinpoint vital residues and conformational changes in the proteasome α-subunit implicated in HbYX-dependent activation. Using point mutations, we simulated the HbYX-bound state, providing support for our mechanistic model. We discerned four main mechanistic elements triggering gate-opening: 1) back-loop rearrangement adjacent to K66, 2) intra- and inter- α subunit conformational changes, 3) occupancy of the hydrophobic pocket, and 4) a highly conserved isoleucine-threonine pair in the 20S channel stabilizing the open and closed states, termed the "IT switch." Comparison of different complexes unveiled convergent and divergent mechanism of 20S gate-opening among HbYX-dependent and independent activators. This study delivers a detailed molecular model for HbYX-dependent 20S gate-opening, enabling the development of small molecule proteasome activators that hold promise to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Janelle J Y Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - Matthew S Rexroad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Chuah JJY, Thibaudeau TA, Smith DM. Minimal mechanistic component of HbYX-dependent proteasome activation that reverses impairment by neurodegenerative-associated oligomers. Commun Biol 2023; 6:725. [PMID: 37452144 PMCID: PMC10349142 DOI: 10.1038/s42003-023-05082-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
The implication of reduced proteasomal function in neurodegenerative diseases combined with studies showing the protective effects of increasing proteasome activity in animal models highlight the need to understand the capacity for proteasome activation by small molecules. The C-terminal HbYX motif is present on many proteasome binding proteins and functions to tether activators to the 20S core particle. Previous studies have shown that peptides with a HbYX motif can autonomously activate 20S gate-opening to allow protein degradation. In this study, through an iterative process of peptide synthesis, we design a HbYX-like dipeptide mimetic that represents only the fundamental components of the HbYX motif. The mimetic robustly induces gate-opening in archaeal, yeast, and mammalian proteasomes. We identify multiple proteasome α subunit residues in the archaeal proteasome involved in HbYX-dependent activation. When stimulated by the mimetic, the mammalian 20S can degrade unfolded proteins such as tau. Findings using our peptide mimetic suggest the HbYX-dependent mechanism requires cooperative binding in at least two intersubunit pockets of the α ring. Most significantly, our peptide mimetic reverses proteasome impairment by neurodegenerative disease-associated oligomers. Collectively, these results validate HbYX-like molecules as having robust potential to stimulate proteasome function, which are potentially useful for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Janelle J Y Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - Tiffany A Thibaudeau
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
15
|
Kang S, Kim G, Choi M, Jeong M, van der Heden van Noort GJ, Roh SH, Shin D. Structural insights into ubiquitin chain cleavage by Legionella ovarian tumor deubiquitinases. Life Sci Alliance 2023; 6:e202201876. [PMID: 37100438 PMCID: PMC10133868 DOI: 10.26508/lsa.202201876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Although ubiquitin is found only in eukaryotes, several pathogenic bacteria and viruses possess proteins that hinder the host ubiquitin system. Legionella, a gram-negative intracellular bacterium, possesses an ovarian tumor (OTU) family of deubiquitinases (Lot DUBs). Herein, we describe the molecular characteristics of Lot DUBs. We elucidated the structure of the LotA OTU1 domain and revealed that entire Lot DUBs possess a characteristic extended helical lobe that is not found in other OTU-DUBs. The structural topology of an extended helical lobe is the same throughout the Lot family, and it provides an S1' ubiquitin-binding site. Moreover, the catalytic triads of Lot DUBs resemble those of the A20-type OTU-DUBs. Furthermore, we revealed a unique mechanism by which LotA OTU domains cooperate together to distinguish the length of the chain and preferentially cleave longer K48-linked polyubiquitin chains. The LotA OTU1 domain itself cleaves K6-linked ubiquitin chains, whereas it is also essential for assisting the cleavage of longer K48-linked polyubiquitin chains by the OTU2 domain. Thus, this study provides novel insights into the structure and mechanism of action of Lot DUBs.
Collapse
Affiliation(s)
- Sangwoo Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gyuhee Kim
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Minhyeong Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minwoo Jeong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Soung-Hun Roh
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Faria-Reis A, Santos-Araújo S, Pereira J, Rios T, Majerowicz D, Gondim KC, Ramos I. Silencing of the 20S proteasomal subunit-α6 triggers full oogenesis arrest and increased mRNA levels of the selective autophagy adaptor protein p62/SQSTM1 in the ovary of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2023; 17:e0011380. [PMID: 37267415 DOI: 10.1371/journal.pntd.0011380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and β subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.
Collapse
Affiliation(s)
- Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| |
Collapse
|
17
|
Dubey AR, Mishra R, Jagtap YA, Kinger S, Kumar P, Dhiman R, Ghosh S, Singh S, Prasad A, Jana NR, Mishra A. Itraconazole Confers Cytoprotection Against Neurodegenerative Disease-Associated Abnormal Protein Aggregation. Mol Neurobiol 2023; 60:2397-2412. [PMID: 36656458 DOI: 10.1007/s12035-023-03230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Cells perform regular maintenance to avoid the accumulation of misfolded proteins. Prolonged accumulation of these proteotoxic inclusions generates potential risk of ageing-related diseases such as neurodegenerative diseases. Therefore, removal of such abnormal aggregates can ensure the re-establishment of proteostasis. Ubiquitin proteasome system (UPS) actively participates in the selective removal of aberrantly folded clients with the help of complex proteasome machinery. However, specific induction of proteasome functions to remove abnormal proteins remains an open challenge. Here, we show that Itraconazole treatment induces proteasome activities and degrades the accumulation of bonafide-misfolded proteins, including heat-denatured luciferase. Exposure of Itraconazole elevates the degradation of neurodegenerative disease-associated proteins, e.g. expanded polyglutamine, mutant SOD1, and mutant α-synuclein. Our results suggest that Itraconazole treatment prevents the accumulation of neurodegenerative disease-linked misfolded proteins and generates cytoprotection. These findings reveal that Itraconazole removes abnormal proteins through sequential proteasomal activation and represents a potential protective therapeutic role against protein-misfolding neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Somnath Ghosh
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342037, Rajasthan, India.
| |
Collapse
|
18
|
Ramírez Medina CR, Ali I, Baricevic-Jones I, Odudu A, Saleem MA, Whetton AD, Kalra PA, Geifman N. Proteomic signature associated with chronic kidney disease (CKD) progression identified by data-independent acquisition mass spectrometry. Clin Proteomics 2023; 20:19. [PMID: 37076799 PMCID: PMC10116780 DOI: 10.1186/s12014-023-09405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Halting progression of chronic kidney disease (CKD) to established end stage kidney disease is a major goal of global health research. The mechanism of CKD progression involves pro-inflammatory, pro-fibrotic, and vascular pathways, but pathophysiological differentiation is currently lacking. METHODS Plasma samples of 414 non-dialysis CKD patients, 170 fast progressors (with ∂ eGFR-3 ml/min/1.73 m2/year or worse) and 244 stable patients (∂ eGFR of - 0.5 to + 1 ml/min/1.73 m2/year) with a broad range of kidney disease aetiologies, were obtained and interrogated for proteomic signals with SWATH-MS. We applied a machine learning approach to feature selection of proteins quantifiable in at least 20% of the samples, using the Boruta algorithm. Biological pathways enriched by these proteins were identified using ClueGo pathway analyses. RESULTS The resulting digitised proteomic maps inclusive of 626 proteins were investigated in tandem with available clinical data to identify biomarkers of progression. The machine learning model using Boruta Feature Selection identified 25 biomarkers as being important to progression type classification (Area Under the Curve = 0.81, Accuracy = 0.72). Our functional enrichment analysis revealed associations with the complement cascade pathway, which is relevant to CKD as the kidney is particularly vulnerable to complement overactivation. This provides further evidence to target complement inhibition as a potential approach to modulating the progression of diabetic nephropathy. Proteins involved in the ubiquitin-proteasome pathway, a crucial protein degradation system, were also found to be significantly enriched. CONCLUSIONS The in-depth proteomic characterisation of this large-scale CKD cohort is a step toward generating mechanism-based hypotheses that might lend themselves to future drug targeting. Candidate biomarkers will be validated in samples from selected patients in other large non-dialysis CKD cohorts using a targeted mass spectrometric analysis.
Collapse
Affiliation(s)
- Carlos R Ramírez Medina
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Ibrahim Ali
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Philip A Kalra
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
19
|
Vanecek AS, Mojsilovic-Petrovic J, Kalb RG, Tepe JJ. Enhanced Degradation of Mutant C9ORF72-Derived Toxic Dipeptide Repeat Proteins by 20S Proteasome Activation Results in Restoration of Proteostasis and Neuroprotection. ACS Chem Neurosci 2023. [PMID: 37015082 DOI: 10.1021/acschemneuro.2c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
A hexanucleotide repeat expansion (HRE) in an intron of gene C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. The HRE undergoes noncanonical translation (repeat-associated non-ATG translation) resulting in the production of five distinct dipeptide repeat (DPR) proteins. Arginine-rich DPR proteins have shown to be toxic to motor neurons, and recent evidence suggests this toxicity is associated with disruption of the ubiquitin-proteasome system. Here we report the ability of known 20S proteasome activator, TCH-165, to enhance the degradation of DPR proteins and overcome proteasome impairment evoked by DPR proteins. Furthermore, the 20S activator protects rodent motor neurons from DPR protein toxicity and restores proteostasis in cortical neuron cultures. This study suggests that 20S proteasome enhancers may have therapeutic efficacy in neurodegenerative diseases that display proteostasis defects.
Collapse
Affiliation(s)
- Allison S Vanecek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jelena Mojsilovic-Petrovic
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Robert G Kalb
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Suciu I, Delp J, Gutbier S, Ückert AK, Spreng AS, Eberhard P, Karreman C, Schreiber F, Madjar K, Rahnenführer J, Celardo I, Amelio I, Leist M. Dynamic Metabolic and Transcriptional Responses of Proteasome-Inhibited Neurons. Antioxidants (Basel) 2023; 12:164. [PMID: 36671027 PMCID: PMC9854434 DOI: 10.3390/antiox12010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Proteasome inhibition is associated with parkinsonian pathology in vivo and degeneration of dopaminergic neurons in vitro. We explored here the metabolome (386 metabolites) and transcriptome (3257 transcripts) regulations of human LUHMES neurons, following exposure to MG-132 [100 nM]. This proteasome inhibitor killed cells within 24 h but did not reduce viability for 12 h. Overall, 206 metabolites were changed in live neurons. The early (3 h) metabolome changes suggested a compromised energy metabolism. For instance, AMP, NADH and lactate were up-regulated, while glycolytic and citric acid cycle intermediates were down-regulated. At later time points, glutathione-related metabolites were up-regulated, most likely by an early oxidative stress response and activation of NRF2/ATF4 target genes. The transcriptome pattern confirmed proteostatic stress (fast up-regulation of proteasome subunits) and also suggested the progressive activation of additional stress response pathways. The early ones (e.g., HIF-1, NF-kB, HSF-1) can be considered a cytoprotective cellular counter-regulation, which maintained cell viability. For instance, a very strong up-regulation of AIFM2 (=FSP1) may have prevented fast ferroptotic death. For most of the initial period, a definite life-death decision was not taken, as neurons could be rescued for at least 10 h after the start of proteasome inhibition. Late responses involved p53 activation and catabolic processes such as a loss of pyrimidine synthesis intermediates. We interpret this as a phase of co-occurrence of protective and maladaptive cellular changes. Altogether, this combined metabolomics-transcriptomics analysis informs on responses triggered in neurons by proteasome dysfunction that may be targeted by novel therapeutic intervention in Parkinson's disease.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Biological Sciences, University of Konstanz, 78457 Konstanz, Germany
| | - Anna-Sophie Spreng
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Philipp Eberhard
- Department of Computer and Information Science, University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, 78457 Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton 3800, Australia
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany
- The Center for Alternatives to Animal Testing in Europe, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
21
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
22
|
Troshev D, Blokhin V, Ukrainskaya V, Kolacheva A, Ugrumov M. Isolation of living dopaminergic neurons labeled with a fluorescent ligand of the dopamine transporter from mouse substantia nigra as a new tool for basic and applied research. Front Mol Neurosci 2022; 15:1020070. [PMID: 36568278 PMCID: PMC9780273 DOI: 10.3389/fnmol.2022.1020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic neurons (DNs) of the nigrostriatal system control the motor function, and their degeneration leads to the development of Parkinson's disease (PD). A stumbling block in the study of DNs in the whole substantia nigra (SN) is the lack of tools to analyze the expression of most of the genes involved in neurotransmission, neurodegeneration, and neuroplasticity, since they are also expressed in other cells of the SN. Therefore, this study aimed to develop a fluorescence-activated cell sorting method for isolating living DNs from the SN of wild-type mice using two fluorescent dyes, DRAQ5 (nuclear stain) and a dopamine uptake inhibitor GBR 12909 coupled to a fluorophore (DN stain). We have developed a method for selecting a population of DNs from the SN of mice, as evidenced by: (i) immunopositivity of 95% of the sorted cells for tyrosine hydroxylase, the first enzyme of dopamine synthesis; (ii) the sorted cells expressing the genes for specific proteins of the dopaminergic phenotype, tyrosine hydroxylase, the dopamine transporter, and vesicular monoamine transporter 2 and non-specific proteins, such as aromatic L-amino acid decarboxylase, non-specific enzyme of dopamine synthesis. We then compared the changes in gene expression found in the sorted DNs and in the SN homogenate in a PD model we developed, reproduced in mice by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using quantitative PCR, we obtained evidence of the same changes in the expression of specific genes in the sorted DNs of SN and in the SN homogenate of a MPTP mouse model of PD, compared with the control. The undoubted advantage of our approach is the possibility of obtaining a large amount of readily available and relatively cheap primary material (SN) from wild-type mice, which can be used to solve both research and applied problems. In addition, this method can be easily adapted to the isolation of DNs from the SN in other animal species, including non-human primates.
Collapse
Affiliation(s)
- Dmitry Troshev
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Valeria Ukrainskaya
- Laboratory of Biocatalysis, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kolacheva
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia,*Correspondence: Michael Ugrumov,
| |
Collapse
|
23
|
Halliwell B. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People. Antioxid Redox Signal 2022; 38:792-802. [PMID: 35651275 DOI: 10.1089/ars.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: During my long career in the field of redox biology, I met many inspiring people, especially Lester Packer. Recent Advances: This special issue of Antioxidants & Redox Signaling is dedicated to Lester Packer. Critical Issues: In this short review, I explore how Lester and other pioneers helped to develop the redox biology field and how I interacted with them. Future Directions: In our research to advance the field of redox biology, we stand on the shoulders of giants, including Lester Packer.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Thellung S, Corsaro A, Dellacasagrande I, Nizzari M, Zambito M, Florio T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front Neurosci 2022; 16:966019. [PMID: 36148145 PMCID: PMC9485628 DOI: 10.3389/fnins.2022.966019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Irene Dellacasagrande
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Martina Zambito
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- *Correspondence: Tullio Florio
| |
Collapse
|
25
|
Anderson RT, Bradley TA, Smith DM. Hyperactivation of the proteasome in Caenorhabditis elegans protects against proteotoxic stress and extends lifespan. J Biol Chem 2022; 298:102415. [PMID: 36007615 PMCID: PMC9486566 DOI: 10.1016/j.jbc.2022.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.
Collapse
Affiliation(s)
- Raymond T Anderson
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - Thomas A Bradley
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506.
| |
Collapse
|
26
|
Jing Y, Zuo C, Du YX, Mao J, Ding R, Zhang J, Liang LJ, Qu Q. Chemical tools for E3 ubiquitin ligase study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keshri PK, Gautam P, Singh SP. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 2022; 47:1816-1829. [PMID: 35380400 DOI: 10.1007/s11064-022-03591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.
Collapse
Affiliation(s)
- Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Gautam
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
28
|
Huang X, Zhao Y, Pan H, Wang Y, Liu Z, Xu Q, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. The association between LIN28A gene rare variants and Parkinson's disease in Chinese population. Gene 2022; 829:146515. [PMID: 35447238 DOI: 10.1016/j.gene.2022.146515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by aging, environmental and genetic factors, and many susceptibility genes have been found to increase the risk for PD. Lin28a, an RNA binding protein, is expressed prominently in neural progenitor cells. The expression of Lin28a is decreased gradually with neural differentiation and is implicated in oncogenesis, glucose metabolism, neurogenesis, and neurogliogenesis. However, few genetic studies have explored the association between rare variants of the LIN28A gene and PD yet. Our study recruited 3,879 PD patients and 2,931 controls, and they were divided into two cohorts, including the EOPD & FPD cohort and the LOPD cohort, separately sequenced by whole-exome sequencing and whole-genome sequencing. We found nine rare nonsynonymous variants in the coding region of the LIN28A gene, but the rare variants of this gene were not enriched in PD patients in both cohorts. Thence, our study did not support the association between the LIN28A gene and the PD risk in the Chinese mainland population.
Collapse
Affiliation(s)
- Xiurong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
29
|
Rauschenberger L, Behnke J, Grotemeyer A, Knorr S, Volkmann J, Ip CW. Age-dependent neurodegeneration and neuroinflammation in a genetic A30P/A53T double-mutated α-synuclein mouse model of Parkinson's disease. Neurobiol Dis 2022; 171:105798. [PMID: 35750147 DOI: 10.1016/j.nbd.2022.105798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is closely interwoven with the process of aging. Moreover, increasing evidence from human postmortem studies and from animal models for PD point towards inflammation as an additional factor in disease development. We here assessed the impact of aging and inflammation on dopaminergic neurodegeneration in the hm2α-SYN-39 mouse model of PD that carries the human, A30P/A53T double-mutated α-synuclein gene. At 2-3 months of age, no significant differences were observed comparing dopaminergic neuron numbers of the substantia nigra (SN) pars compacta of hm2α-SYN-39 mice with wildtype controls. At an age of 16-17 months, however, hm2α-SYN-39 mice revealed a significant loss of dopaminergic SN neurons, of dopaminergic terminals in the striatum as well as a reduction of striatal dopamine levels compared to young, 2-3 months transgenic mice and compared to 16-17 months old wildtype littermates. A significant age-related correlation of infiltrating CD4+ and CD8+ T cell numbers with dopaminergic terminal loss of the striatum was found in hm2α-SYN-39 mice, but not in wildtype controls. In the striatum of 16-17 months old wildtype mice a slightly elevated CD8+ T cell count and CD11b+ microglia cell count was observed compared to younger aged mice. Additional analyses of neuroinflammation in the nigrostriatal tract of wildtype mice did not yield any significant age-dependent changes of CD4+, CD8+ T cell and B220+ B cell numbers, respectively. In contrast, a significant age-dependent increase of CD8+ T cells, GFAP+ astrocytes as well as a pronounced increase of CD11b+ microglia numbers were observed in the SN of hm2α-SYN-39 mice pointing towards a neuroinflammatory processes in this genetic mouse model for PD. The findings in the hm2α-SYN-39 mouse model strengthen the evidence that T cell and glial cell responses are involved in the age-related neurodegeneration in PD. The slow and age-dependent progression of neurodegeneration and neuroinflammation in the hm2α-SYN-39 PD rodent model underlines its translational value and makes it suitable for studying anti-inflammatory therapies.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jennifer Behnke
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Alexander Grotemeyer
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
30
|
Wal P, Dwivedi J, Wal A, Vig H, Singh Y. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson's disease and its medications. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The loss of dopamine neurons in the substantia nigra, as well as other mostly catecholaminergic neurons, causes many of the motor symptoms that define Parkinson's disease. Parkinson's disease is commonly thought of as a movement disorder, the significant prevalence of psychiatric complications such as cognitive impairment, and psychosis suggests it should be considered a neuropsychiatric illness, and all behavioral complications are linked to growing disability and the medication.
Main body
Apart from the disease-induced abnormalities, there are several other side effects of the disease and also from the medication used to prevent the disease. This article focuses on the pathogenesis of Parkinson’s disease and also the behavioral abnormalities caused by the disease and its medication. The study's data were gathered by searching several review articles and research papers from a variety of sources, including Elsevier, PubMed, Research Gate, Journal of Pharmaceutical Science, etc., from the year 1985 to 2021. Parkinson's disease is a neurodegenerative disease caused by a variety of complex processes. It is responsible not just for motor symptoms, but also for a variety of behavioral symptoms that can arise as a result of the disease and/or medication.
Conclusion
Only symptomatic drugs are available; thus, finding treatments that directly address the disease mechanisms causing Parkinson’s disease is essential. To alleviate the disease's burden on patients and their families, better treatments for the neuropsychiatric repercussions of Parkinson's disease are required.
Graphical Abstract
Collapse
|
31
|
Dana S, Ghaedi K, Peymani M, Esfahani MHN. MiR-141-3p Expression Profiling in MPP Treated Differentiated SH-SY5Y Cells: A Model of Parkinson’s Disease. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Gong Y, Chen Y. UbE3-APA: a bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study. Bioinformatics 2022; 38:2211-2218. [PMID: 35139152 PMCID: PMC9004656 DOI: 10.1093/bioinformatics/btac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. RESULTS Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yue Chen
- To whom correspondence should be addressed.
| |
Collapse
|
33
|
Morawska MM, Moreira CG, Ginde VR, Valko PO, Weiss T, Büchele F, Imbach LL, Masneuf S, Kollarik S, Prymaczok N, Gerez JA, Riek R, Baumann CR, Noain D. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson's disease. Sci Transl Med 2021; 13:eabe7099. [PMID: 34878820 DOI: 10.1126/scitranslmed.abe7099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marta M Morawska
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,ETH Zurich, Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Varun R Ginde
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Philipp O Valko
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sophie Masneuf
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Natalia Prymaczok
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Juan A Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Frauenklinikstrasse 26, Zurich 8091, Switzerland.,University of Zurich (UZH), Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, Zurich 8057, Switzerland.,Center of Competence Sleep and Health Zurich, University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| |
Collapse
|
34
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
35
|
Tian Y, He M, Pan L, Yuan X, Xiong M, Meng L, Yao Z, Yu Z, Ye K, Zhang Z. Transgenic Mice Expressing Human α-Synuclein 1-103 Fragment as a Novel Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:760781. [PMID: 34744697 PMCID: PMC8569470 DOI: 10.3389/fnagi.2021.760781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. However, its cellular and molecular mechanisms still wrap in the mist. This is partially caused by the absence of appropriate animal models mimicking sporadic PD that constitutes the majority of cases. Previously, we reported that a cysteine protease, asparagine endopeptidase (AEP), is activated in an age-dependent manner, and cleaves α-synuclein in the brain of sporadic PD patients. The AEP-derived α-synuclein 1-103 fragment is required for the pathogenesis of PD. Thus, we designed and characterized a novel transgenic mouse line expressing α-synuclein 1-103 (designated N103 mice). This model shows an abundant accumulation of pathological α-synuclein in the central nervous system, loss of dopaminergic neurons in the substantia nigra, and progressive striatal synaptic degeneration. The N103 mice also manifest age-dependent PD-like behavioral impairments. Notably, the mice show weight loss and constipation, which are the common non-motor symptoms in PD. The RNA-sequencing analysis found that the transcriptomics pattern was extensively altered in N103 mice. In conclusion, the N103 mouse line, as a brand-new tool, might provide new insights into PD research.
Collapse
Affiliation(s)
- Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
37
|
del Rey NLG, Balzano T, Martin-Rodriguez L, Salinas-Rebolledo C, Trigo-Damas I, Rojas-Fernandez A, Alvarez-Erviti L, Blesa J. Lack of Parkinsonian Pathology and Neurodegeneration in Mice After Long-Term Injections of a Proteasome Inhibitor in Olfactory Bulb and Amygdala. Front Aging Neurosci 2021; 13:698979. [PMID: 34744683 PMCID: PMC8570189 DOI: 10.3389/fnagi.2021.698979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Proteinaceous inclusions, called Lewy bodies (LBs), are used as a pathological hallmark for Parkinson's disease (PD). Recent studies suggested a prion-like spreading mechanism for α-synucleinopathy where early neuropathological deposits occur, among others, in the olfactory bulb (OB) and amygdala. LBs contain insoluble α-synuclein and many other ubiquitinated proteins, suggesting a role of protein degradation system failure in PD pathogenesis. Therefore, we wanted to study the effects of a proteasomal inhibitor, lactacystin, on the aggregability and transmissibility of α-synuclein in the OB and amygdala. We performed injections of lactacystin in the OB and amygdala of wild-type mice. Motor behavior, markers of neuroinflammation, α-synuclein, and dopaminergic integrity were assessed by immunohistochemistry. Overall, there were no differences in the number of neurons and α-synuclein expression in these regions following injection of lactacystin into either the OB or amygdala. Microglial and astroglial labeling appeared to be correlated with surgery-induced inflammation or local effects of lactacystin. Consistent with the behavior and pathological findings, there was no loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. Our data showed that long-term lactacystin injections in extra nigrostriatal regions may not mimic spreading aspects of PD and reinforce the special vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc).
Collapse
Affiliation(s)
- Natalia Lopez-Gonzalez del Rey
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucia Martin-Rodriguez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | | | - Ines Trigo-Damas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
38
|
Zaccaria A, Antinori P, Licker V, Kövari E, Lobrinus JA, Burkhard PR. Multiomic Analyses of Dopaminergic Neurons Isolated from Human Substantia Nigra in Parkinson's Disease: A Descriptive and Exploratory Study. Cell Mol Neurobiol 2021; 42:2805-2818. [PMID: 34528139 PMCID: PMC9561004 DOI: 10.1007/s10571-021-01146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022]
Abstract
Dopaminergic neurons (DA) of the substantia nigra pars compacta (SNpc) selectively and progressively degenerate in Parkinson’s disease (PD). Until now, molecular analyses of DA in PD have been limited to genomic or transcriptomic approaches, whereas, to the best of our knowledge, no proteomic or combined multiomic study examining the protein profile of these neurons is currently available. In this exploratory study, we used laser capture microdissection to extract regions from DA in 10 human SNpc obtained at autopsy in PD patients and control subjects. Extracted RNA and proteins were identified by RNA sequencing and nanoliquid chromatography–mass spectrometry, respectively, and the differential expression between PD and control group was assessed. Qualitative analyses confirmed that the microdissection protocol preserves the integrity of our samples and offers access to specific molecular pathways. This multiomic analysis highlighted differential expression of 52 genes and 33 proteins, including molecules of interest already known to be dysregulated in PD, such as LRP2, PNMT, CXCR4, MAOA and CBLN1 genes, or the Aldehyde dehydrogenase 1 protein. On the other hand, despite the same samples were used for both analyses, correlation between RNA and protein expression was low, as exemplified by the CST3 gene encoding for the cystatin C protein. This is the first exploratory study analyzing both gene and protein expression of laser-dissected neuronal parts from SNpc in PD. Data are available via ProteomeXchange with identifier PXD024748 and via GEO with identifier GSE 169755.
Collapse
Affiliation(s)
- Affif Zaccaria
- Neuroproteomics Group, University Medical Center, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| | - Paola Antinori
- Neuroproteomics Group, University Medical Center, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Virginie Licker
- Neuroproteomics Group, University Medical Center, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Enikö Kövari
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | - Pierre R Burkhard
- Neuroproteomics Group, University Medical Center, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
39
|
Russo M, Sobh A, Zhang P, Loguinov A, Tagmount A, Vulpe CD, Liu B. Functional Pathway Identification With CRISPR/Cas9 Genome-wide Gene Disruption in Human Dopaminergic Neuronal Cells Following Chronic Treatment With Dieldrin. Toxicol Sci 2021; 176:366-381. [PMID: 32421776 DOI: 10.1093/toxsci/kfaa071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood. In this study, we carried out a genome-wide (Brunello library, 19 114 genes, 76 411 sgRNAs) CRISPR/Cas9 screen in human dopaminergic SH-SY5Y neuronal cells exposed to a chronic treatment (30 days) with dieldrin to identify cellular pathways that are functionally related to the chronic cellular toxicity. Our results indicate that dieldrin toxicity was enhanced by gene disruption of specific components of the ubiquitin proteasome system as well as, surprisingly, the protein degradation pathways previously implicated in inherited forms of Parkinson's disease, centered on Parkin. In addition, disruption of regulatory components of the mTOR pathway which integrates cellular responses to both intra- and extracellular signals and is a central regulator for cell metabolism, growth, proliferation, and survival, led to increased sensitivity to dieldrin-induced cellular toxicity. This study is one of the first to apply a genome-wide CRISPR/Cas9-based functional gene disruption screening approach in an adherent neuronal cell line to globally decipher cellular mechanisms that contribute to environmental toxicant-induced neurotoxicity and provides novel insight into the dopaminergic neurotoxicity associated with chronic exposure to dieldrin.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, College of Pharmacy
| | - Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Ping Zhang
- Department of Pharmacodynamics, College of Pharmacy
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Bin Liu
- Department of Pharmacodynamics, College of Pharmacy
| |
Collapse
|
40
|
Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?". BIOLOGY 2021; 10:723. [PMID: 34439955 PMCID: PMC8389254 DOI: 10.3390/biology10080723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a condition characterized by insufficient tissue oxygenation, which results in impaired oxidative energy production. A reduction in cellular oxygen levels induces the stabilization of hypoxia inducible factor α (HIF-1α), master regulator of the molecular response to hypoxia, involved in maintaining cellular homeostasis and driving hypoxic adaptation through the control of gene expression. Due to its high energy requirement, the brain is particularly vulnerable to oxygen shortage. Thus, hypoxic injury can cause significant metabolic changes in neural cell populations, which are associated with neurodegeneration. Recent evidence suggests that regulating HIF-1α may ameliorate the cellular damage in neurodegenerative diseases. Indeed, the hypoxia/HIF-1α signaling pathway has been associated to several processes linked to Parkinson's disease (PD) including gene mutations, risk factors and molecular pathways such as mitochondrial dysfunction, oxidative stress and protein degradation impairment. This review will explore the impact of hypoxia and HIF-1α signaling on these specific molecular pathways that influence PD development and will evaluate different novel neuroprotective strategies involving HIF-1α stabilization.
Collapse
Affiliation(s)
- Laura Lestón Pinilla
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Aslihan Ugun-Klusek
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Luigi A. De Girolamo
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
41
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
42
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Cheng A, Jia W, Kawahata I, Fukunaga K. Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy. Biomedicines 2021; 9:biomedicines9050560. [PMID: 34067791 PMCID: PMC8156290 DOI: 10.3390/biomedicines9050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Synucleinopathies are diverse diseases with motor and cognitive dysfunction due to progressive neuronal loss or demyelination, due to oligodendrocyte loss in the brain. While the etiology of neurodegenerative disorders (NDDs) is likely multifactorial, mitochondrial injury is one of the most vital factors in neuronal loss and oligodendrocyte dysfunction, especially in Parkinson’s disease, dementia with Lewy body, multiple system atrophy, and Krabbe disease. In recent years, the abnormal accumulation of highly neurotoxic α-synuclein in the mitochondrial membrane, which leads to mitochondrial dysfunction, was well studied. Furthermore, fatty acid-binding proteins (FABPs), which are members of a superfamily and are essential in fatty acid trafficking, were reported to trigger α-synuclein oligomerization in neurons and glial cells and to target the mitochondrial outer membrane, thereby causing mitochondrial loss. Here, we provide an updated overview of recent findings on FABP and α-synuclein interactions and mitochondrial injury in NDDs.
Collapse
Affiliation(s)
- An Cheng
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Wenbin Jia
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Ichiro Kawahata
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-(22)-795-6837
| |
Collapse
|
44
|
Degawa T, Kawahata I, Izumi H, Shinoda Y, Fukunaga K. T-type Ca 2+ channel enhancer SAK3 administration improves the BPSD-like behaviors in App NL-G-F/NL-G-F knock-in mice. J Pharmacol Sci 2021; 146:1-9. [PMID: 33858649 DOI: 10.1016/j.jphs.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia among the elderly. In addition to cognitive impairment, behavioral and psychological symptoms (BPSD) such as depression tendency and increased aggression impose a great burden on the patient. However, there is still no rational therapeutic drug for BPSD. Recently, we developed a novel AD therapeutic candidate, SAK3, and demonstrated that it improved cognitive dysfunction in AppNL-G-F/NL-G-F knock-in (NL-G-F) mice. In this study, we investigated whether acute SAK3 administration improved BPSD in addition to cognitive improvement. Acute SAK3 administration improved BPSD, including anxiolytic and depressive-like behaviors, and ameliorated aggressive behaviors. Furthermore, continuous SAK3 administration improved anxiolytic and depressive-like behaviors. Intriguingly, the anti-anxiolytic and cognitive improvement lasted two weeks after the withdrawal of SAK3, whereas the anti-depressive action did not. Taken together, SAK3 had comprehensive beneficial effects on BPSD behavior.
Collapse
Affiliation(s)
- Tomohide Degawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
45
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
46
|
The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol 2021; 42:315-332. [PMID: 33649989 DOI: 10.1007/s10571-021-01066-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a chronic, progressive and second most prevalent neurological disorder affecting the motor system. Cardinal motor impairment and α-synucleinopathy are the characteristic features of PD. Recently, it has been identified that the gut-brain axis is substantially regulated by the gut microbiome (GM) through an immunological, neuroendocrine, and neural mechanism. However, disturbance in the gut-microbiome-brain axis in PD might proceed to gastrointestinal manifestations intermittently leading to the motor system and the PD pathogenesis itself. The gut microbial toxins may induce the production of α-synuclein (α-syn) aggregates in the enteric nervous system (ENS), which may proliferate and propagate in a prion-like-manner through the vagus nerve to the central nervous system (CNS); supporting the hypothesis that, GM might play a pivotal role in PD pathogenesis. Overstimulated innate immune system due to intestinal bacterial overgrowth or gut dysbiosis and the enhanced intestinal permeability may persuade systemic inflammation, while the activation of enteric glial cells and enteric neurons may contribute to α-synucleinopathy. Gut microbiota can bear a significant impact on neurological outcomes such as learning, memory and cognition. In this review paper, we summarize how the alterations in gut microbiota and ENS inflammation are associated with PD pathogenesis. The evidence supporting the causative role played by gut-associated dysbiosis and microbial byproducts, in the onset of PD is also discussed. We have highlighted the landmark discoveries in the field of PD particularly focusing on the gut-brain axis. A better comprehension of the interaction between the gut-brain axis, gut microbiota, and PD can usher in novel therapeutic and diagnostic approaches.
Collapse
|
47
|
Behavioral phenotyping of mice lacking the deubiquitinase USP2. PLoS One 2021; 16:e0241403. [PMID: 33621249 PMCID: PMC7901773 DOI: 10.1371/journal.pone.0241403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin specific peptidase 2 (USP2) is a deubiquitinating enzyme expressed almost ubiquitously in the body, including in multiple brain regions. We previously showed that mice lacking USP2 present altered locomotor activity rhythms and response of the clock to light. However, the possible implication of USP2 in regulating other behaviors has yet to be tested. To address this, we ran a battery of behavioral tests on Usp2 KO mice. Firstly, we confirmed our prior findings of increased daily activity and reduced activity fragmentation in Usp2 KO mice. Further, mice lacking USP2 showed impaired motor coordination and equilibrium, a decrease in anxiety-like behavior, a deficit in working memory and in sensorimotor gating. On the other hand, no effects of Usp2 gene deletion were found on spatial memory. Hence, our data uncover the implication of USP2 in different behaviors and expands the range of the known functions of this deubiquitinase.
Collapse
|
48
|
Tomaru U, Ito T, Ohmura Y, Higashikawa K, Miyajima S, Tomatsu R, Higashi T, Ishizu A, Kuge Y, Yoshioka M, Kasahara M. Decreased Proteasomal Function Induces Neuronal Loss and Memory Impairment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:144-156. [PMID: 33339546 DOI: 10.1016/j.ajpath.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia worldwide. There is considerable evidence of age-related disruption of proteostasis being responsible for the development of AD. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and an age-related decline in its activity has been implicated in age-related pathologies. Although proteasomal dysfunction is assumed to be a key AD hallmark, it remains unclear whether its role in disease onset is causative or secondary. In this study, we demonstrate that mice with proteasomal dysfunction exhibited memory impairment with associated neuronal loss, accumulation of phosphorylated tau, and activation of endoplasmic reticulum (ER) stress-related apoptosis pathways. Impaired proteasomal activity also activated ER stress-related apoptosis pathways in HT-22, a murine hippocampal neuronal cell line. HT-22 cell death, caused by proteasomal inhibition, was prevented by an inhibitor of c-Jun N-terminal kinase, an ER stress-related molecule. Collective evidence suggests that impaired proteasomal activity alters proteostasis, and subsequent ER stress-mediated pathways play pivotal roles in neuronal loss. Because aging decreases proteasomal function, age-related impairment of proteasomes may be involved in the development and progression of AD in elderly patients.
Collapse
Affiliation(s)
- Utano Tomaru
- Department of Pathology, Hokkaido University, Sapporo, Japan.
| | - Tomoki Ito
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Syota Miyajima
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Ruka Tomatsu
- Department of Pathology, Hokkaido University, Sapporo, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
49
|
Abstract
INTRODUCTION PROTACs represent a novel class of heterobifunctional molecules that simultaneously bind to a target protein and to an E3 ligase complex, resulting in the transfer of ubiquitin and initiating a process ultimately causing the proteasomal degradation of the target protein. This mechanism of action imbues PROTACs with the ability to modulate target biology in unique ways compared to inhibitors, and the development of PROTACs as therapeutic agents is expected to result in new medicines to treat multiple diseases. AREAS COVERED This review includes published PCT (WO) patent applications covering January 2013 through June 2020. Only English-language patent applications with exemplified PROTACs reported to degrade a target protein(s) were deemed in scope, and the definition of 'PROTAC' was restricted to a bifunctional molecule which contains a discrete binding element for a specific degradation target(s), as well as a separate discrete E3 ligase-binding moiety. EXPERT OPINION Delivering on the enormous potential of PROTACs will require the development of PROTAC medicines that are differentiated from traditional small-molecule inhibitors. The modular composition of PROTACs affords both opportunities and challenges in securing robust intellectual property, and we envision that requirements for novelty are likely to evolve as this area matures.
Collapse
|
50
|
Xue G, Chen JP, Li Y, Zhang ZQ, Zhu JL, Dong W. MicroRNA-6862 inhibition elevates sphingosine kinase 1 and protects neuronal cells from MPP +-induced apoptosis. Aging (Albany NY) 2020; 13:1369-1382. [PMID: 33414358 PMCID: PMC7834988 DOI: 10.18632/aging.202335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
MPP+ (1-methyl-4-phenylpyridinium)-induced dopaminergic neuronal cell apoptosis is associated with sphingosine kinase 1 (SphK1) inhibition. We here tested the potential effect of microRNA-6862 (miR-6862), a novel SphK1-targeting miRNA, on MPP+-induced cytotoxicity in neuronal cells. MiR-6862 locates in the cytoplasm of SH-SY5Y neuronal cells. It directly binds to SphK1 mRNA. In SH-SY5Y cells and HCN-2 cells, ectopic overexpression of miR-6862 decreased SphK13'-untranslated region luciferase reporter activity and downregulated its expression. miR-6862 inhibition exerted opposite activity and elevated SphK1 expression. In neuronal cells, MPP+-induced cell death was significantly inhibited through miR-6862 inhibition. Conversely, ectopic overexpression of miR-6862 or CRISPR/Cas9-induced SphK1 knockout augmented MPP+-induced apoptosis in the neuronal cells. Importantly, antagomiR-6862 failed to inhibit MPP+-induced apoptosis in SphK1-knockout SH-SY5Y cells. These results suggest that inhibition of miR-6862 induces SphK1 elevation and protects neuronal cells from MPP+-induced cell death.
Collapse
Affiliation(s)
- Gang Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Fengcheng Hospital of Fengxian Distric, Shanghai, China
| | - Ju-ping Chen
- Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ya Li
- The Central Laboratory, North District, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Zhi-qing Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jian-liang Zhu
- Department of Emergency and Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|