1
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Derippe T, Fouliard S, Decleves X, Mager DE. Quantitative systems pharmacology modeling of tumor heterogeneity in response to BH3-mimetics using virtual tumors calibrated with cell viability assays. CPT Pharmacometrics Syst Pharmacol 2024; 13:1252-1263. [PMID: 38747730 PMCID: PMC11247121 DOI: 10.1002/psp4.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024] Open
Abstract
Both primary and acquired resistance mechanisms that involve intra-tumoral cell heterogeneity limit the use of BH3-mimetics to trigger tumor cell apoptosis. This article proposes a new quantitative systems pharmacology (QSP)-based methodology in which cell viability assays are used to calibrate virtual tumors (VTs) made of virtual cells whose fate is determined by simulations from an apoptosis QSP model. VTs representing SU-DHL-4 and KARPAS-422 cell lines were calibrated using in vitro data involving venetoclax (anti-BCL2), A-1155463 (anti-BCLXL), and/or A-1210477 (anti-MCL1). The calibrated VTs provide insights into the combination of several BH3-mimetics, such as the distinction between cells eliminated by at least one of the drugs (monotherapies) from the cells eliminated by a pharmacological combination only. Calibrated VTs can also be used as initial conditions in an agent-based model (ABM) framework, and a minimal ABM was developed to bridge in vitro SU-DHL-4 cell viability results to tumor growth inhibition experiments in mice.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Decleves
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA
| |
Collapse
|
3
|
Yuce M, Albayrak E. Paracrine Factors Released from Tonsil-Derived Mesenchymal Stem Cells Inhibit Proliferation of Hematological Cancer Cells Under Hyperthermia in Co-culture Model. Appl Biochem Biotechnol 2024; 196:4105-4124. [PMID: 37897623 DOI: 10.1007/s12010-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising biological therapeutic candidates in cancer treatment. As a source of MSCs, palatine tonsil tissue is one of the secondary lymphoid organs that form an essential part of the immune system, and the relation between the secondary lymphoid organs and cancer progression leads us to investigate the effect of tonsil-derived MSCs (T-MSC) on cancer treatment. We aimed to determine the anti-tumoral effects of T-MSCs cultured at the febrile temperature (40 °C) on hematological cancer cell lines. The co-culture of cancer cells with T-MSCs was carried out under fever and normal culture conditions, and then the cell viability was determined by cell counting. In addition, apoptosis rate and cell cycle arrest were determined by flow cytometry. We confirmed the apoptotic effect of T-MSC co-culture at the transcriptional level by using real-time polymerase chain reaction (RT-PCR). We found that co-culture of cancer cells with T-MSCs significantly decreased the viable cell number under the febrile and normal culture conditions. Besides, the T-MSC co-culture induced apoptosis on K562 and MOLT-4 cells and induced the cell cycle arrest at the G2/M phase on MOLT-4 cells. The apoptotic effect of T-MSC co-culture under febrile stimulation was confirmed at the transcriptional level. Our study has highlighted the anti-tumoral effect of the cellular interaction between the T-MSCs and human hematological cancer cells during in vitro co-culture under hyperthermia.
Collapse
Affiliation(s)
- Melek Yuce
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey.
| | - Esra Albayrak
- Stem Cell Research & Application Center, Ondokuz Mayıs University, Kurupelit Campus, 55139, Atakum, Samsun, Turkey
| |
Collapse
|
4
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
5
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Uryu H, Tovy A, Callen E, Murdaugh RL, Richard R, Jansen S, Vissers L, de Vries BBA, Nussenzweig A, Huang S, Coarfa C, Anastas J, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic-lethal target in PPM1D-mutant leukemia cells. eLife 2024; 12:RP91611. [PMID: 38896450 PMCID: PMC11186636 DOI: 10.7554/elife.91611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Joanne I Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
| | - Etienne D Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Tajhal D Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of MedicineHoustonUnited States
| | - Alejandra G Martell
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Anna G Guzman
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sarah M Waldvogel
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Cancer and Cell Biology Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Rebecca L Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Bert BA de Vries
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Education, Innovation and Technology, Advanced Technology Cores, University of TexasHoustonUnited States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Jamie Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Genome Medicine, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| |
Collapse
|
6
|
Castaño BA, Schorer S, Guo Y, Calzetta NL, Gottifredi V, Wiesmüller L, Biber S. The levels of p53 govern the hierarchy of DNA damage tolerance pathway usage. Nucleic Acids Res 2024; 52:3740-3760. [PMID: 38321962 PMCID: PMC11039994 DOI: 10.1093/nar/gkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.
Collapse
Affiliation(s)
- Bryan A Castaño
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Sabrina Schorer
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Yitian Guo
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | | | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
7
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Urya H, Tovy A, Callen E, Murdaugh R, Richard R, Jansen S, Vissers L, de Vries BB, Nussenzweig A, Huang S, Coarfa C, Anastas JN, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555634. [PMID: 37693622 PMCID: PMC10491179 DOI: 10.1101/2023.08.31.555634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
| | - Etienne D. Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Tajhal D. Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX
| | - Alejandra G. Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anna G. Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sarah M. Waldvogel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Hidetaka Urya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Rebecca Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre Nussenzweig
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jamie N. Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| |
Collapse
|
9
|
Venugopal S, Loghavi S. Current State and Future Prospects of Diagnosis and Management of TP53-Mutated Myeloid Neoplasms. Pathobiology 2023; 91:45-54. [PMID: 37839402 DOI: 10.1159/000534566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
TP53-mutated myeloid neoplasms including acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are notoriously treatment resistant with uniformly poor outcomes. TP53 status is an important prognostic indicator and early knowledge of the TP53 mutation/allelic state may assist in appropriate management including clinical trial enrollment for eligible patients. Thus far, no therapy has shown to demonstrate durable response or incremental survival benefit in TP53-mutated AML or MDS. Therefore, there is an urgent need for innovative therapies to improve the outcomes in this notoriously recalcitrant genomic subset. In this review, we dissect the biology, classification, prognosis, current treatment landscape, and the early phase evaluation of investigational agents in TP53-mutated AML and MDS.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Darvish L, Bahreyni Toossi MT, Azimian H, Shakeri M, Dolat E, Ahmadizad Firouzjaei A, Rezaie S, Amraee A, Aghaee-Bakhtiari SH. The role of microRNA-induced apoptosis in diverse radioresistant cancers. Cell Signal 2023; 104:110580. [PMID: 36581218 DOI: 10.1016/j.cellsig.2022.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Resistance to cancer radiotherapy is one of the biggest concerns for success in treating and preventing recurrent disease. Malignant tumors may develop when they block genetic mutations associated with apoptosis or abnormal expression of apoptosis; Tumor treatment may induce the expression of apoptosis-related genes to promote tumor cell apoptosis. MicroRNAs have been shown to contribute to forecasting prognosis, distinguishing between cancer subtypes, and affecting treatment outcomes in cancer. Constraining these miRNAs may be an attractive treatment strategy to help overcome radiation resistance. The delivery of these future treatments is still challenging due to the excess downstream targets that each miRNA can control. Understanding the role of miRNAs brings us one step closer to attaining patient treatment and improving patient outcomes. This review summarized the current information on the role of microRNA-induced apoptosis in determining the radiosensitivity of various cancers.
Collapse
Affiliation(s)
- Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Shakeri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Rezaie
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Amraee
- Department of Medical Physics, Faculty of Medicine, School of Medicine, Lorestan University of Medical Sciences, khorramabad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Development of a 5-FU modified miR-129 mimic as a therapeutic for non-small cell lung cancer. Mol Ther Oncolytics 2023; 28:277-292. [PMID: 36911069 PMCID: PMC9995506 DOI: 10.1016/j.omto.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.
Collapse
|
14
|
Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, Liu X, Xue G, Li X, Zhang X, Li S, Huang X, Li Z, Guo Y, Zhao L, Bao H, Zhou Z, Song J, Yang G, Xuan L, Shan H, Zhang Z, Lu Y, Yang B, Pan Z. Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circ Res 2023; 132:208-222. [PMID: 36656967 PMCID: PMC9855749 DOI: 10.1161/circresaha.122.321153] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-β1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-β1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (Y.Y.)
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiqin Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Manman Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.J.)
| | - Xuening Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xingda Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Shangxuan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhiwen Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiahui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, China (H.S.)
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, China (Z.P.).,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| |
Collapse
|
15
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
16
|
Diwan B, Sharma R. Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation. Biogerontology 2022; 23:789-807. [PMID: 35779147 DOI: 10.1007/s10522-022-09976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Age-dependent increased risk of inflammatory bowel diseases such as ulcerative colitis is being increasingly realized, and yet therapies targeting this disorder within the purview of aging are limited. The present study attempted to assess the efficacy of green tea epigallocatechin gallate (EGCG) consumption in preventing the severity and progression of dextran sulphate sodium (DSS)-induced ulcerative colitis in 18 months old middle-aged male mice. Acute colitis was induced in animals using DSS and protective effects of EGCG consumption were examined. Different parameters related to disease progression and molecular markers related to oxi-inflammatory stress, localized and systemic cytokine response, epithelial barrier integrity, and cell cycle progression profile were evaluated. DSS treatment induced rapid and severe symptoms of colitis such as consistently increased DAI score, shortened and inflamed colon accompanied by increased levels of inflammatory proteins (TNFα/IL-6/IL-1β) in both the colon tissue and cultured splenocytes indicating exaggerated Th1 immune response. Markers of oxidative stress increased while antioxidant defences and the expression of tight junction genes in the colonic cells were attenuated. Dysregulation in the expression of cell cycle inhibitory genes (p53/p21WAF1/p16Ink4a) indicated possible induction of colitis-induced dysplasia. On the other hand, EGCG consumption strongly attenuated all the measured ostensible as well as molecular markers of the disease progression as evidenced by improved DAI score, cellular antioxidant capacity, attenuated Th1 cytokine response both in the colon and cultured splenocytes, enhanced expression of tight junction genes, and cell cycle inhibitors thereby suggesting systemic effects of EGCG. Together, these observations suggest that drinking EGCG-rich green tea can be a significant way of managing the severity of colitis during aging.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
17
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Cimetidine-Based Cationic Amphiphiles for In Vitro Gene Delivery Targetable to Colon Cancer. ACS OMEGA 2022; 7:31388-31402. [PMID: 36092589 PMCID: PMC9453813 DOI: 10.1021/acsomega.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Cimetidine, a histamine-2 (H2) receptor antagonist, has been found to have anticancer properties against a number of cancer-type cells. In this report, we have demonstrated that cimetidine can acts as a hydrophilic domain in cationic lipids and targetable to the gastric system by carrying reporter genes and therapeutic genes through in vitro transfection. Two lipids, namely, Toc-Cim and Chol-Cim consisting cimetidine as the main head group and hydrophobic moieties as alpha-tocopherol or cholesterol, respectively, were designed and synthesized. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is a well-known co-lipid employed to produce liposomes as uniform vesicles. The liposomes and lipoplexes were structurally and functionally evaluated for global surface charges and hydrodynamic diameters, and results found that both liposome and lipoplex size and surface charges are optimal to screen the transfection potentials. DNA-binding studies were analyzed as complete binding at all formulated N/P ratios. The liposomes and lipoplexes of both the lipids Toc-Cim and Chol-Cim show minimal cytotoxicity even though at higher concentrations. The results of the transfection experiments revealed that tocopherol-based cationic lipids (Toc-Cim) show finer transfection efficacy with optimized N/P ratios (2:1 and 4:1) in the colon cancer cell line. Toc-Cim lipoplexes show higher cellular uptake compare to Chol-Cim in the colon cancer cell line at 2:1 and 4:1 N/P ratios. Toc-Cim and Chol-Cim lipids showed highly compatible serum, examined up to 50% of the serum concentration. To evaluate the apoptotic cell death in CT-26 cells, exposed to Toc-Cim:p53 and Chol-Cim:p53 lipoplexes at 2:1 N/P ratios, superior results showed with Toc-Cim:p53. An effect of TP53 protein expression in CT-26 cell lines assayed by western blot, transfected with Toc-Cim:p53 and Chol-Cim:p53 lipoplexes, demonstrated the superior efficacy of Toc-Cim. All of the findings suggest that Toc-Cim lipid is relatively secure and is an effective transfection agent to colon cancer gene delivery.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| | - Dwaipayan Bhattacharya
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kalyani Rajesh Sakhare
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kumar Pranav Narayan
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| |
Collapse
|
18
|
Meister MT, Groot Koerkamp MJA, de Souza T, Breunis WB, Frazer‐Mendelewska E, Brok M, DeMartino J, Manders F, Calandrini C, Kerstens HHD, Janse A, Dolman MEM, Eising S, Langenberg KPS, van Tuil M, Knops RRG, van Scheltinga ST, Hiemcke‐Jiwa LS, Flucke U, Merks JHM, van Noesel MM, Tops BBJ, Hehir‐Kwa JY, Kemmeren P, Molenaar JJ, van de Wetering M, van Boxtel R, Drost J, Holstege FCP. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. EMBO Mol Med 2022; 14:e16001. [PMID: 35916583 PMCID: PMC9549731 DOI: 10.15252/emmm.202216001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.
Collapse
Affiliation(s)
- Michael T Meister
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Marian J A Groot Koerkamp
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Willemijn B Breunis
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Department of Oncology and Children's Research CenterUniversity Children's Hospital ZürichZürichSwitzerland
| | - Ewa Frazer‐Mendelewska
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | | | - Alex Janse
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Children's Cancer Institute, Lowy Cancer CentreUNSW SydneyKensingtonNSWAustralia,School of Women's and Children's Health, Faculty of MedicineUNSW SydneyKensingtonNSWAustralia
| | - Selma Eising
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Marc van Tuil
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Rutger R G Knops
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Uta Flucke
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Max M van Noesel
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Center for Molecular MedicineUMC Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Oncode InstituteUtrechtThe Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands,Center for Molecular MedicineUMC Utrecht and Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
19
|
Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Dis 2022; 8:282. [PMID: 35680784 PMCID: PMC9184497 DOI: 10.1038/s41420-022-01078-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022]
Abstract
For past two decades, p53 has been claimed as the primary sensor initiating apoptosis. Under severe cellular stress, p53 transcriptional activity activates BH3-only proteins such as Bim, Puma, or Noxa to nullify the inhibitory effects of anti-apoptotic proteins on pro-apoptotic proteins for mitochondrial outer membrane permeabilization. Cellular stress determines the expression level of p53, and the amount of p53 corresponds to the magnitude of apoptosis. However, our studies indicated that Bim and Puma are not the target genes of p53 in three cancer models, prostate cancer, glioblastoma, and osteosarcoma. Bim counteracted with Bcl-xl to activate apoptosis independently of p53 in response to doxorubicin-induced severe DNA damage in prostate cancer. Moreover, the transcriptional activity of p53 was more related to cell cycle arrest other than apoptosis for responding to DNA damage stress generated by doxorubicin in prostate cancer and glioblastoma. A proteasome inhibitor that causes protein turnover dysfunction, bortezomib, produced apoptosis in a p53-independent manner in glioblastoma and osteosarcoma. p53 in terms of both protein level and nuclear localization in combining doxorubicin with bortezomib treatment was obviously lower than when using DOX alone, inversely correlated with the magnitude of apoptosis in glioblastoma. Using a BH3-mimetic, ABT-263, to treat doxorubicin-sensitive p53-wild type and doxorubicin-resistant p53-null osteosarcoma cells demonstrated only limited apoptotic response. The combination of doxorubicin or bortezomib with ABT-263 generated a synergistic outcome of apoptosis in both p53-wild type and p53-null osteosarcoma cells. Together, this suggested that p53 might have no role in doxorubicin-induced apoptosis in prostate cancer, glioblastoma and osteosarcoma. The effects of ABT-263 in single and combination treatment of osteosarcoma or prostate cancer indicated a dual control to regulate apoptosis in response to severe cellular stress. Whether our findings only apply in these three types of cancers or extend to other cancer types remains to be explored.
Collapse
|
20
|
MicroRNA-101-3p Suppresses Cancer Cell Growth by Inhibiting the USP47-Induced Deubiquitination of RPL11. Cancers (Basel) 2022; 14:cancers14040964. [PMID: 35205710 PMCID: PMC8870143 DOI: 10.3390/cancers14040964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary An abnormal expression of microRNA is commonly observed in cancer. Since a single miRNA can target numerous genes, it is important to understand the exact mechanism for the regulation of cancer growth by miRNAs. Here, we show that miR-101-3p, which is downregulated in several cancers, regulates RPL11 ubiquitination by targeting USP47, thereby controlling p53 levels by affecting the localization of RPL11 and its interaction with MDM2. Our results provide a novel mechanism for the inhibition of cancer cell growth by miR-101-3p, and suggest that miR-101-3p could be a potential target as an anticancer agent. Abstract MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate a countless number of genes in the cell, and the aberrant expression of miRNA can lead to cancer. Here, we demonstrate that miR-101-3p regulates the RPL11–MDM2–p53 pathway by targeting ubiquitin-specific peptidase 47 (USP47), consequently inhibiting cancer cell proliferation. We confirm that miR-101-3p directly binds to the 3′-UTR region of the USP47 gene and inhibits USP47 expression. In addition, the overexpression of miR-101-3p suppresses cell proliferation in a p53-dependent manner. MiR-101-3p promotes interaction between RPL11 and MDM2 by inducing the translocation of RPL11 from the nucleolus to the nucleoplasm, thus preventing the MDM2-mediated proteasomal degradation of p53. However, these phenomena are restored by the overexpression of USP47, but not by its catalytically inactive form. Indeed, miR-101-3p regulates RPL11 localization and its interaction with MDM2 by inhibiting the USP47-induced deubiquitination of RPL11. Finally, the expression of miR-101-3p is downregulated in lung cancer patients, and the patients with low miR-101-3p expression exhibit a lower survival rate, indicating that miR-101-3p is associated with tumorigenesis. Together, our findings suggest that miR-101-3p functions as a tumor suppressor by targeting USP47 and could be a potential therapeutic target for cancers.
Collapse
|
21
|
Abstract
p53, the guardian of the genome, is a short-lived protein that is tightly controlled at low levels by constant ubiquitination and proteasomal degradation in higher organisms. p53 stabilization and activation are early crucial events to cope with external stimuli in cells. However, the role of p53 ubiquitination and its relevant molecular mechanisms have not been addressed in invertebrates. In this study, our findings revealed that both HUWE1 (HECT, UBA, and WWE domain-containing E3 ubiquitin-protein ligase 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) could serve as E3 ubiquitin ligases for p53 in mud crabs (Scylla paramamosain). Moreover, the expression of HUWE1 and TRAF6 was significantly downregulated during white spot syndrome virus (WSSV) infection, and therefore the ubiquitination of p53 was interrupted, leading to the activation of apoptosis and reactive oxygen species (ROS) signals through p53 accumulation, which eventually suppressed viral invasion in the mud crabs. To the best of our knowledge, this is the first study to reveal the p53 ubiquitination simultaneously induced by two E3 ligases in arthropods, which provides a novel molecular mechanism of invertebrates for resistance to viral infection. IMPORTANCE p53, which is a well-known tumor suppressor that has been widely studied in higher animals, has been reported to be tightly controlled at low levels by ubiquitin-dependent proteasomal degradation. However, recent p53 ubiquitination-relevant research mainly involved an individual E3 ubiquitin ligase, but not whether there exist other mechanisms that need to be explored. The results of this study show that HUWE1 and TRAF6 could serve as p53 E3 ubiquitin ligases and synchronously mediate p53 ubiquitination in mud crabs (Scylla paramamosain), which confirmed the diversity of the p53 ubiquitination regulatory pathway. In addition, the effects of p53 ubiquitination are mainly focused on tumorigenesis, but a few are focused on the host immune defense in invertebrates. Our findings reveal that p53 ubiquitination could affect ROS and apoptosis signals to cope with WSSV infection in mud crabs, which is the first clarification of the immunologic functions and mechanisms of p53 ubiquitination in invertebrates.
Collapse
|
22
|
Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153897. [PMID: 35026507 DOI: 10.1016/j.phymed.2021.153897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is the third most malignant cancer worldwide. Despite novel treatment options, the incidence and mortality rates of colon cancer continue to increase in most countries, especially in US, European and Asian countries. Colorectal carcinogenesis is multifactorial, including dietary and genetic factors, as well as lacking physical activity. Vegetables and fruits contain high amounts of secondary metabolites, which might reduce the risk for colorectal carcinogenesis. Flavonoids are important bioactive polyphenolic compounds. There are more than 4,000 different flavonoids, including flavanones, flavonoids, isoflavonoids, flavones, and catechins in a large variety of plant. HYPOTHESIS Among various other flavonoids, naringin in Citrus fruits has been a subject of intense scrutiny for its activity against many types of cancer, including colorectal cancer. We hypothesize that naringin is capable to inhibit the growth of transformed colonocytes and to induce programmed cell death in colon cancer cells. RESULTS We comprehensively review the inhibitory effects of naringin on colorectal cancers and address the underlying mechanistic pathways such as NF-κB/IL-6/STAT3, PI3K/AKT/mTOR, apoptosis, NF-κB-COX-2-iNOS, and β-catenin pathways. CONCLUSION Naringin suppresses colorectal inflammation and carcinogenesis by various signaling pathways. Randomized clinical trials are needed to determine their effectiveness in combating colorectal cancer.
Collapse
Affiliation(s)
- Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Jiangsu, 221400, P R China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5, 55128 Mainz, Germany
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| |
Collapse
|
23
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
24
|
Manturthi S, Narayan KP, Patri SV. Dicationic amphiphiles bearing an amino acid head group with a long-chain hydrophobic tail for in vitro gene delivery applications. RSC Adv 2022; 12:33264-33275. [DOI: 10.1039/d2ra05959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
C14-P, C14-M, and C14-S lipids formed lipoplexes using pDNA. The lipoplex cellular uptake into the cells resulted in the release of nucleic acids. C14-P lipid showed superior eGFP transfection in non-cancer cell line and more apoptosis cell death in cancer cell line.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana-500078, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| |
Collapse
|
25
|
Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Cancers (Basel) 2021; 13:6161. [PMID: 34944778 PMCID: PMC8699059 DOI: 10.3390/cancers13246161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023] Open
Abstract
Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Thomas B. Alexander
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel A. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Hannah V. Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Chidiebere Awah
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel A. Weiser
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| |
Collapse
|
26
|
Guo Y, Rall-Scharpf M, Bourdon JC, Wiesmüller L, Biber S. p53 isoforms differentially impact on the POLι dependent DNA damage tolerance pathway. Cell Death Dis 2021; 12:941. [PMID: 34645785 PMCID: PMC8514551 DOI: 10.1038/s41419-021-04224-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
The recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.
Collapse
Affiliation(s)
- Yitian Guo
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Melanie Rall-Scharpf
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Jean-Christophe Bourdon
- grid.8241.f0000 0004 0397 2876Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Lisa Wiesmüller
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| | - Stephanie Biber
- grid.6582.90000 0004 1936 9748Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075 Germany
| |
Collapse
|
27
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
28
|
Noor F, Noor A, Ishaq AR, Farzeen I, Saleem MH, Ghaffar K, Aslam MF, Aslam S, Chen JT. Recent Advances in Diagnostic and Therapeutic Approaches for Breast Cancer: A Comprehensive Review. Curr Pharm Des 2021; 27:2344-2365. [PMID: 33655849 DOI: 10.2174/1381612827666210303141416] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a leading cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk factors, such as genetic and environmental factors, favor breast cancer development. This review tends to provide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic approaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data mainly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective treatment options.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ayesha Noor
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Iqra Farzeen
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan 430062, China
| | - Kanwal Ghaffar
- Department of Zoology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farhan Aslam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, China
| |
Collapse
|
29
|
Rajput PS, Khan SR, Singh P, Chawla PA. Treatment of Small Cell Lung Cancer with Lurbinectedin: A Review. Anticancer Agents Med Chem 2021; 22:812-820. [PMID: 34229593 DOI: 10.2174/1871520621666210706150057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/15/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lurbinectedin was approved on June 15, 2020 by Food and Drug Administration with a brand name ZEPZELCA as the first systematic approved therapy for patients having Small Cell Lung Cancer (SCLC). OBJECTIVES In this review, an attempt is made to summarize different aspects of Lurbinectedin, including the pathophysiology, chemistry, chemical synthesis, mechanism of action, adverse reactions, including pharmacokinetics of lurbinectedin. Special attention is given to various reported clinical trials of lurbinectedin. METHODS A comprehensive literature search was conducted in the relevant databases like ScienceDirect, PubMed, ResearchGate and Google Scholar to identify studies. Further upon a thorough study of these reports, significant findings/data were collected and compiled under suitable headings. Important findings related to clinical trials have been tabulated. CONCLUSION Lurbinectedin is known to act by inhibiting the active transcription of encoding genes, thereby bringing about the suppression of tumour related macrophages with an impact on tumour atmosphere. Lurbinectedin has emerged as a potential drug candidate for the treatment of small cell lung cancer (SCLC).
Collapse
Affiliation(s)
- Prince Singh Rajput
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Sharib Raza Khan
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Preeti Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, G.T. Road, Moga-142 001, Punjab, India
| |
Collapse
|
30
|
The potential of proliferative and apoptotic parameters in clinical flow cytometry of myeloid malignancies. Blood Adv 2021; 5:2040-2052. [PMID: 33847740 DOI: 10.1182/bloodadvances.2020004094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Standardization of the detection and quantification of leukocyte differentiation markers by the EuroFlow Consortium has led to a major step forward in the integration of flow cytometry into classification of leukemia and lymphoma. In our opinion, this now enables introduction of markers for more dynamic parameters, such as proliferative and (anti)apoptotic markers, which have proven their value in the field of histopathology in the diagnostic process of solid tumors and lymphoma. Although use of proliferative and (anti)apoptotic markers as objective parameters in the diagnostic process of myeloid malignancies was studied in the past decades, this did not result in the incorporation of these biomarkers into clinical diagnosis. This review addresses the potential of these markers for implementation in the current, state-of-the-art multiparameter analysis of myeloid malignancies. The reviewed studies clearly recognize the importance of proliferation and apoptotic mechanisms in the pathogenesis of bone marrow (BM) malignancies. The literature is, however, contradictory on the role of these processes in myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasms, and acute myeloid leukemia. Furthermore, several studies underline the need for the analysis of the proliferative and apoptotic rates in subsets of hematopoietic BM cell lineages and argue that these results can have diagnostic and prognostic value in patients with myeloid malignancies. Recent developments in multiparameter flow cytometry now allow quantification of proliferative and (anti)apoptotic indicators in myeloid cells during their different maturation stages of separate hematopoietic cell lineages. This will lead to a better understanding of the biology and pathogenesis of these malignancies.
Collapse
|
31
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
32
|
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2021; 34:1128-1146. [PMID: 32873579 PMCID: PMC7462067 DOI: 10.1101/gad.340976.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Gencel-Augusto and Lozano summarize the data on p53 mutants with a functional tetramerization domain that form mixed tetramers and in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. They conclude that the DNE is mostly observed after DNA damage but fails in other contexts. The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Lu J, Chen L, Song Z, Das M, Chen J. Hypothermia Effectively Treats Tumors with Temperature-Sensitive p53 Mutations. Cancer Res 2021; 81:3905-3915. [PMID: 33687951 DOI: 10.1158/0008-5472.can-21-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
The p53 tumor suppressor is frequently inactivated by mutations in cancer. Most p53 mutations are located in the DNA-binding domain, causing local disruption of DNA-binding surface or global misfolding. Rescuing the structural defect of mutant p53 is an attractive therapeutic strategy, but its potential remains unproven due to a lack of drugs capable of efficiently rescuing misfolded p53. Although mutant p53 in tumors is inactive at 37°C, approximately 15% are temperature sensitive (ts) and regain DNA-binding activity at 32°C to 34°C (ts mutants). This temperature is achievable using a therapeutic hypothermia procedure established for resuscitated cardiac arrest patients. To test whether hypothermia can be used to target tumors with ts p53 mutations, the core temperature of tumor-bearing mice was lowered to 32°C using the adenosine A1 receptor agonist N6-cyclohexyladenoxine that suppresses brain-regulated thermogenesis. Hypothermia treatment (32 hours at 32°C × 5 cycles) activated endogenous ts mutant p53 in xenograft tumors and inhibited tumor growth in a p53-dependent fashion. Tumor regression and durable remission in a ts p53 lymphoma model was achieved by combining hypothermia with chemotherapy. The results raise the possibility of treating tumors expressing ts p53 mutations with hypothermia. SIGNIFICANCE: Pharmacologic inhibition of brain-regulated thermogenesis and induction of 32°C whole-body hypothermia specifically targets tumors with temperature-sensitive p53 mutations, rescuing p53 transcriptional activity and inducing tumor regression.See related commentary by Hu and Feng, p. 3762.
Collapse
Affiliation(s)
- Junhao Lu
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Lihong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Zheng Song
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Mousumi Das
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jiandong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
34
|
Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Boost. Cells 2021; 10:cells10020370. [PMID: 33578870 PMCID: PMC7916582 DOI: 10.3390/cells10020370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Postmitotic cells, like neurons, must live through a lifetime. For this reason, organisms/cells have evolved with self-repair mechanisms that allow them to have a long life. The discovery workflow of neuroprotectors during the last years has focused on blocking the pathophysiological mechanisms that lead to neuronal loss in neurodegeneration. Unfortunately, only a few strategies from these studies were able to slow down or prevent neurodegeneration. There is compelling evidence demonstrating that endorsing the self-healing mechanisms that organisms/cells endogenously have, commonly referred to as cellular resilience, can arm neurons and promote their self-healing. Although enhancing these mechanisms has not yet received sufficient attention, these pathways open up new therapeutic avenues to prevent neuronal death and ameliorate neurodegeneration. Here, we highlight the main endogenous mechanisms of protection and describe their role in promoting neuron survival during neurodegeneration.
Collapse
Affiliation(s)
- Sara Marmolejo-Martínez-Artesero
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - Caty Casas
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - David Romeo-Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Laboratory “Hormonal Regulation of Brain Development and Functions”—Team 8, Institut Necker Enfants-Malades (INEM), INSERM U1151, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
- Correspondence: ; Tel.: +33-01-40-61-53-57
| |
Collapse
|
35
|
Chen J, Zhang D, Qin X, Owzar K, McCann JJ, Kastan MB. DNA-Damage-Induced Alternative Splicing of p53. Cancers (Basel) 2021; 13:E251. [PMID: 33445417 PMCID: PMC7827558 DOI: 10.3390/cancers13020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to DNA damage and other stresses are important determinants of mutagenesis and impact the development of a wide range of human diseases. TP53 is highly mutated in human cancers and plays an essential role in stress responses and cell fate determination. A central dogma of p53 induction after DNA damage has been that the induction results from a transient increase in the half-life of the p53 protein. Our laboratory recently demonstrated that this long-standing paradigm is an incomplete picture of p53 regulation by uncovering a critical role for protein translational regulation in p53 induction after DNA damage. These investigations led to the discovery of a DNA-damage-induced alternative splicing (AS) pathway that affects p53 and other gene products. The damage-induced AS of p53 pre-mRNA generates the beta isoform of p53 (p53β) RNA and protein, which is specifically required for the induction of cellular senescence markers after ionizing irradiation (IR). In an attempt to elucidate the mechanisms behind the differential regulation and apparent functional divergence between full-length (FL) p53 and the p53β isoform (apoptosis versus senescence, respectively), we identified the differential transcriptome and protein interactome between these two proteins that may result from the unique 10-amino-acid tail in p53β protein.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; (J.C.); (J.J.M.)
- Current Address-Crown Bioscience, Inc., San Diego, CA 92127, USA
| | - Dadong Zhang
- Duke Cancer Institute, Durham, NC 27710, USA; (D.Z.); (X.Q.); (K.O.)
| | - Xiaodi Qin
- Duke Cancer Institute, Durham, NC 27710, USA; (D.Z.); (X.Q.); (K.O.)
| | - Kouros Owzar
- Duke Cancer Institute, Durham, NC 27710, USA; (D.Z.); (X.Q.); (K.O.)
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer J. McCann
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; (J.C.); (J.J.M.)
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; (J.C.); (J.J.M.)
- Duke Cancer Institute, Durham, NC 27710, USA; (D.Z.); (X.Q.); (K.O.)
| |
Collapse
|
36
|
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00089-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundCells have evolved balanced mechanisms to protect themselves by initiating a specific response to a variety of stress. TheTP53gene, encoding P53 protein, is one of the many widely studied genes in human cells owing to its multifaceted functions and complex dynamics. The tumour-suppressing activity of P53 plays a principal role in the cellular response to stress. The majority of the human cancer cells exhibit the inactivation of the P53 pathway. In this review, we discuss the recent advancements in P53 research with particular focus on the role of P53 in DNA damage responses, apoptosis, autophagy, and cellular metabolism. We also discussed important P53-reactivation strategies that can play a crucial role in cancer therapy and the role of P53 in various diseases.Main bodyWe used electronic databases like PubMed and Google Scholar for literature search. In response to a variety of cellular stress such as genotoxic stress, ischemic stress, oncogenic expression, P53 acts as a sensor, and suppresses tumour development by promoting cell death or permanent inhibition of cell proliferation. It controls several genes that play a role in the arrest of the cell cycle, cellular senescence, DNA repair system, and apoptosis. P53 plays a crucial role in supporting DNA repair by arresting the cell cycle to purchase time for the repair system to restore genome stability. Apoptosis is essential for maintaining tissue homeostasis and tumour suppression. P53 can induce apoptosis in a genetically unstable cell by interacting with many pro-apoptotic and anti-apoptotic factors.Furthermore, P53 can activate autophagy, which also plays a role in tumour suppression. P53 also regulates many metabolic pathways of glucose, lipid, and amino acid metabolism. Thus under mild metabolic stress, P53 contributes to the cell’s ability to adapt to and survive the stress.ConclusionThese multiple levels of regulation enable P53 to perform diversified roles in many cell responses. Understanding the complete function of P53 is still a work in progress because of the inherent complexity involved in between P53 and its target proteins. Further research is required to unravel the mystery of this Guardian of the genome “TP53”.
Collapse
|
37
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
38
|
He C, Qin H, Tang H, Yang D, Li Y, Huang Z, Zhang D, Lv C. Comprehensive bioinformatics analysis of the TP53 signaling pathway in Wilms' tumor. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1228. [PMID: 33178760 PMCID: PMC7607069 DOI: 10.21037/atm-20-6047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Differential expression of tumor protein 53 (TP53, or p53) has been observed in multiple cancers. However, the expression levels and prognostic role of TP53 signaling pathway genes in Wilms' tumor (WT) have yet to be fully explored. Methods The expression levels of TP53 signaling pathway genes including TP53, mouse double minute 2 (MDM2), mouse double minute 4 (MDM4), cyclin-dependent kinase 2A (CDKN2A), cyclin-dependent kinase 2B (CDKN2B), and tumor suppressor p53-binding protein 1 (TP53BP1) in WT were analyzed using the Oncomine database. Aberration types, co-mutations, mutation locations, signaling pathways, and the prognostic role of TP53 in WT were investigated using cBioPortal. MicroRNA (miRNA) and transcription factor (TF) targets were identified with miRTarBase, miWalk, and ChIP-X Enrichment Analysis 3 (CheA3), respectively. A protein-protein network was constructed using GeneMANIA. The expression of TP53 signaling genes were confirmed in WT samples and normal kidney tissues using the Human Protein Atlas (HPA). Cancer Therapeutics Response Portal (CTRP) was used to analyze the small molecules potentially targeting TP53. Results TP53 was significantly expressed in the Cutcliffe Renal (P=0.010), but not in the Yusenko Renal (P=0.094). Meanwhile, MDM2 was significantly overexpressed in the Yusenko Renal (P=0.058), but not in the Cutcliffe Renal (P=0.058). The expression levels of MDM4 no significant difference between the tumor and normal tissue samples. The most common TP53 alteration was missense and the proportion of TP53 pathway-related mutations was 2.3%. Co-expressed genes included ZNF609 (zinc finger protein 609), WRAP53 (WD40-encoding RNA antisense to p53), CNOT2 (CC chemokine receptor 4-negative regulator of transcription 2), and CDH13 (cadherin 13). TP53 alterations indicated poor prognosis of WT (P=1.051e-4). The regulators of the TP53 pathway included miR-485-5p and TFs NR2F2 and KDM5B. The functions of TP53 signaling pathway were signal transduction in response to DNA damage and regulate the cell cycle. The small molecules targeting TP53 included PRIMA-1, RITA, SJ-172550, and SCH-529074. Conclusions TP53 was found to be differentially expressed in WT tissues. TP53 mutations indicated poor outcomes of WT. Therefore, pifithrin-mu, PRIMA-1, RITA, SJ-172550, and SCH-529074 could be used in combination with traditional chemotherapy to treat WT.
Collapse
Affiliation(s)
- Changjing He
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Huatao Qin
- Department of Nursing, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haizhou Tang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Di Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yufeng Li
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenwen Huang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Donghu Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Changheng Lv
- Department of Pediatric Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
39
|
Moxley AH, Reisman D. Context is key: Understanding the regulation, functional control, and activities of the p53 tumour suppressor. Cell Biochem Funct 2020; 39:235-247. [PMID: 32996618 DOI: 10.1002/cbf.3590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The p53 tumour suppressor is considered one of the most critical genes in cancer biology. By upregulating apoptosis, cell cycle arrest, and DNA damage repair in normal cells, p53 prevents the propagation of cells with tumorigenic potential; therefore, mutations in p53 are associated with carcinogenic transformation and can be accompanied by the accumulation of a novel gain-of-function oncogenic protein, mutant p53. Although p53 is most often understood to utilize context-dependent post-translational modifications to achieve regulation of its many target genes, recent research has also sought to define other mechanisms of regulating p53 gene expression prior to translation and to understand how this alternative regulation of p53 may influence target gene expression and cellular outcome. This review attempts to summarize what is known about p53 regulation at the transcriptional, post-transcriptional, and post-translational levels while paying special attention to the ways in which context may influence p53 regulation and subsequent regulation of its target genes.
Collapse
Affiliation(s)
- Anne H Moxley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - David Reisman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
40
|
Abstract
ATP is released in the body from several cells under various physiological and pathological conditions. A number of authors have postulated a role for extracellular ATP (ATPo) as a neurotransmitter, a secretagogue or an inflammatory mediator. Here, we propose an additional role for ATPo, as a cytotoxic factor, and discuss in vitro experiments showing that this nucleotide causes cell death by two mechanisms: colloido-osmotic lysis and apoptosis.
Collapse
|
41
|
Sabapathy K, Lane DP. Understanding p53 functions through p53 antibodies. J Mol Cell Biol 2020; 11:317-329. [PMID: 30907951 PMCID: PMC6487784 DOI: 10.1093/jmcb/mjz010] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
TP53 is the most frequently mutated gene across all cancer types. Our understanding of its functions has evolved since its discovery four decades ago. Initially thought to be an oncogene, it was later realized to be a critical tumour suppressor. A significant amount of our knowledge about p53 functions have come from the use of antibodies against its various forms. The early anti-p53 antibodies contributed to the recognition of p53 accumulation as a common feature of cancer cells and to our understanding of p53 DNA-binding and transcription activities. They led to the concept that conformational changes can facilitate p53’s activity as a growth inhibitory protein. The ensuing p53 conformational-specific antibodies further underlined p53’s conformational flexibility, collectively forming the basis for current efforts to generate therapeutic molecules capable of altering the conformation of mutant p53. A subsequent barrage of antibodies against post-translational modifications on p53 has clarified p53’s roles further, especially with respect to the mechanistic details and context-dependence of its activity. More recently, the generation of p53 mutation-specific antibodies have highlighted the possibility to go beyond the general framework of our comprehension of mutant p53—and promises to provide insights into the specific properties of individual p53 mutants. This review summarizes our current knowledge of p53 functions derived through the major classes of anti-p53 antibodies, which could be a paradigm for understanding other molecular events in health and disease.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
42
|
Ye T, Feng J, Wan X, Xie D, Liu J. Double Agent: SPDEF Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer. Cancer Manag Res 2020; 12:3891-3902. [PMID: 32547225 PMCID: PMC7259446 DOI: 10.2147/cmar.s243748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
The dichotomy of cancer-regulatory genes into “oncogenes (OCGs)” and “tumor-suppressor genes (TSGs)” has greatly helped us in learning molecular details of tumor biology. SPDEF, known as the prostate-derived ETS factor, is reported to play a pivotal role in normal cell development and survival, which has also been endowed with dual characteristics in cancers. Breast cancer (BC) is a highly heterogeneous disease which becomes the leading reason for cancer-related fatality among women worldwide. The involvement of SPDEF in many aspects of BC has been postulated, whereas the mechanism governing the regulation of the pro- and anti-oncogenic activities of SPDEF in BC state remains poorly defined. In this review, we summarized SPDEF as the double agent involving in expression profiles, the regulatory mechanism in BC progression, as well as the role in diagnosis, treatment and prognosis of BC. The understanding of SPDEF duality has contributed to gain insight into the tumor biology and also add a new dimension to the new therapy targets for BC.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| |
Collapse
|
43
|
Novak J, Zamostna B, Vopalensky V, Buryskova M, Burysek L, Doleckova D, Pospisek M. Interleukin-1α associates with the tumor suppressor p53 following DNA damage. Sci Rep 2020; 10:6995. [PMID: 32332775 PMCID: PMC7181607 DOI: 10.1038/s41598-020-63779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Interleukin-1α (IL-1α) is a dual-function proinflammatory mediator. In addition to its role in the canonical IL-1 signaling pathway, which employs membrane-bound receptors, a growing body of evidence shows that IL-1α has some additional intracellular functions. We identified the interaction of IL-1α with the tumor suppressor p53 in the nuclei and cytoplasm of both malignant and noncancerous mammalian cell lines using immunoprecipitation and the in situ proximity ligation assay (PLA). This interaction was enhanced by treatment with the antineoplastic drug etoposide, which suggests a role for the IL-1α•p53 interaction in genotoxic stress.
Collapse
Affiliation(s)
- J Novak
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Zamostna
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Vopalensky
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Buryskova
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - L Burysek
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - D Doleckova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
44
|
Johnson S, Shaikh SB, Muneesa F, Rashmi B, Bhandary YP. Radiation induced apoptosis and pulmonary fibrosis: curcumin an effective intervention? Int J Radiat Biol 2020; 96:709-717. [PMID: 32149561 DOI: 10.1080/09553002.2020.1739773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by interstitial remodeling, leading to compromised lung function. Extra vascular fibrin deposition and abnormalities in the fibrinolysis are the major clinical manifestations of lung diseases such as acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS). ALI progresses to pulmonary fibrosis (PF) and makes patient's life miserable. Anti-fibrinolysis and apoptosis are involved in the progression of PF. Apoptotic markers are detectable within IPF lung tissue and senescent cell deletion can rejuvenate pulmonary health. Enhanced expression of p53 due to DNA damage is seen in irradiated lung tissue. The role of fibrinolytic components such as Urokinase Plasminogen activator (uPA), uPA receptor (uPAR) and Plasminogen activator inhibitor-1 (PAI-1) has been detailed in I. Curcumin is known to possess anti-inflammatory and anti-fibrotic effects. Radioprotective effect of curcumin enables it to attenuate radiation-induced inflammation and fibrosis. Understanding the mechanism of radioprotective effect of curcumin in radiation-induced PF and apoptosis can lead to the development of an effective therapeutic to combat acute lung injury and fibrosis.
Collapse
Affiliation(s)
- Shilpa Johnson
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Fatheema Muneesa
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Barki Rashmi
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
45
|
Abstract
The importance of cancer-cell-autonomous functions of the tumour suppressor p53 (encoded by TP53) has been established in many studies, but it is now clear that the p53 status of the cancer cell also has a profound impact on the immune response. Loss or mutation of p53 in cancers can affect the recruitment and activity of myeloid and T cells, allowing immune evasion and promoting cancer progression. p53 can also function in immune cells, resulting in various outcomes that can impede or support tumour development. Understanding the role of p53 in tumour and immune cells will help in the development of therapeutic approaches that can harness the differential p53 status of cancers compared with most normal tissue.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael D Buck
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
46
|
J. Jozani R, Zaboli N, Khordadmehr M, Ashrafi-Helan J, Hanifeh M. Identification of p53 gene alterations in canine mammary tumours using polymerase chain reaction and direct sequence analysis. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammary tumours are mentioned as the most common tumours in female dogs and approximately half of them are detected malignant. p53 gene mutations are demonstrated to be the most common genetic alteration in canine mammary tumours. The present study was conducted to evaluate exon-1 of p53 gene mutations in tissue samples of canine mammary tumours by PCR and direct sequence analysis. After histopathological confirmation of the tissue sections by haematoxylin and eosin staining (10/26), deparaffinised samples were used for DNA extraction by silica gel method. Subsequently, p53 exon 1 was amplified through PCR assay using specific oligo nucleotide primers designed according to the canine DNA sequence available online. Microscopically, 10 out of 26 suspected tissue samples were recognised as malignant mammary gland tumours with various grades of malignancy. Surprisingly, one insertion of mutation was found in exon 1 of all examined samples corresponding to a sequence comprising 27 amino acids, between amino acids 30 to 57 in the p53 protein. Taken together, it seems that alteration of exon 1 p53 gene may lead to malignancy behaviour, poor prognosis and short survival time in dogs with mammary carcinomas.
Collapse
|
47
|
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MRG, Mestroni L, Coarfa C, Gurha P, Marian AJ. DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circ Res 2019; 124:856-873. [PMID: 30696354 DOI: 10.1161/circresaha.118.314238] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. OBJECTIVE To gain insights into the molecular pathogenesis of DCM in laminopathies. METHODS AND RESULTS We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNAD300N mutation is associated with DCM in progeroid syndromes. Expression of LMNAD300N led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNAD300N expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNAD300N mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)-a downstream target of E2F pathway and an activator of TP53-provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNAD300N protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. CONCLUSIONS Cardiac myocyte-specific expression of LMNAD300N, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Division of Cardiology, Department of Advanced Biomedical Science, University of Naples Federico II, Italy (R.L.)
| | - Jennifer Karmouch
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,MD Anderson Cancer Center, Houston, TX (J.K.)
| | - Ju-Yun Tsai
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.).,Thermo Fisher Scientific, Taiwan (J.-Y.T.)
| | - Grace Czernuszewicz
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Matthew R G Taylor
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Luisa Mestroni
- Section of Cardiology, University of Colorado-Anschutz Medical Campus, Denver (S.N.C., M.R.G.T., L.M.)
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, TX (C.C.)
| | - Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston (S.N.C., R.L., J.K., J.-Y.T., G.C., P.G., A.J.M.)
| |
Collapse
|
48
|
Li J, Ding R, Gao H, Guo L, Yao X, Zhang Y, Tang J. New spirobisnaphthalenes from an endolichenic fungus strain CGMCC 3.15192 and their anticancer effects through the P53-P21 pathway. RSC Adv 2019; 9:39082-39089. [PMID: 35540656 PMCID: PMC9075947 DOI: 10.1039/c9ra07917c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022] Open
Abstract
Natural products from fungi have remained a rich resource for drug discovery. Here we report the isolation of three new spirobisnaphthalenes, namely sacrosomycin A-C (1-3), and three known analogues (4-6), from the ethyl acetate extract of a nonsporulating endolichenic fungus derived from Peltigera elisabethae var. mauritzii. The structures of these compounds were elucidated by IR, UV, MS, and NMR. Biological functions of these compounds were evaluated using cultured human cancer cell lines. Short-term cell growth and long-term cell survival assays show that compound 5 demonstrated the strongest cancer cell growth inhibition effect. We reveal that compound 5 induced both cell cycle arrest at the G2/M phase and cell death. Using western blotting, luciferase reporter assay and quantitative PCR (qPCR), we show that compound 5 induced up-regulation of the P53-P21 pathway, supporting the cell cycle arrest and growth inhibition effect of this compound. In contrast, these compounds did not induce cell death in a normal cell line. These results demonstrate a potential anticancer effect of this rare family of spirobisnaphthalene compounds isolated from endolichenic fungi.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University Guangzhou 510632 P. R. China
| | - Rong Ding
- School of Pharmaceutical Science, Xiamen University Xiamen 361005 P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University Guangzhou 510632 P. R. China
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science Beijing 100101 P. R. China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University Guangzhou 510632 P. R. China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine Cleveland OH 44106 USA
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
49
|
Blondel A, Benberghout A, Pedeux R, Ricordel C. Exploiting ING2 Epigenetic Modulation as a Therapeutic Opportunity for Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11101601. [PMID: 31640185 PMCID: PMC6827349 DOI: 10.3390/cancers11101601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has been the leading cause of cancer-related death worldwide, over the last few decades. Survival remains extremely poor in the metastatic setting and, consequently, innovative therapeutic strategies are urgently needed. Inhibitor of Growth Gene 2 (ING2) is a core component of the mSin3A/Histone deacetylases complex (HDAC), which controls the chromatin acetylation status and modulates gene transcription. This gene has been characterized as a tumor suppressor gene and its status in cancer has been scarcely explored. In this review, we focused on ING2 and other mSin3A/HDAC member statuses in NSCLC. Taking advantage of existing public databases and known pharmacological properties of HDAC inhibitors, finally, we proposed a therapeutic model based on an ING2 biomarker-guided strategy.
Collapse
Affiliation(s)
- Alice Blondel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Amine Benberghout
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, 35033 Rennes, France.
- CHU Rennes, Service de Pneumologie, Université de Rennes 1, 35033 Rennes, France.
| |
Collapse
|
50
|
Relevance of Non-Targeted Effects for Radiotherapy and Diagnostic Radiology; A Historical and Conceptual Analysis of Key Players. Cancers (Basel) 2019; 11:cancers11091236. [PMID: 31450803 PMCID: PMC6770832 DOI: 10.3390/cancers11091236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/17/2022] Open
Abstract
Non-targeted effects (NTE) such as bystander effects or genomic instability have been known for many years but their significance for radiotherapy or medical diagnostic radiology are far from clear. Central to the issue are reported differences in the response of normal and tumour tissues to signals from directly irradiated cells. This review will discuss possible mechanisms and implications of these different responses and will then discuss possible new therapeutic avenues suggested by the analysis. Finally, the importance of NTE for diagnostic radiology and nuclear medicine which stems from the dominance of NTE in the low-dose region of the dose–response curve will be presented. Areas such as second cancer induction and microenvironment plasticity will be discussed.
Collapse
|