1
|
Tajane SV, Pohane S, Chakrabarti P, Dey S. Abundance of Glycine-mediated O···C=O, N-H···N, and C α-H···O Interactions in Homo- and Hetero-oligomeric Protein Complexes. Biochemistry 2025. [PMID: 40369977 DOI: 10.1021/acs.biochem.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Glycines are considered the most flexible among all residues, can fit anywhere, and are typically found in short loops and turns. Their specific roles in protein folding and binding have been largely overlooked. Here, we investigate the presence of key noncovalent interactions, O···C=O and N-H···N, that are mediated by Gly between two peptide groups at the interface of oligomeric proteins. These are put in context relative to another weak interaction, viz., Cα-H···O. Also, these include interactions where both of the interacting residues are Gly or where either of them is a Gly. We found an enrichment of all of the Gly···Gly-mediated interactions at the interfaces, irrespective of the nature of the complex, whether obligate, transient, or a heterodimer. Comparatively, a higher propensity of Gly···Gly O···C=O interactions is found at the obligate homodimer interfaces. We also noted that 10% of the Gly residues at the obligate homodimer interfaces are involved in the O···C=O interactions, 1% is involved in the N-H···N, and 22% are involved in Cα-H···O interactions. Interestingly, in the weakly associated transient dimers too, 40% of the total interface Gly residues are involved in any of the three interactions. We noted a secondary structure preference for the Gly···Gly-mediated O···C=O interactions in obligate dimers, which are predominantly from helical segments. These nonclassical interactions may contribute to the function of Gly-rich regions in proteins.
Collapse
Affiliation(s)
- Surbhi Vilas Tajane
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar, Rajasthan 342030, India
| | - Sanjeevani Pohane
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar, Rajasthan 342030, India
| | - Pinak Chakrabarti
- Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kolkata, West Bengal 700054, India
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
2
|
Jordan MR, Mendoza-Munoz PL, Pawelczak KS, Turchi JJ. Targeting DNA damage sensors for cancer therapy. DNA Repair (Amst) 2025; 149:103841. [PMID: 40339280 DOI: 10.1016/j.dnarep.2025.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
DNA damage occurs from both endogenous and exogenous sources and DNA damaging agents are a mainstay in cancer therapeutics. DNA damage sensors (DDS) are proteins that recognize and bind to unique DNA structures that arise from direct DNA damage or replication stress and are the first step in the DNA damage response (DDR). DNA damage sensors are responsible for recruiting transducer proteins that signal downstream DNA repair pathways. As the initiating proteins, DDS are excellent candidates for anti-cancer drug targeting to limit DDR activation. Here, we review four major DDS: PARP1, RPA, Ku, and the MRN complex. We briefly describe the cellular DDS functions before analyzing the structural mechanisms of DNA damage sensing. Lastly, we examine the current state of the field towards inhibiting each DDS for anti-cancer therapeutics and broadly discuss the therapeutic potential for DDS targeting.
Collapse
Affiliation(s)
- Matthew R Jordan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pamela L Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; NERx BioSciences, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Fontes MRM, Cardoso FF, Kobe B. Transport of DNA repair proteins to the cell nucleus by the classical nuclear importin pathway - a structural overview. DNA Repair (Amst) 2025; 149:103828. [PMID: 40154194 DOI: 10.1016/j.dnarep.2025.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
DNA repair is a crucial biological process necessary to address damage caused by both endogenous and exogenous agents, with at least five major pathways recognized as central to this process. In several cancer types and other diseases, including neurodegenerative disorders, DNA repair mechanisms are often disrupted or dysregulated. Despite the diversity of these proteins and their roles, they all share the common requirement of being imported into the cell nucleus to perform their functions. Therefore, understanding the nuclear import of these proteins is essential for comprehending their roles in cellular processes. The first and best-characterized nuclear targeting signal is the classical nuclear localization sequence (NLS), recognized by importin-α (Impα). Several structural and affinity studies have been conducted on complexes formed between Impα and NLSs from DNA repair proteins, although these represent only a fraction of all known DNA repair proteins. These studies have significantly advanced our understanding of the nuclear import process of DNA repair proteins, often revealing unexpected results that challenge existing literature and computational predictions. Despite advances in computational, biochemical, and cellular assays, structural methods - particularly crystallography and in-solution biophysical approaches - continue to play a critical role in providing insights into molecular events operating in biological pathways. In this review, we aim to summarize experimental structural and affinity studies involving Impα and NLSs from DNA repair proteins, with the goal of furthering our understanding of the function of these essential proteins.
Collapse
Affiliation(s)
- Marcos R M Fontes
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente, SP, Brazil.
| | - Fábio F Cardoso
- Departamento de Biofísica e Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Chen X, Chen C, Li Z, Liu C, Lin Z. Punicalagin as an Artemis inhibitor synergizes with photodynamic therapy in tumor suppression. Bioorg Chem 2025; 157:108282. [PMID: 39970756 DOI: 10.1016/j.bioorg.2025.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment that utilizes a photosensitizer, specific light wavelengths, and oxygen to generate reactive oxygen species (ROS), causing oxidative damage and tumor cell death. However, the effectiveness of PDT can be reduced by the intrinsic antioxidant and DNA repair mechanisms of tumor cells. Artemis (SNM1C/DCLRE1C) is an endonuclease essential for repairing DNA double-strand breaks (DSBs) via non-homologous end-joining (NHEJ). Herein, we conducted a high-throughput small-molecule screening and identified Punicalagin (PUG), a natural polyphenol from pomegranate, as a novel Artemis inhibitor with an IC50 value of 296.1 nM. We also investigated the effects of PUG combined with PDT in tumor treatment, using the pentalysine β-carbonylphthalocyanine zinc (ZnPc5K) as the photosensitizer. In HeLa cells, ZnPc5K-based PDT induced significant DSBs, which could be repaired by the intrinsic DNA repair mechanisms within 12 h. Co-treatment with PUG compromised DNA repair, promoted cell apoptosis, inhibited cell invasion, and suppressed the growth of various tumor cells. Furthermore, in a mouse xenograft model, the combination of PUG and ZnPc5K-PDT effectively inhibited tumor growth with minimal side effects. These findings suggest that PUG, as an Artemis inhibitor, can enhance the therapeutic efficacy of PDT in tumor suppression by impairing DNA repair through the NHEJ pathway.
Collapse
Affiliation(s)
- Xuening Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Changkun Chen
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zuoan Li
- Shengli Clinical Medical College of Fujian Medical University, Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
5
|
Wang Y, Shen F, Zhao C, Li J, Wang W, Li Y, Gan J, Zhang H, Chen X, Chen Q, Wang F, Liu Y, Zhou Y. Homeodomain protein PRRX1 anchors the Ku heterodimers at DNA double-strand breaks to promote nonhomologous end-joining. Nucleic Acids Res 2025; 53:gkaf200. [PMID: 40114375 PMCID: PMC11925728 DOI: 10.1093/nar/gkaf200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a critical role in nonhomologous end-joining (NHEJ), a template-independent pathway for repairing DNA double-strand breaks (DSBs). The association of Ku70/80 with DSB ends facilitates the assembly of the DNA-PK holoenzyme. However, key mechanisms underlying the attachment and stabilization of DNA-PK at broken DNA ends remain unclear. Here, we identify PRRX1, a homeodomain-containing protein, as a mediator of chromatin localization and subsequent activation of DNA-PK. PRRX1 oligomerizes to simultaneously bind to double-strand DNA and the SAP (SAF-A/B, Acinus, and PIAS) domain of Ku70, thereby enhancing Ku anchoring at DSBs and stabilizing DNA-PK for efficient NHEJ repair. Reduced expression or pathogenic mutations of PRRX1 are associated with genomic instability and impaired NHEJ repair. Furthermore, a peptide that disrupts PRRX1 oligomerization compromises NHEJ efficiency and reduces cell survival following irradiation. These findings provide new insights into the activation of the NHEJ machinery and offer potential strategies for optimizing cancer therapies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fuyuan Shen
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Jiali Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wen Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yamu Li
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Jia Gan
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Haojian Zhang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xuefeng Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiang Chen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Fangyu Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Jiang Y, Zhao C, Zhang C, Li W, Liu D, Zhao B. Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair. BIOPHYSICS REPORTS 2025; 11:46-55. [PMID: 40070660 PMCID: PMC11891076 DOI: 10.52601/bpr.2024.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 03/14/2025] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.
Collapse
Affiliation(s)
- Yuhao Jiang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Chenyang Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Weilin Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Di Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bailin Zhao
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
7
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
8
|
Shaker S, Li J, Wan S, Xuan H, Long J, Cao H, Wei T, Liu Q, Xu D, Benner S, Zhang L. Cancer cell target discovery: comparing laboratory evolution of expanded DNA six-nucleotide alphabets with standard four-nucleotide alphabets. Nucleic Acids Res 2025; 53:gkaf072. [PMID: 39950344 PMCID: PMC11826092 DOI: 10.1093/nar/gkaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025] Open
Abstract
Anthropogenic evolvable genetic information systems (AEGIS) are DNA-like molecules that can be copied, support laboratory in vitro evolution (LIVE), and evolve to give AegisBodies, analogs of antibodies. However, unlike DNA aptamers built from four different nucleotides, AegisBodies are currently built from six different nucleotides. Thus, six-letter AEGIS-LIVE delivers AegisBodies with greater stability in biological mixtures, more folds, and enhanced binding and catalytic power. Unlike DNA however, AEGIS has not benefited from 4 billion years of biological evolution to create AEGIS-specialized enzymes, but only a decade or so of human design. To learn whether AEGIS can nevertheless perform as well as natural DNA as a platform to create functional molecules, we compared two six-letter AegisBodies (LZH5b and LZH8) with a single standard four-letter aptamer, both evolved to bind specific cancer cells with ∼10 cycles of LIVE. Both evolved ∼50 nM affinities. Both discovered proteins on their cancer cell surfaces thought to function only inside of cells. Both can be internalized. Internalizing of LZH5b attached to an AEGIS nanotrain brings attached drugs into the cell. These data show that AEGIS-LIVE can do what four-letter LIVE can do at its limits of performance after 4 billion years of evolution of DNA-specialized enzymes, and better by a few metrics. As synthetic biologists continue to improve enzymology and analytical chemistry to support AEGIS-LIVE, this technology shoud prove increasingly useful as a tool, especially in cancer research.
Collapse
Affiliation(s)
- Sharpkate Shaker
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuo Wan
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, United States
| | - Hong Xuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinchen Long
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haiyan Cao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongxuan Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qinguo Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, United States
| | - Liqin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
He L, Moon J, Cai C, Hao Y, Lee H, Kim W, Zhao F, Lou Z. The interplay between chromatin remodeling and DNA double-strand break repair: Implications for cancer biology and therapeutics. DNA Repair (Amst) 2025; 146:103811. [PMID: 39848026 DOI: 10.1016/j.dnarep.2025.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Proper chromatin remodeling is crucial for many cellular physiological processes, including the repair of DNA double-strand break (DSB). While the mechanism of DSB repair is well understood, the connection between chromatin remodeling and DSB repair remains incompletely elucidated. In this review, we aim to highlight recent studies demonstrating the close relationship between chromatin remodeling and DSB repair. We summarize the impact of DSB repair on chromatin, including nucleosome arrangement, chromatin organization, and dynamics, and conversely, the role of chromatin architecture in regulating DSB repair. Additionally, we also summarize the contribution of chromatin remodeling complexes to cancer biology through DNA repair and discuss their potential as therapeutic targets for cancer.
Collapse
Affiliation(s)
- Liujun He
- College of Biology, Hunan University, Changsha 410082, China
| | - Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Chenghui Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Hyorin Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea.
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China.
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Zhu Y, Li A, Maji S, Lee BJ, Korn SM, Gertie JA, Dorrity TJ, Wang J, Wang KJ, Pelletier A, Moakley DF, Kelly RD, Holmes AB, Rabadan R, Edgell DR, Schild Poulter C, Modesti M, Steckelberg AL, Hendrickson EA, Chung H, Zhang C, Zha S. Ku suppresses RNA-mediated innate immune responses in human cells to accommodate primate-specific Alu expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.633084. [PMID: 39975384 PMCID: PMC11838425 DOI: 10.1101/2025.01.31.633084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ku70 and Ku80 form Ku, a ring-shaped protein that initiates the non-homologous end-joining (NHEJ) DNA repair pathway. 1 Specifically, Ku binds to double-stranded DNA (dsDNA) ends and recruits other NHEJ factors ( e.g. , DNA-PKcs and LIG4). While Ku binds to double-stranded RNA (dsRNA) 2 and traps mutated-DNA-PKcs on ribosomal RNA in vivo, 3,4 the physiological significance of Ku-dsRNA interactions in otherwise wild-type cells remains elusive. Intriguingly, while dispensable for murine development, 5,6 Ku is essential in human cells. 7 Despite similar genome sizes, human cells express ∼100-fold more Ku than mouse cells, implying functions beyond NHEJ, possibly through a dose-sensitive interaction with dsRNA, which is ∼100 times weaker than with dsDNA. 2,8 While investigating the essentiality of Ku in human cells, we found that depletion of Ku - unlike LIG4 - induces profound interferon (IFN) and NF-kB responses reliant on the dsRNA-sensor MDA5/RIG-I and adaptor MAVS. Prolonged Ku-degradation also activates other dsRNA-sensors, e.g. PKR that suppresses protein translation, and OAS/RNaseL that cleaves rRNAs and eventually induces growth arrest and cell death. MAVS, RIG-I, or MDA5 knockouts suppressed IFN signaling and, together with PKR knockouts, partially rescued Ku-depleted human cells. Ku-irCLIP analyses revealed that Ku binds to diverse dsRNA, predominantly stem-loops in primate-specific Alu elements 9 at anti-sense orientation in introns and 3'-UTRs. Ku expression rose sharply in higher primates tightly correlating with Alu-expansion (r = 0.94/0.95). Together, our study identified a vital role of Ku in accommodating Alu-expansion in primates by mitigating a dsRNA-induced innate immune response, explaining the rise of Ku levels and its essentiality in human cells.
Collapse
|
11
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Wang J, Zhang H, Feng Y, Gong X, Song X, Wei M, Hu Y, Li J. Aging-Related Gene-Based Prognostic Model for Lung Adenocarcinoma: Insights into Tumor Microenvironment and Therapeutic Implications. Int J Mol Sci 2024; 25:13572. [PMID: 39769336 PMCID: PMC11678022 DOI: 10.3390/ijms252413572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with a poor prognosis primarily due to late diagnosis and limited treatment options. This research highlights the critical demand for advanced prognostic tools by creating a model centered on aging-related genes (ARGs) to improve prediction and treatment strategies for lung adenocarcinoma (LUAD). By leveraging datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we developed a prognostic model that integrates 14 ARGs using the least absolute shrinkage and selection operator (LASSO) alongside Cox regression analyses. The model exhibited strong predictive performance, achieving area under the curve (AUC) values greater than 0.8 for one-year survival in both internal and external validation cohorts. The risk scores generated by our model were significantly correlated with critical features of the tumor microenvironment, including the presence of cancer-associated fibroblasts (CAFs) and markers of immune evasion, such as T-cell dysfunction and exclusion. Higher risk scores correlated with a more tumor-promoting microenvironment and increased immune suppression, highlighting the model's relevance in understanding LUAD progression. Additionally, XRCC6, a protein involved in DNA repair and cellular senescence, was found to be upregulated in LUAD. Functional assays demonstrated that the knockdown of XRCC6 led to decreased cell proliferation, whereas its overexpression alleviated DNA damage, highlighting its significance in tumor biology and its potential therapeutic applications. This study provides a novel ARG-based prognostic model for LUAD, offering valuable insights into tumor dynamics and the tumor microenvironment, which may guide the development of targeted therapies and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianxiang Li
- Department of Toxicology, School of Public Health, Suzhou Medicine College of Soochow University, Suzhou 215123, China; (J.W.); (H.Z.); (Y.F.); (X.G.); (X.S.); (M.W.); (Y.H.)
| |
Collapse
|
13
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
14
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
15
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
16
|
Yang J, Reyes Loaiciga C, Yue HR, Hou YJ, Li J, Li CX, Li J, Zou Y, Zhao S, Zhang FL, Zhao XQ. Genomic Characterization and Establishment of a Genetic Manipulation System for Trichoderma sp. ( Harzianum Clade) LZ117. J Fungi (Basel) 2024; 10:697. [PMID: 39452649 PMCID: PMC11508783 DOI: 10.3390/jof10100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Trichoderma species have been reported as masters in producing cellulolytic enzymes for the biodegradation of lignocellulolytic biomass and biocontrol agents against plant pathogens and pests. In our previous study, a novel Trichoderma strain LZ117, which shows potent capability in cellulase production, was isolated. Herein, we conducted multilocus phylogenetic analyses based on DNA barcodes and performed time-scaled phylogenomic analyses using the whole genome sequences of the strain, annotated by integrating transcriptome data. Our results suggest that this strain represents a new species closely related to T. atrobrunneum (Harzianum clade). Genes encoding carbohydrate-active enzymes (CAZymes), transporters, and secondary metabolites were annotated and predicted secretome in Trichoderma sp. LZ117 was also presented. Furthermore, genetic manipulation of this strain was successfully achieved using PEG-mediated protoplast transformation. A putative transporter gene encoding maltose permease (Mal1) was overexpressed, which proved that this transporter does not affect cellulase production. Moreover, overexpressing the native Cre1 homolog in LZ117 demonstrated a more pronounced impact of glucose-caused carbon catabolite repression (CCR), suggesting the importance of Cre1-mediated CCR in cellulase production of Trichoderma sp. LZ117. The results of this study will benefit further exploration of the strain LZ117 and related species for their applications in bioproduction.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Cristopher Reyes Loaiciga
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Hou-Ru Yue
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Ya-Jing Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.-J.H.); (S.Z.)
| | - Jun Li
- Shanghai CHANDO Group Co., Ltd., Shanghai 200233, China; (J.L.); (Y.Z.)
| | - Cheng-Xi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology, Bengbu Medical University, Bengbu 233000, China;
| | - Jing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Yue Zou
- Shanghai CHANDO Group Co., Ltd., Shanghai 200233, China; (J.L.); (Y.Z.)
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (Y.-J.H.); (S.Z.)
| | - Feng-Li Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (J.Y.); (C.R.L.); (H.-R.Y.); (J.L.); (F.-L.Z.)
| |
Collapse
|
17
|
Matsuda KM, Kotani H, Yamaguchi K, Ono C, Okumura T, Ogawa K, Miya A, Sato A, Uchino R, Yumi M, Matsunaka H, Kono M, Norimatsu Y, Hisamoto T, Kawanabe R, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Okamura T, Shoda H, Fujio K, Matsushita T, Goshima N, Sato S, Yoshizaki A. Autoantibodies to nuclear valosin-containing protein-like protein: systemic sclerosis-specific antibodies revealed by in vitro human proteome. Rheumatology (Oxford) 2024; 63:2865-2873. [PMID: 38290780 DOI: 10.1093/rheumatology/keae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES To identify and characterize undescribed systemic sclerosis (SSc)-specific autoantibodies targeting nucleolar antigens and to assess their clinical significance. METHODS We conducted proteome-wide autoantibody screening (PWAS) against serum samples from SSc patients with nucleolar patterned anti-nuclear antibodies (NUC-ANAs) of specific antibodies (Abs) unknown, utilizing wet protein arrays fabricated from in vitro human proteome. Controls included SSc patients with already-known SSc-specific autoantibodies, patients with other connective tissue diseases and healthy subjects. The selection of nucleolar antigens was performed by database search in the Human Protein Atlas. The presence of autoantibodies was certified by immunoblots and immunoprecipitations. Indirect immunofluorescence assays on HEp-2 cells were also conducted. Clinical assessment was conducted by retrospective review of electronic medical records. RESULTS PWAS identified three candidate autoantibodies, including anti-nuclear valosin-containing protein-like (NVL) Ab. Additional measurements in disease controls revealed that only anti-NVL Abs are exclusively detected in SSc. Detection of anti-NVL Abs was reproduced by conventional assays such as immunoblotting and immunoprecipitation. Indirect immunofluorescence assays demonstrated homogeneous nucleolar patterns. Anti-NVL Ab-positive cases were characterized by significantly low prevalence of diffuse skin sclerosis and interstitial lung disease, compared with SSc cases with NUC-ANAs other than anti-NVL Abs, such as anti-U3-RNP and anti-Th/To Abs. CONCLUSION Anti-NVL Ab is an SSc-specific autoantibody associated with a unique combination of clinical features, including limited skin sclerosis and lack of lung involvement.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | - Rikako Uchino
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | - Murakami Yumi
- NOV Academic Research, TOKIWA Pharmaceutical Co., Ltd, Tokyo, Japan
| | | | - Masanori Kono
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ruriko Kawanabe
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | | | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Bayat L, Abbasi S, Balasuriya N, Schild-Poulter C. Critical residues in the Ku70 von Willebrand A domain mediate Ku interaction with the LigIV-XRCC4 complex in non-homologous end-joining. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119815. [PMID: 39151475 DOI: 10.1016/j.bbamcr.2024.119815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The Ku heterodimer (Ku70/Ku80) is central to the non-homologous end-joining (NHEJ) pathway. Ku binds to the broken DNA ends and promotes the assembly of the DNA repair complex. The N-terminal Ku70 von Willebrand A (vWA) domain is known to mediate protein-protein interactions important for the repair process. In particular, the D192 and D195 residues within helix 5 of the Ku70 vWA domain were shown to be essential for NHEJ function, although the precise role of these residues was not identified. Here, we set up a miniTurbo screening system to identify Ku70 D192/D195 residue-specific interactors in a conditional, human Ku70-knockout cell line in response to DNA damage. Using fusion protein constructs of Ku70 wild-type and mutant (D192A/D195R) with miniTurbo, we identified a number of candidate proximal interactors in response to DNA damage treatment, including DNA Ligase IV (LigIV), a known and essential NHEJ complex member. Interestingly, LigIV was enriched in our wildtype screen but not the Ku70 D192A/D195R screen, suggesting its interaction is disrupted by the mutation. Validation experiments demonstrated that the DNA damage-induced interaction between Ku70 and LigIV was disrupted by the Ku70 D192A/D195R mutations. Our findings provide greater detail about the interaction surface between the Ku70 vWA domain and LigIV and offer strong evidence that the D192 and D195 residues are important for NHEJ completion through an interaction with LigIV. Altogether, this work reveals novel potential proximal interactors of Ku in response to DNA damage and identifies Ku70 D192/D195 residues as essential for LigIV interaction with Ku during NHEJ.
Collapse
Affiliation(s)
- Laila Bayat
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
19
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
20
|
Baral J, Bhattacharje G, Dash S, Samanta D, Hinde E, Rouiller I, Das AK. In silico and in vitro characterization of the mycobacterial protein Ku to unravel its role in non-homologous end-joining DNA repair. Int J Biol Macromol 2024; 278:134584. [PMID: 39122073 DOI: 10.1016/j.ijbiomac.2024.134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Non-homologous end-joining (NHEJ) stands as a pivotal DNA repair pathway crucial for the survival and persistence of Mycobacterium tuberculosis (Mtb) during its dormant, non-replicating phase, a key aspect of its long-term resilience. Mycobacterial NHEJ is a remarkably simple two-component system comprising the rate-limiting DNA binding protein Ku (mKu) and Ligase D. To elucidate mKu's role in NHEJ, we conducted a series of in silico and in vitro experiments. Molecular dynamics simulations and in vitro assays revealed that mKu's DNA binding stabilizes both the protein and DNA, while also shielding DNA ends from exonuclease degradation. Surface plasmon resonance (SPR) and electrophoretic mobility shift assays (EMSA) demonstrated mKu's robust affinity for linear double-stranded DNA (dsDNA), showing positive cooperativity for DNA substrates of 40 base pairs or longer, and its ability to slide along DNA strands. Moreover, analytical ultracentrifugation, size exclusion chromatography, and negative stain electron microscopy (EM) unveiled mKu's unique propensity to form higher-order oligomers exclusively with DNA, suggesting a potential role in mycobacterial NHEJ synapsis. This comprehensive characterization sheds new light on mKu's function within the Mtb NHEJ repair pathway. Targeting this pathway may thus impede the pathogen's ability to persist in its latent state within the host for prolonged periods.
Collapse
Affiliation(s)
- Joydeep Baral
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India; School of Physics, University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gourab Bhattacharje
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sagarika Dash
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Victoria, Australia.
| | - Isabelle Rouiller
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
21
|
Mendoza-Munoz PL, Kushwaha ND, Chauhan D, Ali Gacem KB, Garrett JE, Dynlacht JR, Charbonnier JB, Gavande NS, Turchi JJ. Impact of Optimized Ku-DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response. Cancers (Basel) 2024; 16:3286. [PMID: 39409907 PMCID: PMC11475570 DOI: 10.3390/cancers16193286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku-DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment.
Collapse
Affiliation(s)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Dineshsinha Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Karim Ben Ali Gacem
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
- Structure-Design-Informatics, Sanofi R&D, 94400 Vitry sur Seine, France
| | - Joy E. Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph R. Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- NERx Biosciences, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
23
|
Hui Z, Deng H, Zhang X, Garrido C, Lirussi F, Ye XY, Xie T, Liu ZQ. Development and therapeutic potential of DNA-dependent protein kinase inhibitors. Bioorg Chem 2024; 150:107608. [PMID: 38981210 DOI: 10.1016/j.bioorg.2024.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The deployment of DNA damage response (DDR) combats various forms of DNA damage, ensuring genomic stability. Cancer cells' propensity for genomic instability offers therapeutic opportunities to selectively kill cancer cells by suppressing the DDR pathway. DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is crucial for the non-homologous end joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs). Therefore, targeting DNA-PK is a promising cancer treatment strategy. This review elaborates on the structures of DNA-PK and its related large protein, as well as the development process of DNA-PK inhibitors, and recent advancements in their clinical application. We emphasize our analysis of the development process and structure-activity relationships (SARs) of DNA-PK inhibitors based on different scaffolds. We hope this review will provide practical information for researchers seeking to develop novel DNA-PK inhibitors in the future.
Collapse
Affiliation(s)
- Zi Hui
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xuelei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Carmen Garrido
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Faculté de médecine, Université de Bourgogne, Dijon, Centre de lutte contre le cancer Georges François Leclerc, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Label LipSTIC and Ligue Nationale contre le Cancer, Dijon, France; Université de Franche Comté, France, University Hospital of Besançon (CHU), France
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P.R. China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410013, P. R. China.
| |
Collapse
|
24
|
Zhu Y, Lee BJ, Fujii S, Jonchhe S, Zhang H, Li A, Wang KJ, Rothenberg E, Modesti M, Zha S. The KU70-SAP domain has an overlapping function with DNA-PKcs in limiting the lateral movement of KU along DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609806. [PMID: 39253422 PMCID: PMC11383278 DOI: 10.1101/2024.08.26.609806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-homologous end-joining (NHEJ) pathway is critical for DNA double-strand break repair and is essential for lymphocyte development and maturation. The Ku70/Ku80 heterodimer (KU) binds to DNA ends, initiating NHEJ and recruiting additional factors, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs) that caps the ends and pushes KU inward. The C-terminus of Ku70 in higher eukaryotes includes a flexible linker and a SAP domain, whose physiological role remains poorly understood. To investigate this, we generated a mouse model with knock-in deletion of the SAP domain ( Ku70 ΔSAP/ΔSAP ). Ku70 ΔSAP supports KU stability and its recruitment to DNA damage sites in vivo . In contrast to the growth retardation and immunodeficiency seen in Ku70 -/- mice, Ku70 ΔSAP/ΔSAP mice show no defects in lymphocyte development and maturation. Structural modeling of KU on long dsDNA, but not dsRNA suggests that the SAP domain can bind to an adjacent major groove, where it can limit KU's rotation and lateral movement along the dsDNA. Accordingly, in the absence of DNA-PKcs that caps the ends, Ku70 ΔSAP fails to support stable DNA damage-induced KU foci. In DNA-PKcs -/- mice, Ku70 ΔSAP abrogates the leaky T cell development and reduces both the qualitative and quantitative aspects of residual V(D)J recombination. In the absence of DNA-PKcs, purified Ku70 ΔSAP has reduced affinity for DNA ends and dissociates more readily at lower concentration and accumulated as multimers at high concentration. These findings revealed a physiological role of the SAP domain in NHEJ by restricting KU rotation and lateral movement on DNA that is largely masked by DNA-PKcs. Highlight Ku70 is a conserved non-homologous end-joining (NHEJ) factor. Using genetically engineered mouse models and biochemical analyses, our study uncovered a previously unappreciated role of the C-terminal SAP domain of Ku70 in limiting the lateral movement of KU on DNA ends and ensuring end protection. The presence of DNA-PKcs partially masks this role of the SAP domain.
Collapse
|
25
|
Bossaert M, Moreno AT, Peixoto A, Pillaire MJ, Chanut P, Frit P, Calsou P, Loparo JJ, Britton S. Identification of the main barriers to Ku accumulation in chromatin. Cell Rep 2024; 43:114538. [PMID: 39058590 PMCID: PMC11411529 DOI: 10.1016/j.celrep.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Marie-Jeanne Pillaire
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Pauline Chanut
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018.
| |
Collapse
|
26
|
Carrero D, Pascual-Torner M, Álvarez-Puente D, Quesada V, García-Gómez C, López-Otín C. Insights into aging mechanisms from comparative genomics in orange and silver roughies. Sci Rep 2024; 14:19748. [PMID: 39187546 PMCID: PMC11347708 DOI: 10.1038/s41598-024-70642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
The demersal fish orange roughy (Hoplostethus atlanticus) can live for up to 250 years, twenty times more than its congener silver roughy (Hoplostethus mediterraneus). Studies of Hoplostethus have focused mainly on its ecology and conservation due to its vulnerability to commercial fishing. In this work, we present the de novo genomes of orange and silver roughies and explore the genomic mechanisms that could contribute to such differential longevities. Using comparative genomics on a list of more than 400 genes, we identified gene candidates with differential residue changes in Hoplostethus that are related to genomic instability, disabled macroautophagy and intercellular communication. We hypothesized that these mechanisms could have been selected as adaptations to the deep environment and, as an epiphenomenon of these mechanisms, may have contributed to an extension of the lifespan of H. atlanticus.
Collapse
Affiliation(s)
- Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain
| | - Maria Pascual-Torner
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain.
- Observatorio Marino de Asturias, Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain.
| | - Diana Álvarez-Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain
| | - Claudia García-Gómez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Ciberonc, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
27
|
Moreno AT, Loparo JJ. Measuring protein stoichiometry with single-molecule imaging in Xenopus egg extracts. Methods Enzymol 2024; 705:427-474. [PMID: 39389672 DOI: 10.1016/bs.mie.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In human cells, DNA double-strand breaks are rapidly bound by the highly abundant non-homologous end joining (NHEJ) factor Ku70/Ku80 (Ku). Cellular imaging and structural data revealed a single Ku molecule is bound to a free DNA end and yet the mechanism regulating Ku remains unclear. Here, we describe how to utilize the cell-free Xenopus laevis egg extract system in conjunction with single-molecule microscopy to investigate regulation of Ku stoichiometry during non-homologous end joining. Egg extract is an excellent model system to study DNA repair as it contains the soluble proteome including core and accessory NHEJ factors, and efficiently repairs double-strand breaks in an NHEJ-dependent manner. To examine the Ku stoichiometry in the extract system, we developed a single-molecule photobleaching assay, which reports on the number of stable associated Ku molecules by monitoring the intensity of fluorescently labeled Ku molecules bound to double-stranded DNA over time. Photobleaching is distinguishable as step decreases in fluorescence intensity and the number of photobleaching events indicate fluorophore stoichiometry. In this paper we describe sample preparation, experimental methodology, and data analysis to discern Ku stoichiometry and the regulatory mechanism controlling its loading. These approaches can be readily adopted to determine stoichiometry of molecular factors within other macromolecular complexes.
Collapse
Affiliation(s)
- Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
28
|
Shu Z, Dwivedi B, Switchenko JM, Yu DS, Deng X. PD-L1 deglycosylation promotes its nuclear translocation and accelerates DNA double-strand-break repair in cancer. Nat Commun 2024; 15:6830. [PMID: 39122729 PMCID: PMC11316045 DOI: 10.1038/s41467-024-51242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Resistance to radiotherapy is a major barrier during cancer treatment. Here using genome-scale CRISPR/Cas9 screening, we identify CD274 gene, which encodes PD-L1, to confer lung cancer cell resistance to ionizing radiation (IR). Depletion of endogenous PD-L1 delays the repair of IR-induced DNA double-strand breaks (DSBs) and PD-L1 loss downregulates non-homologous end joining (NHEJ) while overexpression of PD-L1 upregulates NHEJ. IR induces translocation of PD-L1 from the membrane into nucleus dependent on deglycosylation of PD-L1 at N219 and CMTM6 and leads to PD-L1 recruitment to DSBs foci. PD-L1 interacts with Ku in the nucleus and enhances Ku binding to DSB DNA. The interaction between the IgC domain of PD-L1 and the core domain of Ku is required for PD-L1 to accelerate NHEJ-mediated DSB repair and produce radioresistance. Thus, PD-L1, in addition to its immune inhibitory activity, acts as mechanistic driver for NHEJ-mediated DSB repair in cancer.
Collapse
Affiliation(s)
- Zhen Shu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Bioinformatics and Systems Biology Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Chen X, Chen C, Luo C, Liu J, Lin Z. Discovery of UMI-77 as a novel Ku70/80 inhibitor sensitizing cancer cells to DNA damaging agents in vitro and in vivo. Eur J Pharmacol 2024; 975:176647. [PMID: 38754534 DOI: 10.1016/j.ejphar.2024.176647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 μM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.
Collapse
Affiliation(s)
- Xuening Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Changkun Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chengmiao Luo
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianyong Liu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
30
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
31
|
Wang Y, Czap MS, Kim H, Lu H, Liu J, Chang Y, Romanienko PJ, Montagna C, Shen Z. The Mammalian KU70 C-terminus SAP Domain Is Required to Repair Exogenous DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601420. [PMID: 38979328 PMCID: PMC11230462 DOI: 10.1101/2024.06.30.601420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The mammalian non-homologous end joining (NHEJ) is required for V(D)J recombination as well as coping with exogenously induced DNA double strand breaks (DSBs). Initiated by the binding of KU70/KU80 (KU) dimer to DNA ends and the subsequent recruitment of the DNA- dependent protein kinase catalytic subunit (DNA-PKcs), NHEJ plays a key role in DNA repair. While there has been significant structural understandings of how KU70 participates in NHEJ, the specific function of its highly conserved C-terminal SAP domain remains elusive. In this study, we developed a novel mouse model by deleting the SAP domain but preserving the KU70 nuclear localization and its dimerization ability with KU80. We found that the KU70 SAP deletion did not affect the V(D)J recombination or animal development but significantly impaired the animals and cells in repairing exogenously induced DSBs. We further showed an inability of KU70-ΔSAP cells to retain the DNA Ligase IV (LIG4) and other NHEJ co-factors on chromatin, and a spreading pattern of DSB marker γH2AX in KU70-ΔSAP cells after DNA damage. Our findings suggest that a specific inhibition of the SAP function may offer an opportunity to modulate cell sensitivity to therapeutic DSB-inducing agents without interfering with the developmental function of KU70. KeyPoints Generation of a novel transgenic mouse line lacking the C-terminal conserved KU70-SAP domainKU70-SAP defends against exogenous DSBs, but unessential for development and V(D)J recombinationKU70-SAP aids in recruiting and retaining NHEJ components, such as LIG4, to DSB sites.
Collapse
|
32
|
Li T, Wang A, Zhang Y, Chen W, Guo Y, Yuan X, Liu Y, Geng Y. Chemoproteomic Profiling of Signaling Metabolite Fructose-1,6-Bisphosphate Interacting Proteins in Living Cells. J Am Chem Soc 2024; 146:15155-15166. [PMID: 38775806 DOI: 10.1021/jacs.4c01335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fructose-1,6-bisphosphate (FBP), a cellular endogenous sugar metabolite in the glycolytic pathway, has recently been reported to act as a signaling molecule to regulate various cellular events through the engagement of important proteins. Though tremendous progress has been made in identifying specific FBP-protein interactions, the comprehensive identification of FBP-interacting proteins and their regulatory mechanisms remains largely unexplored. Here, we describe a concise synthetic approach for the scalable preparation of a photoaffinity FBP probe that enables the quantitative chemoproteomic profiling of FBP-protein interactions based on photoaffinity labeling (PAL) directly in living cells. Using such a protocol, we captured known FBP targets including PKM2 and MDH2. Furthermore, among unknown FBP-interacting proteins, we identified a mitochondrial metabolic enzyme aldehyde dehydrogenase 2 (ALDH2), against which FBP showed inhibitory activity and resulted in cellular ROS upregulation accompanied by mitochondrial fragmentation. Our findings disclosed a new mode of glucose signaling mediating by the FBP-ALDH2-ROS axis.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Anhui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanling Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanshen Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yiqun Geng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Qu H, Wang Y, Yan Q, Fan C, Zhang X, Wang D, Guo C, Chen P, Shi L, Liao Q, Zhou M, Wang F, Zeng Z, Xiang B, Xiong W. CircCDYL2 bolsters radiotherapy resistance in nasopharyngeal carcinoma by promoting RAD51 translation initiation for enhanced homologous recombination repair. J Exp Clin Cancer Res 2024; 43:122. [PMID: 38654320 PMCID: PMC11036759 DOI: 10.1186/s13046-024-03049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiangyan Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
34
|
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:242-254. [PMID: 38179887 DOI: 10.1111/tpj.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.
Collapse
Affiliation(s)
- Laura Merker
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
35
|
Sato H, Ito T, Hayashi T, Kitano S, Erdjument-Bromage H, Bott MJ, Toyooka S, Zauderer M, Ladanyi M. The BAP1 nuclear deubiquitinase is involved in the nonhomologous end-joining pathway of double-strand DNA repair through interaction with DNA-PK. Oncogene 2024; 43:1087-1097. [PMID: 38383726 PMCID: PMC11449502 DOI: 10.1038/s41388-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BRCA1-associated protein 1 (BAP1) has emerged as a major tumor suppressor gene in diverse cancer types, notably in malignant pleural mesothelioma (DPM), and has also been identified as a germline cancer predisposition gene for DPM and other select cancers. However, its role in the response to DNA damage has remained unclear. Here, we show that BAP1 inactivation is associated with increased DNA damage both in Met-5A human mesothelial cells and human DPM cell lines. Through proteomic analyses, we identified PRKDC as an interaction partner of BAP1 protein complexes in DPM cells and 293 T human embryonic kidney cells. PRKDC encodes the catalytic subunit of DNA protein kinase (DNA-PKcs) which functions in the nonhomologous end-joining (NHEJ) pathway of DNA repair. Double-stranded DNA damage resulted in prominent nuclear expression of BAP1 in DPM cells and phosphorylation of BAP1 at serine 395. A plasmid-based NHEJ assay confirmed a significant effect of BAP1 knockdown on cellular NHEJ activity. Combination treatment with X-ray irradiation and gemcitabine (as a radiosensitizer) strongly suppressed the growth of BAP1-deficient cells. Our results suggest reciprocal positive interactions between BAP1 and DNA-PKcs, based on phosphorylation of BAP1 by the latter and deubiquitination of DNA-PKcs by BAP1. Thus, functional interaction of BAP1 with DNA-PKcs supports a role for BAP1 in NHEJ DNA repair and may provide the basis for new therapeutic strategies and new insights into its role as a tumor suppressor.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tatsuo Ito
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hygiene, Kawasaki Medical University, Okayama, Japan
| | - Takuo Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shigehisa Kitano
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Kimmel Center for Biology and Medicine at Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marjorie Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Atkinson J, Bezak E, Le H, Kempson I. DNA Double Strand Break and Response Fluorescent Assays: Choices and Interpretation. Int J Mol Sci 2024; 25:2227. [PMID: 38396904 PMCID: PMC10889524 DOI: 10.3390/ijms25042227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| | - Eva Bezak
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hien Le
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA 5095, Australia; (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia;
| |
Collapse
|
37
|
Stinson BM, Carney SM, Walter JC, Loparo JJ. Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining. Nat Commun 2024; 15:1250. [PMID: 38341432 PMCID: PMC10858965 DOI: 10.1038/s41467-024-45553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sean M Carney
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
39
|
Lee HJ, Im H, Lee HJ, Kim H, Yi JY. Comparison of cellular responses to ionizing radiation in keratinocytes isolated from healthy donors and type II diabetes patients. Int J Radiat Biol 2024; 100:220-235. [PMID: 37812149 DOI: 10.1080/09553002.2023.2263549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.
Collapse
Affiliation(s)
- Hae Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
40
|
Pandey A, Shen C, Feng S, Enosi Tuipulotu D, Ngo C, Liu C, Kurera M, Mathur A, Venkataraman S, Zhang J, Talaulikar D, Song R, Wong JJL, Teoh N, Kaakoush NO, Man SM. Ku70 senses cytosolic DNA and assembles a tumor-suppressive signalosome. SCIENCE ADVANCES 2024; 10:eadh3409. [PMID: 38277448 PMCID: PMC10816715 DOI: 10.1126/sciadv.adh3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Chinh Ngo
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Herston, Australia
- Mater Pathology, Mater Hospital, South Brisbane, Australia
| | - Melan Kurera
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shweta Venkataraman
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jing Zhang
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Dipti Talaulikar
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- Haematology Translational Research Unit, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- Department of Human Genomics, ACT Pathology, Canberra, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J.-L. Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Narci Teoh
- Gastroenterology and Hepatology Unit, The Australian National University Medical School at The Canberra Hospital, The Australian National University, Canberra, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
41
|
Chadda A, Kozlov AG, Nguyen B, Lohman TM, Galburt EA. Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers. J Mol Biol 2024; 436:168367. [PMID: 37972687 PMCID: PMC10836237 DOI: 10.1016/j.jmb.2023.168367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Bossaert M, Moreno A, Peixoto A, Pillaire MJ, Chanut P, Frit P, Calsou P, Loparo JJ, Britton S. Identification of the main barriers to Ku accumulation in chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574002. [PMID: 38260538 PMCID: PMC10802386 DOI: 10.1101/2024.01.03.574002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Andrew Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Marie-Jeanne Pillaire
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Pauline Chanut
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Joseph John Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| |
Collapse
|
43
|
Amin H, Zahid S, Hall C, Chaplin AK. Cold snapshots of DNA repair: Cryo-EM structures of DNA-PKcs and NHEJ machinery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:1-13. [PMID: 38036101 DOI: 10.1016/j.pbiomolbio.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The proteins and protein assemblies involved in DNA repair have been the focus of a multitude of structural studies for the past few decades. Historically, the structures of these protein complexes have been resolved by X-ray crystallography. However, more recently with the advancements in cryo-electron microscopy (cryo-EM) ranging from optimising the methodology for sample preparation to the development of improved electron detectors, the focus has shifted from X-ray crystallography to cryo-EM. This methodological transition has allowed for the structural determination of larger, more complex protein assemblies involved in DNA repair pathways and has subsequently led to a deeper understanding of the mechanisms utilised by these fascinating molecular machines. Here, we review some of the key structural advancements that have been gained in the study of non-homologous end joining (NHEJ) by the use of cryo-EM, with a focus on assemblies composed of DNA-PKcs and Ku70/80 (Ku) and the various methodologies utilised to obtain these structures.
Collapse
Affiliation(s)
- Himani Amin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sayma Zahid
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Chloe Hall
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Amanda K Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
44
|
Maity B, Moorthy H, Govindaraju T. Intrinsically Disordered Ku Protein-Derived Cell-Penetrating Peptides. ACS BIO & MED CHEM AU 2023; 3:471-479. [PMID: 38144254 PMCID: PMC10739243 DOI: 10.1021/acsbiomedchemau.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023]
Abstract
Efficient delivery of bioactive ingredients into cells is a major challenge. Cell-penetrating peptides (CPPs) have emerged as promising vehicles for this purpose. We have developed novel CPPs derived from the flexible and disordered tail extensions of DNA-binding Ku proteins. Ku-P4, the lead CPP identified in this study, is biocompatible and displays high internalization efficacy. Biophysical studies show that the proline residue is crucial for preserving the intrinsically disordered state and biocompatibility. DNA binding studies showed effective DNA condensation to form a positively charged polyplex. The polyplex exhibited effective penetration through the cell membrane and delivered the plasmid DNA inside the cell. These novel CPPs have the potential to enhance the cellular uptake and therapeutic efficacy of peptide-drug or gene conjugates.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| |
Collapse
|
45
|
Anisenko A, Galkin S, Mikhaylov AA, Khrenova MG, Agapkina Y, Korolev S, Garkul L, Shirokova V, Ikonnikova VA, Korlyukov A, Dorovatovskii P, Baranov M, Gottikh M. KuINins as a New Class of HIV-1 Inhibitors That Block Post-Integration DNA Repair. Int J Mol Sci 2023; 24:17354. [PMID: 38139188 PMCID: PMC10744174 DOI: 10.3390/ijms242417354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Simon Galkin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
| | - Maria G. Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Yulia Agapkina
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey Korolev
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Lidia Garkul
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Vasilissa Shirokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Viktoria A. Ikonnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexander Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russia;
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | | - Mikhail Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marina Gottikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
46
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
47
|
Maltseva EA, Vasil’eva IA, Moor NA, Kim DV, Dyrkheeva NS, Kutuzov MM, Vokhtantsev IP, Kulishova LM, Zharkov DO, Lavrik OI. Cas9 is mostly orthogonal to human systems of DNA break sensing and repair. PLoS One 2023; 18:e0294683. [PMID: 38019812 PMCID: PMC10686484 DOI: 10.1371/journal.pone.0294683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
CRISPR/Cas9 system is а powerful gene editing tool based on the RNA-guided cleavage of target DNA. The Cas9 activity can be modulated by proteins involved in DNA damage signalling and repair due to their interaction with double- and single-strand breaks (DSB and SSB, respectively) generated by wild-type Cas9 or Cas9 nickases. Here we address the interplay between Streptococcus pyogenes Cas9 and key DNA repair factors, including poly(ADP-ribose) polymerase 1 (SSB/DSB sensor), its closest homolog poly(ADP-ribose) polymerase 2, Ku antigen (DSB sensor), DNA ligase I (SSB sensor), replication protein A (DNA duplex destabilizer), and Y-box binding protein 1 (RNA/DNA binding protein). None of those significantly affected Cas9 activity, while Cas9 efficiently shielded DSBs and SSBs from their sensors. Poly(ADP-ribosyl)ation of Cas9 detected for poly(ADP-ribose) polymerase 2 had no apparent effect on the activity. In cellulo, Cas9-dependent gene editing was independent of poly(ADP-ribose) polymerase 1. Thus, Cas9 can be regarded as an enzyme mostly orthogonal to the natural regulation of human systems of DNA break sensing and repair.
Collapse
Affiliation(s)
| | - Inna A. Vasil’eva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Nina A. Moor
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Daria V. Kim
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Mikhail M. Kutuzov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Lilya M. Kulishova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga I. Lavrik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
48
|
Fulneček J, Klimentová E, Cairo A, Bukovcakova SV, Alexiou P, Prokop Z, Riha K. The SAP domain of Ku facilitates its efficient loading onto DNA ends. Nucleic Acids Res 2023; 51:11706-11716. [PMID: 37850645 PMCID: PMC10681742 DOI: 10.1093/nar/gkad850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Karel Riha
- CEITEC Masaryk University, Brno, Czech Republic
| |
Collapse
|
49
|
Kefala Stavridi A, Gontier A, Morin V, Frit P, Ropars V, Barboule N, Racca C, Jonchhe S, Morten M, Andreani J, Rak A, Legrand P, Bourand-Plantefol A, Hardwick S, Chirgadze D, Davey P, De Oliveira TM, Rothenberg E, Britton S, Calsou P, Blundell T, Varela P, Chaplin A, Charbonnier JB. Structural and functional basis of inositol hexaphosphate stimulation of NHEJ through stabilization of Ku-XLF interaction. Nucleic Acids Res 2023; 51:11732-11747. [PMID: 37870477 PMCID: PMC10682503 DOI: 10.1093/nar/gkad863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.
Collapse
Affiliation(s)
- Antonia Kefala Stavridi
- Heartand Lung Research Institute, University of Cambridge, Biomedical Campus, Papworth Road, Trumpington, Cambridge CB2 0BB, UK
| | - Amandine Gontier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Vincent Morin
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Carine Racca
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sagun Jonchhe
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Michael J Morten
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Alexey Rak
- Structure-Design-Informatics, Sanofi R&D, Vitry sur Seine, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Alexa Bourand-Plantefol
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Steven W Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Dimitri Y Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Paul Davey
- Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, NY, NY, USA York University, USA
| | - Sebastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Tom L Blundell
- Heartand Lung Research Institute, University of Cambridge, Biomedical Campus, Papworth Road, Trumpington, Cambridge CB2 0BB, UK
| | - Paloma F Varela
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Amanda K Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
50
|
Xie L, Bowman ME, Louie GV, Zhang C, Ardejani MS, Huang X, Chu Q, Donaldson CJ, Vaughan JM, Shan H, Powers ET, Kelly JW, Lyumkis D, Noel JP, Saghatelian A. Biochemistry and Protein Interactions of the CYREN Microprotein. Biochemistry 2023; 62:3050-3060. [PMID: 37813856 PMCID: PMC12060184 DOI: 10.1021/acs.biochem.3c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.
Collapse
Affiliation(s)
- Lina Xie
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Marianne E Bowman
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gordon V Louie
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies; Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Maziar S. Ardejani
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Xuemei Huang
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Chu
- Department of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Cynthia J Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Huanqi Shan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Evan T. Powers
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W. Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dimitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies; Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph P. Noel
- Jack H Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| |
Collapse
|