1
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024; 102:472-491. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
DelRosso N, Bintu L. Using High-Throughput Measurements to Identify Principles of Transcriptional and Epigenetic Regulators. Methods Mol Biol 2024; 2842:79-101. [PMID: 39012591 DOI: 10.1007/978-1-0716-4051-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
To achieve exquisite control over the epigenome, we need a better predictive understanding of how transcription factors, chromatin regulators, and their individual domain's function, both as modular parts and as full proteins. Transcriptional effector domains are one class of protein domains that regulate transcription and chromatin. These effector domains either repress or activate gene expression by interacting with chromatin-modifying enzymes, transcriptional cofactors, and/or general transcriptional machinery. Here, we discuss important design considerations for high-throughput investigations of effector domains, recent advances in discovering new domains in human cells and testing how domain function depends on amino acid sequence. For every effector domain, we would like to know the following: What role does the cell type, signaling state, and targeted context have on activation, silencing, and epigenetic memory? Large-scale measurements of transcriptional activities can help systematically answer these questions and identify general rules for how all these parameters affect effector domain activities. Last, we discuss what steps need to be taken to turn a newly discovered effector domain into a robust, precise epigenome editor. With more carefully considered high-throughput investigations, soon we will have better predictive control over the epigenome.
Collapse
|
3
|
Zhao Z, Liu X, Zong Y, Shi X, Sun Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023; 16:12. [PMID: 38275947 PMCID: PMC10819745 DOI: 10.3390/v16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as illustrative examples.
Collapse
Affiliation(s)
- Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
5
|
Ding X, Neumann DM, Zhu L. Host factors associated with either VP16 or VP16-induced complex differentially affect HSV-1 lytic infection. Rev Med Virol 2022; 32:e2394. [PMID: 36069169 PMCID: PMC9786836 DOI: 10.1002/rmv.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen with neurotropism. Following lytic infection in mucosal or skin epithelium, life-long latency is established mainly in sensory neurons, which can periodically reactivate by stress, leading to recurrent disease and virus transmission. During the virus's productive infection, the tegument protein VP16, a component of HSV-1 virion, is physically associated with two cellular factors, host cell factor-1 (HCF-1), and POU domain protein Oct-1, to construct the VP16-induced complex, which is essential to stimulate immediate early (IE)-gene transcription as well as initiate the lytic programme. Apart from HCF-1 and Oct-1, VP16 also associates with a series of other host factors, making a VP16-induced regulatory switch to either activate or inactivate virus gene transcription. In addition, VP16 has effects on distinct signalling pathways via binding to various host molecules that are essentially related to innate immune responses, RNA polymerases, molecular chaperones, and virus infection-induced host shutoff. VP16 also functionally compensates for given host factors, such as PPAR-γ and ß-catenin. In this review, we provide an overview of the updated insights on the interplay between VP16 and the host factors that coordinate virus infection.
Collapse
Affiliation(s)
- Xiuyan Ding
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina
| | - Donna M. Neumann
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Liqian Zhu
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina,College of Veterinary MedicineYangzhou UniversityYangzhouChina,Key Laboratory of Microbial Diversity Research and Application of Hebei ProvinceCollege of Life ScienceHebei UniversityBaodingChina
| |
Collapse
|
6
|
Lau CH, Huang S, Lam RHW, Tin C. PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Mol Ther Methods Clin Dev 2022; 26:26-37. [PMID: 35755943 PMCID: PMC9198377 DOI: 10.1016/j.omtm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
VP64 is the smallest transactivation domain that can be packaged together with the sgRNA into a single adeno-associated virus (AAV) vector. However, VP64-based CRISPRa often exerts modest activation to the target gene when only one sgRNA is used. Herein, we used PAM-flexible dual base editor-mediated mutagenesis and self-activation strategies to derive VP64 variants with gain-of-function mutations. First, we generated an HEK293FT transgenic clone to stably expressing pTK-CRISPRa-GFP. The sgRNA of CRISPRa was designed to target the TK promoter, thereby allowing self-activation of CRISPRa-GFP. Base editors were then used to randomly mutagenesis VP64 in this transgenic cell. VP64 with enhanced potency would translate into increment of GFP fluorescence intensity, thereby allowing positive selection of the desired VP64 mutants. This strategy has enabled us to identify several VP64 variants that are more potent than the wild-type VP64. ΔCRISPRa derived from these VP64 variants also efficiently activated the endogenous promoter of anti-aging and longevity genes (KLOTHO, SIRT6, and NFE2L2) in human cells. Since the overall size of these ΔCRISPRa transgenes is not increased, it remains feasible for all-in-one AAV applications. The strategies described here can facilitate high-throughput screening of the desired protein variants and adapted to evolve any other effector domains.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
7
|
Hamilton PJ, Nestler EJ. Epigenetics and addiction. Curr Opin Neurobiol 2019; 59:128-136. [PMID: 31255844 PMCID: PMC6889055 DOI: 10.1016/j.conb.2019.05.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
As an individual becomes addicted to a drug of abuse, nerve cells within the brain's reward circuitry adapt at the epigenetic level during the course of repeated drug exposure. These drug-induced epigenetic adaptations mediate enduring changes in brain function which contribute to life-long, drug-related behavioral abnormalities that define addiction. Targeting these epigenetic alterations will enhance our understanding of the biological basis of addiction and might even yield more effective anti-addiction therapies. However, the complexity of the neuroepigenetic landscape makes it difficult to determine which drug-induced epigenetic changes causally contribute to the pathogenic mechanisms of drug addiction. In this review, we highlight the evidence that epigenetic modifications, specifically histone modifications, within key brain reward regions are correlated with addiction. We then discuss the emerging field of locus-specific neuroepigenetic editing, which is a promising method for determining the causal epigenetic molecular mechanisms that drive an addicted state. Such approaches will substantially increase the field's ability to establish the precise epigenetic mechanisms underlying drug addiction, and could lead to novel treatments for addictive disorders.
Collapse
Affiliation(s)
- Peter J Hamilton
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
8
|
Three newly identified Immediate Early Genes of Bovine herpesvirus 1 lack the characteristic Octamer binding motif- 1. Sci Rep 2018; 8:11441. [PMID: 30061689 PMCID: PMC6065388 DOI: 10.1038/s41598-018-29490-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Only three immediate early genes (IE) BICP0, BICP4 and BICP22 of Bovine herpesvirus 1 (BoHV-1) are known. These genes are expressed coordinately and their promoters are well characterized. We provide evidence for expression of three additional IE genes of BoHV-1 i.e. UL21, UL33 and UL34. These genes are expressed in the presence of cycloheximide (CH) at the same time as known IE genes. Surprisingly, the promoters of newly identified IE genes (UL21, UL33, UL34) lack the OCT-1 binding site, a considered site of transactivation of the BoHV-1 IE genes. The other difference in the promoters of the newly identified IE genes is the presence of TATA box at near optimal site. However, all the IE genes have similar spatial placements of C/EBPα, DPE and INR elements.
Collapse
|
9
|
Abstract
Genome targeting has quickly developed as one of the most promising fields in science. By using programmable DNA-binding platforms and nucleases, scientists are now able to accurately edit the genome. These DNA-binding tools have recently also been applied to engineer the epigenome for gene expression modulation. Such epigenetic editing constructs have firmly demonstrated the causal role of epigenetics in instructing gene expression. Another focus of epigenome engineering is to understand the order of events of chromatin remodeling in gene expression regulation. Groundbreaking approaches in this field are beginning to yield novel insights into the function of individual chromatin marks in the context of maintaining cellular phenotype and regulating transient gene expression changes. This review focuses on recent advances in the field of epigenetic editing and highlights its promise for sustained gene expression reprogramming.
Collapse
|
10
|
Dugan A, Pricer R, Katz M, Mapp AK. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators. Protein Sci 2016; 25:1371-7. [PMID: 27213278 DOI: 10.1002/pro.2951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022]
Abstract
Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p-benzoyl-L-phenylalanine (Bpa), a genetically incorporated photo-crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast.
Collapse
Affiliation(s)
- Amanda Dugan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| | - Rachel Pricer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| | - Micah Katz
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13:127-37. [PMID: 26820547 DOI: 10.1038/nmeth.3733] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/16/2015] [Indexed: 02/08/2023]
Abstract
Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.
Collapse
|
12
|
Barrier-to-Autointegration Factor 1 (BAF/BANF1) Promotes Association of the SETD1A Histone Methyltransferase with Herpes Simplex Virus Immediate-Early Gene Promoters. mBio 2015; 6:e00345-15. [PMID: 26015494 PMCID: PMC4447252 DOI: 10.1128/mbio.00345-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have shown previously that A-type lamins and intranuclear localization of the herpes simplex virus (HSV) genome are critical for the formation of the VP16 activator complex on HSV immediate-early (IE) gene promoters in murine cells, which implies a critical role for lamin A and its associated proteins in HSV gene expression. Because barrier-to-autointegration factor 1 (BAF/BANF1) has been thought to bridge chromosomes to the nuclear lamina, we hypothesized that BAF might mediate viral genome targeting to the nuclear lamina. We found that overexpression of BAF enhances HSV-1 replication and knockdown of BAF decreases HSV gene expression, delays the kinetics of viral early replication compartment formation, and reduces viral yield compared to those in control small interfering RNA-transfected cells. However, BAF depletion did not affect genome complex targeting to the nuclear periphery. Instead, we found that the levels of a histone-modifying enzyme, SETD1A methyltransferase, and histone H3 lysine 4 trimethylation were reduced on IE and early (E) gene promoters in BAF-depleted cells during HSV lytic infection. Our results demonstrate a novel function of BAF as an epigenetic regulator of HSV lytic infection. We hypothesize that BAF facilitates IE and E gene expression by recruiting the SETD1A methyltransferase to viral IE and E gene promoters. The nuclear lamina is composed of lamin proteins and numerous lamina-associated proteins. Previously, the chromatin structure of DNA localized proximally to the lamina was thought to be characterized by heterochromatin marks associated with silenced genes. However, recent studies indicate that both heterochromatin- and euchromatin-rich areas coexist on the lamina. This paradigm suggests that lamins and lamina-associated proteins dynamically regulate epigenetic modifications of specific genes in different locations. Our goal is to understand how the lamina and its associated proteins regulate the epigenetics of genes through the study of HSV infection of human cells. We have shown previously that A-type lamins are critical for HSV genome targeting to the nuclear lamina and epigenetic regulation in viral replication. In this study, we found that another lamina-associated protein, BAF, regulates HSV gene expression through an epigenetic mechanism, which provides basic insights into the nuclear lamina and its associated proteins’ roles in epigenetic regulation.
Collapse
|
13
|
Suk H, Knipe DM. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells. Proteomics 2015; 15:1957-67. [PMID: 25809282 DOI: 10.1002/pmic.201500020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.
Collapse
Affiliation(s)
- Hyung Suk
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Capella M, Ré DA, Arce AL, Chan RL. Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB. PLANT CELL REPORTS 2014; 33:955-67. [PMID: 24531799 DOI: 10.1007/s00299-014-1576-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/23/2014] [Indexed: 05/05/2023]
Abstract
Different members of the HD-Zip I family of transcription factors exhibit differential AHA-like activation motifs, able to interact with proteins of the basal transcriptional machinery. Homeodomain-leucine zipper proteins are transcription factors unique to plants, classified in four subfamilies. Subfamily I members have been mainly associated to abiotic stress responses. Several ones have been characterized using knockout or overexpressors plants, indicating that they take part in different signal transduction pathways even when their expression patterns are similar and they bind the same DNA sequence. A bioinformatic analysis has revealed the existence of conserved motifs outside the HD-Zip domain, including transactivation AHA motifs. Here, we demonstrate that these putative activation motifs are functional. Four members of the Arabidopsis family were chosen: AtHB1, AtHB7, AtHB12 and AtHB13. All of them exhibited activation activity in yeast and in plants but with different degrees. The protein segment necessary for such activation was different for these four transcription factors as well as the role of the tryptophans they present. When interaction with components of the basal transcription machinery was tested, AtHB1 was able to interact with TBP, AtHB12 interacted with TFIIB, AtHB7 interacted with both, TBP and TFIIB while AtHB13 showed weak interactions with any of them, in yeast two-hybrid as well as in pull-down assays. Transient transformation of Arabidopsis seedlings confirmed the activation capacity and specificity of these transcription factors and showed some differences with the results obtained in yeast. In conclusion, the differential activation functionality of these transcription factors adds an important level of functional divergence of these proteins, and together with their expression patterns, these differences could explain, at least in part, their functional divergence.
Collapse
Affiliation(s)
- Matías Capella
- Instituto de Agrobiotecnología del Litoral, CONICET-UNL, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
15
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
16
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
17
|
Effective formation of the segregation-competent complex determines successful partitioning of the bovine papillomavirus genome during cell division. J Virol 2010; 84:11175-88. [PMID: 20810736 DOI: 10.1128/jvi.01366-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Effective segregation of the bovine papillomavirus type 1 (BPV1), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated human herpesvirus type 8 (KSHV) genomes into daughter cells is mediated by a single viral protein that tethers viral genomes to host mitotic chromosomes. The linker proteins that mediate BPV1, EBV, and KSHV segregation are E2, LANA1, and EBNA1, respectively. The N-terminal transactivation domain of BPV1 E2 is responsible for chromatin attachment and subsequent viral genome segregation. Because E2 transcriptional activation and chromatin attachment functions are not mutually exclusive, we aimed to determine the requirement of these activities during segregation by analyzing chimeric E2 proteins. This approach allowed us to separate the two activities. Our data showed that attachment of the segregation protein to chromatin is not sufficient for proper segregation. Rather, formation of a segregation-competent complex which carries multiple copies of the segregation protein is required. Complementation studies of E2 functional domains indicated that chromatin attachment and transactivation functions must act in concert to ensure proper plasmid segregation. These data indicate that there are specific interactions between linker molecules and transcription factors/complexes that greatly increase segregation-competent complex formation. We also showed, using hybrid E2 molecules, that restored segregation function does not involve interactions with Brd4.
Collapse
|
18
|
Tan J, Hao P, Jia R, Yang W, Liu R, Wang J, Xi Z, Geng Y, Qiao W. Identification and functional characterization of BTas transactivator as a DNA-binding protein. Virology 2010; 405:408-13. [PMID: 20615521 DOI: 10.1016/j.virol.2010.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 11/15/2022]
Abstract
The genome of bovine foamy virus (BFV) encodes a transcriptional transactivator, namely BTas, that remarkably enhances gene expression by binding to the viral long-terminal repeat promoter (LTR) and internal promoter (IP). In this report, we characterized the functional domains of BFV BTas. BTas contains two major functional domains: the N-terminal DNA-binding domain (residues 1-133) and the C-terminal activation domain (residues 198-249). The complete BTas responsive regions were mapped to the positions -380/-140 of LTR and 9205/9276 of IP. Four BTas responsive elements were identified at the positions -368/-346, -327/-307, -306/-285 and -186/-165 of the BFV LTR, and one element was identified at the position 9243/9264 of the BFV IP. Unlike other foamy viruses, the five BTas responsive elements in BFV shared obvious sequence homology. These data suggest that among the complex retroviruses, BFV appears to have a unique transactivation mechanism.
Collapse
Affiliation(s)
- Juan Tan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Taylor JL, Rohatgi P, Spencer HT, Doyle DF, Azizi B. Characterization of a molecular switch system that regulates gene expression in mammalian cells through a small molecule. BMC Biotechnol 2010; 10:15. [PMID: 20167077 PMCID: PMC2831033 DOI: 10.1186/1472-6750-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular switch systems that activate gene expression by a small molecule are effective technologies that are widely used in applied biological research. Nuclear receptors are valuable candidates for these regulation systems due to their functional role as ligand activated transcription factors. Previously, our group engineered a variant of the retinoid x receptor to be responsive to the synthetic compound, LG335, but not responsive to its natural ligand, 9-cis-retinoic acid. RESULTS This work focuses on characterizing a molecular switch system that quantitatively controls transgene expression. This system is composed of an orthogonal ligand/nuclear receptor pair, LG335 and GRQCIMFI, along with an artificial promoter controlling expression of a target transgene. GRQCIMFI is composed of the fusion of the DNA binding domain of the yeast transcription factor, Gal4, and a retinoid x receptor variant. The variant consists of the following mutations: Q275C, I310M, and F313I in the ligand binding domain. When introduced into mammalian cell culture, the switch shows luciferase activity at concentrations as low as 100 nM of LG335 with a 6.3 +/- 1.7-fold induction ratio. The developed one-component system activates transgene expression when introduced transiently or virally. CONCLUSIONS We have successfully shown that this system can induce tightly controlled transgene expression and can be used for transient transfections or retroviral transductions in mammalian cell culture. Further characterization is needed for gene therapy applications.
Collapse
Affiliation(s)
- Jennifer L Taylor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
20
|
Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol 2009; 83:5835-45. [PMID: 19321615 DOI: 10.1128/jvi.00219-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During lytic infection by herpes simplex virus type 1 (HSV-1), histones are present at relatively low levels on the viral genome. However, the mechanisms that account for such low levels--how histone deposition on the viral genome is blocked or how histones are removed from the genome--are not yet defined. In this study, we show that histone occupancy on the viral genome gradually increased with time when transcription of the viral immediate-early (IE) genes was inhibited either by deletion of the VP16 activation domain or by chemical inhibition of RNA polymerase II (RNAP II). Inhibition of IE protein synthesis by cycloheximide did not affect histone occupancy on most IE promoters and coding regions but did cause an increase at delayed-early and late gene promoters. IE gene transcription from HSV-1 genomes associated with high levels of histones was stimulated by superinfection with HSV-2 without altering histone occupancy or covalent histone modifications at IE gene promoters. Moreover, RNAP II and histones cooccupied the viral genome in this context, indicating that RNAP II does not preferentially associate with viral genomes that are devoid of histones. These results suggest that during lytic infection, VP16, RNAP II, and IE proteins may all contribute to the low levels of histones on the viral genome, and yet the dearth of histones is neither a prerequisite for nor a necessary result of VP16-dependent transcription of nucleosomal viral genomes.
Collapse
|
21
|
Transcriptional coactivators are not required for herpes simplex virus type 1 immediate-early gene expression in vitro. J Virol 2009; 83:3436-49. [PMID: 19176620 DOI: 10.1128/jvi.02349-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virion protein 16 (VP16) of herpes simplex virus type 1 (HSV-1) is a potent transcriptional activator of viral immediate-early (IE) genes. The VP16 activation domain can recruit various transcriptional coactivators to target gene promoters. However, the role of transcriptional coactivators in HSV-1 IE gene expression during lytic infection had not been fully defined. We showed previously that transcriptional coactivators such as the p300 and CBP histone acetyltransferases and the BRM and Brg-1 chromatin remodeling complexes are recruited to viral IE gene promoters in a manner dependent mostly on the presence of the activation domain of VP16. In this study, we tested the hypothesis that these transcriptional coactivators are required for viral IE gene expression during infection of cultured cells. The disrupted expression of the histone acetyltransferases p300, CBP, PCAF, and GCN5 or the BRM and Brg-1 chromatin remodeling complexes did not diminish IE gene expression. Furthermore, IE gene expression was not impaired in cell lines that lack functional p300, or BRM and Brg-1. We also tested whether these coactivators are required for the VP16-dependent induction of IE gene expression from transcriptionally inactive viral genomes associated with high levels of histones in cultured cells. We found that the disruption of coactivators also did not affect IE gene expression in this context. Thus, we conclude that the transcriptional coactivators that can be recruited by VP16 do not contribute significantly to IE gene expression during lytic infection or the induction of IE gene expression from nucleosomal templates in vitro.
Collapse
|
22
|
Ray S, Paulmurugan R, Patel MR, Ahn BC, Wu L, Carey M, Gambhir SS. Noninvasive imaging of therapeutic gene expression using a bidirectional transcriptional amplification strategy. Mol Ther 2008; 16:1848-56. [PMID: 18766175 DOI: 10.1038/mt.2008.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promoters that limit transgene expression to tumors play a vital role in cancer gene therapy. Although tumor specific, the human Survivin promoter (pSurv) elicits low levels of transcription. A bidirectional two-step transcriptional amplification (TSTA) system was designed to enhance expression of the therapeutic gene (TG) tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL or TR) and the reporter gene firefly luciferase (FL) from pSurv. An adenoviral vector carrying the enhanced targeting apparatus (Ad-pSurv-TR-G8-FL) was tested for efficiency and specificity of gene expression in cells and in living animals. Compared to the one-step systems (Ad-pSurv-FL or Ad-pSurv-TR), the bidirectional TSTA system showed tenfold higher expression of both the therapeutic and the reporter gene and their expression correlated in cells (R(2) = 0.99) and in animals (R(2) = 0.67). Noninvasive quantitative monitoring of magnitude and time variation of TRAIL gene expression was feasible by bioluminescence imaging of the transcriptionally linked FL gene in xenograft tumors following intratumoral adenoviral injection. Moreover, the TSTA adenovirus maintained promoter specificity in nontarget tissues following tail vein administration. These studies demonstrate the potential of the bidirectional TSTA system to achieve high levels of gene expression from a weak promoter, while preserving specificity and the ability to image expression of the TG noninvasively.
Collapse
Affiliation(s)
- Sunetra Ray
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Langlois C, Mas C, Di Lello P, Jenkins LMM, Legault P, Omichinski JG. NMR Structure of the Complex between the Tfb1 Subunit of TFIIH and the Activation Domain of VP16: Structural Similarities between VP16 and p53. J Am Chem Soc 2008; 130:10596-604. [DOI: 10.1021/ja800975h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chantal Langlois
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| | - Caroline Mas
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| | - Paola Di Lello
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| | - Lisa M. Miller Jenkins
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| | - Pascale Legault
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| | - James G. Omichinski
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7 Canada, and Laboratory of Cell Biology, NCI, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256
| |
Collapse
|
24
|
Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008; 373:239-47. [PMID: 18191976 DOI: 10.1016/j.virol.2007.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/02/2007] [Accepted: 11/28/2007] [Indexed: 12/27/2022]
Abstract
Curcumin, a phenolic compound from the curry spice turmeric, exhibits a wide range of activities in eukaryotic cells, including antiviral effects that are at present incompletely characterized. Curcumin is known to inhibit the histone acetyltransferase activity of the transcriptional coactivator proteins p300 and CBP, which are recruited to the immediate early (IE) gene promoters of herpes simplex virus type 1 (HSV-1) by the viral transactivator protein VP16. We tested the hypothesis that curcumin, by inhibiting these coactivators, would block viral infection and gene expression. In cell culture assays, curcumin significantly decreased HSV-1 infectivity and IE gene expression. Entry of viral DNA to the host cell nucleus and binding of VP16 to IE gene promoters was not affected by curcumin, but recruitment of RNA polymerase II to those promoters was significantly diminished. However, these effects were observed using lower curcumin concentrations than those required to substantially inhibit global H3 acetylation. No changes were observed in histone H3 occupancy or acetylation at viral IE gene promoters. Furthermore, p300 and CBP recruitment to IE gene promoters was not affected by the presence of curcumin. Finally, disruption of p300 expression using a short hairpin RNA did not affect viral IE gene expression. These results suggest that curcumin affects VP16-mediated recruitment of RNA polymerase II to IE gene promoters by a mechanism independent of p300/CBP histone acetyltransferase activity.
Collapse
Affiliation(s)
- Sebla B Kutluay
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
25
|
Proteomics of RNA polymerase II holoenzymes during P19 cardiomyogenesis. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe embryonal carcinoma P19 model has allowed the elucidation of a role for several transcription factors in cell differentiation. Here, the regulation of the RNA polymerase II machinery has been explored through its association with multifunctional complexes involved in transcription. An interaction proteomics analysis of TFIIS-purified RNA polymerase II (RNAPII) holoenzymes during cardiomyogenesis is described. Modifications of protein complexes that may be associated with transcriptionally active and activator responsive RNAPII holoenzymes were detected in a serum and DMSO dependent manner. Subunits of the PAF1 and Mediator complexes were correlated with holoenzymes from non-differentiated and terminally differentiated P19 cultures respectively. Moreover, high levels of nucleolin were identified in all forms of holoenzymes by two-dimensional gel electrophoresis, and suggest that nucleolin could bind to RNAPII and TFIIS. Several proteins that were identified in the RNAPII holoenzymes are known to have functions in mRNA processing and may bind to nucleolin. A novel function for nucleolin is proposed as a possible pivotal platform between transcription, mRNA processing and export.
Collapse
|
26
|
Abstract
Quantitative characteristics of interaction recombinant TATA-binding protein (TBP) with oligonucleotides identical to natural TATA-containing promoter region genes of mammals are received. In particular, new experimental data about the importance guanine in 8-th position of the TATA-element for affinity to TBP are received. The experimental data, testifying that raised maintenance G and С nucleotides in flanks of TATA-element does the contribution to affinity to TBP are received.
Collapse
|
27
|
Kraemer SM, Goldstrohm DA, Berger A, Hankey S, Rovinsky SA, Scott Moye-Rowley W, Stargell LA. TFIIA plays a role in the response to oxidative stress. EUKARYOTIC CELL 2006; 5:1081-90. [PMID: 16835452 PMCID: PMC1489289 DOI: 10.1128/ec.00071-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.
Collapse
Affiliation(s)
- Susan M Kraemer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang M, Peng H, Hay J, Ruyechan WT. Promoter activation by the varicella-zoster virus major transactivator IE62 and the cellular transcription factor USF. J Virol 2006; 80:7339-53. [PMID: 16840315 PMCID: PMC1563731 DOI: 10.1128/jvi.00309-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The varicella-zoster virus major transactivator, IE62, can activate expression from homologous and heterologous promoters. High levels of IE62-mediated activation appear to involve synergy with cellular transcription factors. The work presented here focuses on functional interactions of IE62 with the ubiquitously expressed cellular factor USF. We have found that USF can synergize with IE62 to a similar extent on model minimal promoters and the complex native ORF28/29 regulatory element, neither of which contains a consensus IE62 binding site. Using Gal4 fusion constructs, we have found that the activation domain of USF1 is necessary and sufficient for synergistic activation with IE62. We have mapped the regions of USF and IE62 required for direct physical interaction. Deletion of the required region within IE62 does not ablate synergistic activation but does influence its efficiency depending on promoter architecture. Both proteins stabilize/increase binding of TATA binding protein/TFIID to promoter elements. These findings suggest a novel mechanism for the observed synergistic activation which requires neither site-specific IE62 binding to the promoter nor a direct physical interaction with USF.
Collapse
Affiliation(s)
- Min Yang
- Department of Microbiology and Immunology, 138 Farber Hall, University at Buffalo, Buffalo, NY 14214-3000, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested approximately 6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix-loop-helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2).
Collapse
Affiliation(s)
| | | | | | - Tomoko Chiba
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Takashi Ito
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Peter Uetz
- To whom correspondence should be addressed. Tel: +49 7247 82 6103; Fax: +49 7247 82 3354;
| |
Collapse
|
30
|
Ferreira ME, Hermann S, Prochasson P, Workman JL, Berndt KD, Wright APH. Mechanism of Transcription Factor Recruitment by Acidic Activators. J Biol Chem 2005; 280:21779-84. [PMID: 15826952 DOI: 10.1074/jbc.m502627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many transcriptional activators are intrinsically unstructured yet display unique, defined conformations when bound to target proteins. Target-induced folding provides a mechanism by which activators could form specific interactions with an array of structurally unrelated target proteins. Evidence for such a binding mechanism has been reported previously in the context of the interaction between the cancer-related c-Myc protein and the TATA-binding protein, which can be modeled as a two-step process in which a rapidly forming, low affinity complex slowly converts to a more stable form, consistent with a coupled binding and folding reaction. To test the generality of the target-induced folding model, we investigated the binding of two widely studied acidic activators, Gal4 and VP16, to a set of target proteins, including TATA-binding protein and the Swi1 and Snf5 subunits of the Swi/Snf chromatin remodeling complex. Using surface plasmon resonance, we show that these activator-target combinations also display bi-phasic kinetics suggesting two distinct steps. A fast initial binding phase that is inhibited by high ionic strength is followed by a slow phase that is favored by increased temperature. In all cases, overall affinity increases with temperature and, in most cases, with increased ionic strength. These results are consistent with a general mechanism for recruitment of transcriptional components to promoters by naturally occurring acidic activators, by which the initial contact is mediated predominantly through electrostatic interactions, whereas subsequent target-induced folding of the activator results in a stable complex.
Collapse
Affiliation(s)
- Monica E Ferreira
- Department of Life Sciences, Södertörns Högskola, S-141 89 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Langelier MF, Baali D, Trinh V, Greenblatt J, Archambault J, Coulombe B. The highly conserved glutamic acid 791 of Rpb2 is involved in the binding of NTP and Mg(B) in the active center of human RNA polymerase II. Nucleic Acids Res 2005; 33:2629-39. [PMID: 15886393 PMCID: PMC1092279 DOI: 10.1093/nar/gki570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/13/2022] Open
Abstract
During transcription by RNA polymerase (RNAP) II, the incoming ribonucleoside triphosphate (NTP) enters the catalytic center in association with an Mg2+ ion, termed metal B [Mg(B)]. When bound to RNAP II, Mg(B) is coordinated by the beta and gamma phosphates of the NTP, Rpb1 residues D481 and D483 and Rpb2 residue D837. Rpb2 residue D837 is highly conserved across species. Notably, its neighboring residue, E836 (E791 in human RNAP II), is also highly conserved. To probe the role of E791 in transcription, we have affinity purified and characterized a human RNAP II mutant in which this residue was substituted for alanine. Our results indicate that the transcription activity of the Rpb2 E791A mutant is impaired at low NTP concentrations both in vitro and in vivo. They also revealed that both its NTP polymerization and transcript cleavage activities are decreased at low Mg concentrations. Because Rpb2 residue E791 appears to be located too far from the NTP-Mg(B) complex to make direct contact at either the entry (E) or addition (A) site, we propose alternative mechanisms by which this highly conserved residue participates in loading NTP-Mg(B) in the active site during transcription.
Collapse
Affiliation(s)
- Marie-France Langelier
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Dania Baali
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Vincent Trinh
- Laboratory of Gene Transcription, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of TorontoToronto, Ontario, Canada M5G 1L6
| | - Jacques Archambault
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | - Benoit Coulombe
- To whom correspondence should be addressed. Tel: +1 514 987 5662; Fax: +1 514 987 5663;
| |
Collapse
|
32
|
Carpenter AE, Memedula S, Plutz MJ, Belmont AS. Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol 2005; 25:958-68. [PMID: 15657424 PMCID: PMC544008 DOI: 10.1128/mcb.25.3.958-968.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization system to allow systematic dissection of the function of acidic activators, individual subdomains within these activators, and short acidic-hydrophobic peptide motifs within these subdomains. Here, we demonstrate that large-scale chromatin decondensation activity is a general property of acidic activators. Moreover, this activity maps to the same acidic activator subdomains and acidic-hydrophobic peptide motifs that are responsible for transcriptional activation. Two copies of a mutant peptide motif of VP16 (viral protein 16) possess large-scale chromatin decondensation activity but minimal transcriptional activity, and a synthetic acidic-hydrophobic peptide motif had large-scale chromatin decondensation activity comparable to the strongest full-length acidic activator but no transcriptional activity. Therefore, the general property of large-scale chromatin decondensation shared by most acidic activators is not simply a direct result of transcription per se but is most likely the result of the concerted action of coactivator proteins recruited by the activators' short acidic-hydrophobic peptide motifs.
Collapse
Affiliation(s)
- Anne E Carpenter
- Department of Cell and Structural Biology, B107 CLSL, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
33
|
Stebbins JL, Triezenberg SJ. Identification, mutational analysis, and coactivator requirements of two distinct transcriptional activation domains of the Saccharomyces cerevisiae Hap4 protein. EUKARYOTIC CELL 2004; 3:339-47. [PMID: 15075264 PMCID: PMC387635 DOI: 10.1128/ec.3.2.339-347.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hap4 protein of the budding yeast Saccharomyces cerevisiae activates the transcription of genes that are required for growth on nonfermentable carbon sources. Previous reports suggested the presence of a transcriptional activation domain within the carboxyl-terminal half of Hap4 that can function in the absence of Gcn5, a transcriptional coactivator protein and histone acetyltransferase. The boundaries of this activation domain were further defined to a region encompassing amino acids 359 to 476. Within this region, several clusters of hydrophobic amino acids are critical for transcriptional activity. This activity does not require GCN5 or two other components of the SAGA coactivator complex, SPT3 and SPT8, but it does require SPT7 and SPT20. Contrary to previous reports, a Hap4 fragment comprising amino acids 1 to 330 can support the growth of yeast on lactate medium, and when tethered to lexA, can activate a reporter gene with upstream lexA binding sites, demonstrating the presence of a second transcriptional activation domain. In contrast to the C-terminal activation domain, the transcriptional activity of this N-terminal region depends on GCN5. We conclude that the yeast Hap4 protein has at least two transcriptional activation domains with strikingly different levels of dependence on specific transcriptional coactivator proteins.
Collapse
Affiliation(s)
- John L Stebbins
- Graduate Program in Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
34
|
Herrera FJ, Triezenberg SJ. VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 2004; 78:9689-96. [PMID: 15331701 PMCID: PMC515004 DOI: 10.1128/jvi.78.18.9689-9696.2004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During infection by herpes simplex virus type 1 (HSV-1), the virion protein VP16 activates the transcription of viral immediate-early (IE) genes. Genetic and biochemical assays have shown that the potent transcriptional activation domain of VP16 can associate with general transcription factors and with chromatin-modifying coactivator proteins of several types. The latter interactions are particularly intriguing because previous reports indicate that HSV-1 DNA does not become nucleosomal during lytic infection. In the present work, chemical cross-linking and immunoprecipitation assays were used to probe the presence of activators, general transcription factors, and chromatin-modifying coactivators at IE gene promoters during infection of HeLa cells by wild-type HSV-1 and by RP5, a viral strain lacking the VP16 transcriptional activation domain. The presence of VP16 and Oct-1 at IE promoters did not depend on the activation domain. In contrast, association of RNA polymerase II, TATA-binding protein, histone acetyltransferases (p300 and CBP), and ATP-dependent remodeling proteins (BRG1 and hBRM) with IE gene promoters was observed in wild-type infections but was absent or reduced in cells infected by RP5. In contrast to the previous evidence for nonnucleosomal HSV-1 DNA, histone H3 was found associated with viral DNA at early times of infection. Interestingly, histone H3 was underrepresented on IE promoters in a manner dependent on the VP16 activation domain. Thus, the VP16 activation domain is responsible for recruiting general transcription factors and coactivators to IE promoters and also for dramatically reducing the association of histones with those promoters.
Collapse
Affiliation(s)
- Francisco J Herrera
- Department of Biochemistry and Molecular Biology, 510 Biochemistry Building, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
35
|
Jeronimo C, Langelier MF, Zeghouf M, Cojocaru M, Bergeron D, Baali D, Forget D, Mnaimneh S, Davierwala AP, Pootoolal J, Chandy M, Canadien V, Beattie BK, Richards DP, Workman JL, Hughes TR, Greenblatt J, Coulombe B. RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits. Mol Cell Biol 2004; 24:7043-58. [PMID: 15282305 PMCID: PMC479746 DOI: 10.1128/mcb.24.16.7043-7058.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/09/2004] [Accepted: 05/14/2004] [Indexed: 11/20/2022] Open
Abstract
We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction.
Collapse
Affiliation(s)
- Célia Jeronimo
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Albrecht RA, Kim SK, Zhang Y, Zhao Y, O'Callaghan DJ. The equine herpesvirus 1 EICP27 protein enhances gene expression via an interaction with TATA box-binding protein. Virology 2004; 324:311-26. [PMID: 15207618 DOI: 10.1016/j.virol.2004.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/11/2004] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
The mechanism(s) by which the early EICP27 gene product cooperates with other equine herpesvirus 1 (EHV-1) regulatory proteins to achieve maximal promoter activity remains unknown. Transient transfection assays revealed that deletion of residues 93-140 of the 470-aa EICP27 protein substantially diminished its activation of the immediate-early (IE) promoter, whereas deletion of residues 140-470 that contain a zinc-finger motif abolished this activity. Fluorescence microscopy of cells expressing the full-length EICP27 protein or portions of this protein revealed that an arginine-rich sequence spanning residues 178-185 mediates nuclear entry. Experiments employing the mammalian Gal4 two-plasmid system revealed that the EICP27 protein does not possess an independent trans-activation domain (TAD). Protein-protein interaction assays using purified proteins revealed that residues 124-220 of the EICP27 protein mediate its direct interaction with TATA box-binding protein (TBP). Partial deletion of this TBP-binding domain attenuated the ability of the EICP27 protein to stimulate the IE and early EICP0 promoters by 68% and 71%, respectively, indicating the importance of this protein-protein interaction.
Collapse
Affiliation(s)
- Randy A Albrecht
- Center for Molecular and Tumor Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
37
|
Nedialkov YA, Triezenberg SJ. Quantitative assessment of in vitro interactions implicates TATA-binding protein as a target of the VP16C transcriptional activation region. Arch Biochem Biophys 2004; 425:77-86. [PMID: 15081896 DOI: 10.1016/j.abb.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 03/02/2004] [Indexed: 11/18/2022]
Abstract
Models of mechanisms of transcriptional activation in eukaryotes frequently invoke direct interactions of transcriptional activation domains with target proteins including general transcription factors or coactivators such as chromatin modifying complexes. The potent transcriptional activation domain (AD) of the VP16 protein of herpes simplex virus has previously been shown to interact with several general transcription factors including the TATA-binding protein (TBP), TBP-associated factor 9 (TAF9), TFIIA, and TFIIB. In surface plasmon resonance assays, a module of the VP16 AD designated VP16C (residues 452-490) bound to TBP with an affinity notably stronger than to TAF9, TFIIA or TFIIB. Moreover, the interaction of VP16C with TBP correlated well with transcriptional activity for a panel of VP16C substitution variants. These results support models in which the interactions of ADs with TBP play an important role in transcriptional activation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
38
|
Forget D, Langelier MF, Thérien C, Trinh V, Coulombe B. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol Cell Biol 2004; 24:1122-31. [PMID: 14729958 PMCID: PMC321454 DOI: 10.1128/mcb.24.3.1122-1131.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/03/2003] [Indexed: 11/20/2022] Open
Abstract
The topological organization of a TATA binding protein-TFIIB-TFIIF-RNA polymerase II (RNAP II)-TFIIE-promoter complex was analyzed using site-specific protein-DNA photo-cross-linking of gel-purified complexes. The cross-linking results for the subunits of RNAP II were used to determine the path of promoter DNA against the structure of the enzyme. The results indicate that promoter DNA wraps around the mobile clamp of RNAP II. Cross-linking of TFIIF and TFIIE both upstream of the TATA element and downstream of the transcription start site suggests that both factors associate with the RNAP II mobile clamp. TFIIE alpha closely approaches promoter DNA at nucleotide -10, a position immediately upstream of the transcription bubble in the open complex. Increased stimulation of transcription initiation by TFIIE alpha is obtained when the DNA template is artificially premelted in the -11/-1 region, suggesting that TFIIE alpha facilitates open complex formation, possibly through its interaction with the upstream end of the partially opened transcription bubble. These results support the central roles of the mobile clamp of RNAP II and TFIIE in transcription initiation.
Collapse
Affiliation(s)
- Diane Forget
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
39
|
Albrecht RA, Jang HK, Kim SK, O'Callaghan DJ. Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function. Virology 2004; 316:302-12. [PMID: 14644612 DOI: 10.1016/j.virol.2003.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we reported that the immediate-early (IE) protein of equine herpesvirus 1 (EHV-1) associates with transcription factor TFIIB [J. Virol. 75 (2001), 10219]. In the current study, the IE protein purified as a glutathione-S-transferase (GST) fusion protein was shown to interact directly with purified TFIIB in GST-pulldown assays. A panel of TFIIB mutants employed in protein-binding assays revealed that residues 125 to 174 within the first direct repeat of TFIIB mediate its interaction with the IE protein. This interaction is physiologically relevant as transient transfection assays demonstrated that (1). exogenous native TFIIB did not perturb IE protein function, and (2). ectopic expression of a TFIIB mutant that lacked the IE protein interactive domain significantly diminished the ability of the IE protein to trans-activate EHV-1 promoters. These results suggest that an interaction of the IE protein with TFIIB is an important aspect of the regulatory role of the IE protein in the trans-activation of EHV-1 promoters.
Collapse
Affiliation(s)
- Randy A Albrecht
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
40
|
Dion V, Coulombe B. Interactions of a DNA-bound transcriptional activator with the TBP-TFIIA-TFIIB-promoter quaternary complex. J Biol Chem 2003; 278:11495-501. [PMID: 12538582 PMCID: PMC4492720 DOI: 10.1074/jbc.m211938200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-specific protein-DNA photo-cross-linking was used to show that, when bound to its cognate site at various distances upstream of the TATA element, the chimeric transcriptional activator GAL4-VP16 can physically interact with a TATA box-binding protein (TBP)- transcription factor IIA (TFIIA)-TFIIB complex assembled on the TATA element. This result implies DNA bending and looping of promoter DNA as a result of the physical interaction between GAL4-VP16 and an interface of the TBP-TFIIA-TFIIB complex. This protein-protein interaction on promoter DNA minimally requires the presence of one GAL4 binding site and the formation of a quaternary complex containing TBP, TFIIB, and TFIIA on the TATA element. Notably, the topology of the TBP-TFIIA-TFIIB-promoter complex is not altered significantly by the interaction with DNA-bound activators. We also show that the ability of GAL4-VP16 to activate transcription through a single GAL4 binding site varies according to its precise location and orientation relative to the TATA element and that it can approach the efficiency obtained with multiple binding sites. Taken together, our results indicate that the spatial positioning of the DNA-bound activation domain is important for efficient activation, possibly by maximizing its interactions with the transcriptional machinery including the TBP-TFIIA-TFIIB-promoter quaternary complex.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
41
|
Klein J, Nolden M, Sanders SL, Kirchner J, Weil PA, Melcher K. Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA. J Biol Chem 2003; 278:6779-86. [PMID: 12501245 DOI: 10.1074/jbc.m212514200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important goal is to identify the direct activation domain (AD)-interacting components of the transcriptional machinery within the context of native complexes. Toward this end, we first demonstrate that the multisubunit TFIID, SAGA, mediator, and Swi/Snf coactivator complexes from transcriptionally competent whole-cell yeast extracts were all capable of specifically interacting with the prototypic acidic ADs of Gal4 and VP16. We then used hexahistidine tags as genetically introduced activation domain-localized cross-linking receptors. In combination with immunological reagents against all subunits of TFIID and SAGA, we systematically identified the direct AD-interacting subunits within the AD-TFIID and AD-SAGA coactivator complexes enriched from whole-cell extracts and confirmed these results using purified TFIID and partially purified SAGA. Both ADs directly cross-linked to TBP and to a subset of TFIID and SAGA subunits that carry histone-fold motifs.
Collapse
Affiliation(s)
- Joachim Klein
- Department of Microbiology, Goethe University, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Bhaumik SR, Green MR. Interaction of Gal4p with components of transcription machinery in vivo. Methods Enzymol 2003; 370:445-54. [PMID: 14712666 DOI: 10.1016/s0076-6879(03)70038-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | |
Collapse
|
43
|
Nedialkov YA, Shooltz DD, Triezenberg SJ. Purification and Protein Interaction Assays of the VP16C Transcription Activation Domain. Methods Enzymol 2003; 370:522-35. [PMID: 14712672 DOI: 10.1016/s0076-6879(03)70044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
44
|
Fischbeck JA, Kraemer SM, Stargell LA. SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics 2002; 162:1605-16. [PMID: 12524336 PMCID: PMC1462358 DOI: 10.1093/genetics/162.4.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about TATA-binding protein (TBP) functions after recruitment to the TATA element, although several TBP mutants display postrecruitment defects. Here we describe a genetic screen for suppressors of a postrecruitment-defective TBP allele. Suppression was achieved by a single point mutation in a previously uncharacterized Saccharomyces cerevisiae gene, SPN1 (suppresses postrecruitment functions gene number 1). SPN1 is an essential yeast gene that is highly conserved throughout evolution. The suppressing mutation in SPN1 substitutes an asparagine for an invariant lysine at position 192 (spn1(K192N)). The spn1(K192N) strain is able to suppress additional alleles of TBP that possess postrecruitment defects, but not a TBP allele that is postrecruitment competent. In addition, Spn1p does not stably associate with TFIID in vivo. Cells containing the spn1(K192N) allele exhibit a temperature-sensitive phenotype and some defects in activated transcription, whereas constitutive transcription appears relatively robust in the mutant background. Consistent with an important role in postrecruitment functions, transcription from the CYC1 promoter, which has been shown to be regulated by postrecruitment mechanisms, is enhanced in spn1(K192N) cells. Moreover, we find that SPN1 is a member of the SPT gene family, further supporting a functional requirement for the SPN1 gene product in transcriptional processes.
Collapse
Affiliation(s)
- Julie A Fischbeck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
45
|
Hall DB, Struhl K. The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 2002; 277:46043-50. [PMID: 12297514 DOI: 10.1074/jbc.m208911200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activator proteins recruit the RNA polymerase II machinery and chromatin-modifying activities to promoters. Biochemical experiments indicate that activator proteins can associate with a large number of proteins, and many such proteins have been proposed to be direct targets of activators. However, there is great uncertainty about which biochemical interactions are physiologically relevant. Here, we develop a formaldehyde-based cross-linking procedure to identify protein-protein interactions that occur under physiological conditions. We show that the VP16 activation domain directly interacts with TATA-binding protein (TBP), TFIIB, and the SAGA histone acetylase complex in vivo.
Collapse
Affiliation(s)
- Daniel B Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY, Lee SD. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 2002; 21:4801-11. [PMID: 12101418 DOI: 10.1038/sj.onc.1205589] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Revised: 04/09/2002] [Accepted: 04/15/2002] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) causes a persistent infection, chronic hepatitis and hepatocellular carcinoma. HCV NS5A, one of non-structural proteins of HCV, was suggested to play a role in oncogenic transformation. Since the tumor suppressor p53 is important for preventing neoplastic transformation, we investigated the functional effects of HCV NS5A on p53. In vitro and in vivo coimmunoprecipitation and confocal microscopy were used to determine the interaction of NS5A and p53. HCV NS5A binds directly to p53 and colocalizes p53 in the perinuclear region. NS5A inhibits transcriptional transactivation by p53 in a dose-dependent manner by use of a reporter assay. Down regulation of endogenous p21/waf1 expression, which is activated by p53 in Hep3B cells, by NS5A was demonstrated by using FLAG- and FLAG-NS5A Hep3B stable cell lines. The effect of NS5A on p53-mediated apoptosis was determined by flow cytometry in both NS5A permanently and transiently transfected Hep3B cells with exogenous p53. The p53-induced apoptosis was abrogated by NS5A and the inhibition effect correlates well with the binding ability of NS5A to p53. In addition, HCV NS5A protein interacts with and colocalizes hTAF(II)32, a component of TFIID and an essential coactivator of p53, in vivo. These results suggest that HCV NS5A interacts with and partially sequestrates p53 and hTAF(II)32 in the cytoplasm and suppresses p53-mediated transcriptional transactivation and apoptosis during HCV infection, which may contribute to the hepatocarcinogenesis of HCV infection.
Collapse
Affiliation(s)
- Keng-Hsin Lan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei 11217, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ikeda K, Stuehler T, Meisterernst M. The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 2002; 7:49-58. [PMID: 11856373 DOI: 10.1046/j.1356-9597.2001.00492.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Herpes Simplex Virion Protein 16 (VP16) contains a strong activation domain which can be subdivided into two regions, H1 and H2, both of which independently activate transcription in vivo. Several components of the basal transcription machinery have been shown to interact with the activation domain of VP16, mostly through the H1 region. RESULTS We show that the H2 region binds directly to histone acetyltransferase, CBP (CREB (cAMP Responsive Element Binding Protein) Binding Protein) both in vivo and in vitro. The sites of interaction with the H2 region were mapped to both the amino- and carboxy-terminal segments of CBP. A mutation in the H2 region disrupts the interaction with CBP and abolishes the ability of VP16 to mediate in vitro transactivation from chromatin templates in an acetyl-CoA dependent manner. In contrast, human Mediator, another co-activator complex, binds specifically to both the H1 and H2 regions. CONCLUSION The H1 and H2 regions of the VP16 activation domain activate transcription via distinct pathways. The H2 requires CBP for activation, whereas the H1 may function through Mediator and general transcription factors.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Biology, Jichi Medical School, Minamikawachi-machi, Kawachi, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
48
|
Langelier MF, Forget D, Rojas A, Porlier Y, Burton ZF, Coulombe B. Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J Biol Chem 2001; 276:38652-7. [PMID: 11509574 PMCID: PMC4492724 DOI: 10.1074/jbc.m106422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A topological model for transcription initiation by RNA polymerase II (RNAPII) has recently been proposed. This model stipulates that wrapping of the promoter DNA around RNAPII and the general initiation factors TBP, TFIIB, TFIIE, TFIIF and TFIIH induces a torsional strain in the DNA double helix that facilitates strand separation and open complex formation. In this report, we show that TFIIA, a factor previously shown to both stimulate basal transcription and have co-activator functions, is located near the cross-point of the DNA loop where it can interact with TBP, TFIIE56, TFIIE34, and the RNAPII-associated protein (RAP) 74. In addition, we demonstrate that TFIIA can stimulate basal transcription by stimulating the functions of both TFIIE34 and RAP74 during the initiation step of the transcription reaction. These results provide novel insights into mechanisms of TFIIA function.
Collapse
Affiliation(s)
- M F Langelier
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Lu W, Peterson R, Dasgupta A, Scovell WM. Influence of HMG-1 and adenovirus oncoprotein E1A on early stages of transcriptional preinitiation complex assembly. J Biol Chem 2000; 275:35006-12. [PMID: 10882737 DOI: 10.1074/jbc.m004735200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The TATA-binding protein (TBP) in the TFIID complex binds specifically to the TATA-box to initiate the stepwise assembly of the preinitiation complex (PIC) for RNA polymerase II transcription. Transcriptional activators and repressors compete with general transcription factors at each step to influence the course of the assembly. To investigate this process, the TBP.TATA complex was titrated with HMG-1 and the interaction monitored by electrophoretic mobility shift assays. The titration produced a ternary HMG-1.TBP. TATA complex, which exhibits increased mobility relative to the TBP. TATA complex. The addition of increasing levels of TFIIB to this complex results in the formation of the TFIIB.TBP.TATA complex. However, in the reverse titration, with very high mole ratios of HMG-1 present, TFIIB is not dissociated off and a complex is formed that contains all factors. The simultaneous addition of E1A to a mixture of TBP and TATA; or HMG-1, TBP, and TATA; or TFIIB, TBP, and TATA inhibits complex formation. On the other hand, E1A added to the pre-established complexes shows a significantly reduced capability to disrupt the complex. In add-back experiments with all complexes, increased levels of TBP re-established the complexes, indicating that the primary target for E1A in all complexes is TBP.
Collapse
Affiliation(s)
- W Lu
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | | | |
Collapse
|
50
|
Melcher K. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. J Mol Biol 2000; 301:1097-112. [PMID: 10966808 DOI: 10.1006/jmbi.2000.4034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation domains (ADs) appear to work by making specific protein-protein contacts with the transcriptional machinery. However, ADs show no apparent sequence conservation, they can be functionally replaced by a number of random peptides and unrelated proteins, and their function does not depend on sustaining a complex tertiary structure. To gain a broader perspective on the nature of interactions between acidic ADs and several of their proposed targets, the in vivo strengths of viral, human, yeast, and artificial activation domains were determined under physiological conditions, and mutant ADs with increased in vivo potencies were selected. The affinities between ADs and proposed targets were determined in vitro and all interactions were found to be of low-level affinity with dissociation constants above 10(-7)M. However, in vivo potencies of all ADs correlated nearly perfectly with their affinities for transcriptional proteins. Surprisingly, the weak interactions of the different ADs with at least two non-transcriptional proteins show the same rank order of binding and AD mutants selected for increased in vivo strength also have increased affinities to non-transcriptional proteins. Based on these results, isolated acidic ADs can bind with relatively low-level specificity and affinity to many different proteins and the strength of these semi-specific interactions determine the strength of an AD. I suggest that ADs expose flexible hydrophobic elements in an aqueous environment to contact hydrophobic patches over short distances, shifting specificity of activators largely to the DNA colocalization of arrays of ADs and targets.
Collapse
Affiliation(s)
- K Melcher
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8573, USA.
| |
Collapse
|