1
|
Akbari A, Kasak L, Laan M. Introduction to androgenetics: terminology, approaches, and impactful studies across 60 years. Andrology 2025. [PMID: 39780503 DOI: 10.1111/andr.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Across six decades, androgenetics has consistently concentrated on discovering genetic causes and enhancing the molecular diagnostics of male infertility, disorders of sex development, and their broader implications on health, such as cancer and other comorbidities. Despite vast clinical knowledge, the training of andrologists often lacks fundamental basics in medical genetics. This work, as part of the Special Issue of Andrology "Genetics in Andrology", provides the core terminology in medical genetics and technological advancements in genomics, required to understand the ever-progressing research in the field. It also gives an overview of study designs and approaches that have frequently led to discoveries in androgenetics. The rapid progress in the methodological toolbox in human genetics is illustrated by numerous examples of impactful androgenetic studies over 60 years, and their clinical implications.
Collapse
Affiliation(s)
- Arvand Akbari
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura Kasak
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Lopez-Gonzalez M, Ariceta G. WT1-related disorders: more than Denys-Drash syndrome. Pediatr Nephrol 2024; 39:2601-2609. [PMID: 38326647 DOI: 10.1007/s00467-024-06302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Historically, specific mutations in WT1 gene have been associated with distinct syndromes based on phenotypic characteristics, including Denys-Drash syndrome (DDS), Frasier syndrome (FS), Meacham syndrome, and WAGR syndrome. DDS is classically defined by the triad of steroid-resistant nephrotic syndrome (SRNS) onset in the first year of life, disorders of sex development (DSD), and a predisposition to Wilms tumor (WT). Currently, a paradigm shift acknowledges a diverse spectrum of presentations beyond traditional syndromic definitions. Consequently, the concept of WT1-related disorders becomes more precise. A genotype-phenotype correlation has been established, emphasizing that the location and type of WT1 mutations significantly influence the clinical presentation, the condition severity, and the chronology of patient manifestations. Individuals presenting with persistent proteinuria, with or without nephrotic syndrome, and varying degrees of kidney dysfunction accompanied by genital malformations should prompt suspicion of WT1 mutations. Recent genetic advances enable a more accurate estimation of malignancy risk in these patients, facilitating a conservative nephron-sparing surgery (NSS) approach in select cases, with a focus on preserving residual kidney function and delaying nephrectomies. Other key management strategies include kidney transplantation and addressing DSD and gonadoblastoma. In summary, recent genetic insights underscore the imperative to implement individualized, integrated, and multidisciplinary management strategies for WT1-related disorders. This approach is pivotal in optimizing patient outcomes and addressing the complexities associated with these diverse clinical manifestations.
Collapse
Affiliation(s)
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
- University Autonomous of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Ma IZ, Baek RM, Kim BK. Successful Management of Velopharyngeal Insufficiency in WAGR syndrome with Deletion of Chromosome 11p14.3. J Craniofac Surg 2024:00001665-990000000-01739. [PMID: 38949253 DOI: 10.1097/scs.0000000000010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Deletions in the 11p region can lead to severe outcomes, such as WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome. However, velopharyngeal insufficiency is little known, and its treatment guideline is yet to be established. Here, we present a velopharyngeal insufficiency case of a Korean patient with a 493kb deletion of chromosome 11p14.3. The patient was successfully managed with a posterior pharyngeal flap. Posterior pharyngeal flap should be considered in velopharyngeal insufficiency patients with WAGR syndrome.
Collapse
Affiliation(s)
- I Zhen Ma
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Korea
| | | | | |
Collapse
|
4
|
Aloway JA, Ruteshouser EC, Huff V, Behringer RR. Generation of a Wt1 conditional deletion, nuclear red fluorescent protein reporter allele in the mouse. Differentiation 2024; 138:100791. [PMID: 38941819 DOI: 10.1016/j.diff.2024.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
A Wt1 conditional deletion, nuclear red fluorescent protein (RFP) reporter allele was generated in the mouse by gene targeting in embryonic stem cells. Upon Cre-mediated recombination, a deletion allele is generated that expresses RFP in a Wt1-specific pattern. RFP expression was detected in embryonic and adult tissues known to express Wt1, including the kidney, mesonephros, and testis. In addition, RFP expression and WT1 co-localization was detected in the adult uterine stroma and myometrium, suggesting a role in uterine function. Crosses with Wnt7a-Cre transgenic mice that express Cre in the Müllerian duct epithelium activate Wt1-directed RFP expression in the epithelium of the oviduct but not the stroma and myometrium of the uterus. This new mouse strain should be a useful resource for studies of Wt1 function and marking Wt1-expressing cells.
Collapse
Affiliation(s)
- Jace A Aloway
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Genetics and Epigenetics Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E Cristy Ruteshouser
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vicki Huff
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Genetics and Epigenetics Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Genetics and Epigenetics Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Stancampiano MR, Meroni SLC, Bucolo C, Russo G. 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes. Front Endocrinol (Lausanne) 2024; 15:1402579. [PMID: 38841305 PMCID: PMC11150773 DOI: 10.3389/fendo.2024.1402579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can occur due to fetal or postnatal exposure to elevated amount of androgens or maldevelopment of internal genitalia. Clinical phenotype could be quite variable and for this reason these conditions could be diagnosed at birth, in newborns with atypical genitalia, but also even later in life, due to progressive virilization during adolescence, or pubertal delay. Understand the physiological development and the molecular bases of gonadal and adrenal structures is crucial to determine the diagnosis and best management and treatment for these patients. The most common cause of DSD in 46,XX newborns is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary adrenal insufficiency and androgen excess. In this review we will focus on the other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant data on genetic, clinical aspects, puberty and fertility outcomes of these rare diseases.
Collapse
|
6
|
Буянова АА, Воронцова ИГ, Самитова АФ, Василиадис ЮА, Петряйкина ЕЕ, Демина ЕС, Тюльпаков АН. [A case of 46,XX testicular disorders of sex development due to an apparent synonymous variant in the WT1 gene: difficulties of differential diagnosis of intrauterine virililzation syndrome in a girl]. PROBLEMY ENDOKRINOLOGII 2024; 71:60-65. [PMID: 40089886 PMCID: PMC11931460 DOI: 10.14341/probl13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 03/17/2025]
Abstract
Disorders of sex development (DSD) represent a group of congenital conditions in which there is a discrepancy between the chromosomal and (or) gonadal sex and the structure of the genitals. Within the DSD there is a subgroup of 46,XX testicular DSD (46,XX TDSD), which may be caused by the translocation of the SRY gene, and more rarely - due to other causes (SRY-negative forms). In this report, we present an observation of a patient with SRY-negative 46,XX TDSD, in whom the condition was initially regarded as a virile form of congenital adrenal hyperplasia, then as idiopathic intrauterine virilization in a girl. Due to the development of virilization at the age of 11, the presence of testicular tissue was suspected. Molecular genetic analysis (whole exome sequencing with Sanger validation) revealed a de novo variant in exon 9 of the WT1 gene (chr11:32413528T>C), which, according to predictions, did not lead to a change in the amino acid sequence (p.Thr479=, NM_024426.6), but disrupted splicing, resulting in a previously described in 46,XX TDSD a change in the C-terminal domain of WT1. After verification of the diagnosis, a gonadectomy was performed and estrogen replacement therapy was prescribed. Thus, we have described a patient with a rare form of 46,XX TDSD caused by a variant in the WT1 gene. The presented observation illustrates the difficulties of differential diagnosis of intrauterine virilization syndrome in female karyotype.
Collapse
Affiliation(s)
- А. А. Буянова
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | | | - А. Ф. Самитова
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | - Ю. А. Василиадис
- Центр высокоточного редактирования и генетических технологий для биомедицины
| | | | | | - А. Н. Тюльпаков
- Российская детская клиническая больница; Медико-генетический научный центр им. акад. Н.П. Бочкова
| |
Collapse
|
7
|
Aekka A, Weisman AG, Papadakis J, Yerkes E, Baker J, Keswani M, Weinstein J, Finlayson C. Clinical utility of early rapid genome sequencing in the evaluation of patients with differences of sex development. Am J Med Genet A 2024; 194:351-357. [PMID: 37789729 DOI: 10.1002/ajmg.a.63377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Establishing an early and accurate genetic diagnosis among patients with differences of sex development (DSD) is crucial in guiding the complex medical and psychosocial care they require. Genetic testing routinely utilized in clinical practice for this population is predicated upon physical exam findings and biochemical and endocrine profiling. This approach, however, is inefficient and unstandardized. Many patients with DSD, particularly those with 46,XY DSD, never receive a molecular genetic diagnosis. Rapid genome sequencing (rGS) is gaining momentum as a first-tier diagnostic instrument in the evaluation of patients with DSD given its ability to provide greater diagnostic yield and timely results. We present the case of a patient with nonbinary genitalia and systemic findings for whom rGS identified a novel variant of the WT1 gene and resulted in a molecular diagnosis within two weeks of life. This timeframe of diagnosis for syndromic DSD is largely unprecedented at our institution. Rapid GS expedited mobilization of a multidisciplinary medical team; enabled early understanding of clinical trajectory; informed planning of medical and surgical interventions; and guided individualized psychosocial support provided to the family. This case highlights the potential of early rGS in transforming the evaluation and care of patients with DSD.
Collapse
Affiliation(s)
- Apoorva Aekka
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Allison Goetsch Weisman
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jaclyn Papadakis
- Department of Psychiatry and Behavioral Health, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth Yerkes
- Division of Urology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua Baker
- Division of Genetics, Genomics, and Metabolism, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mahima Keswani
- Division of Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna Weinstein
- Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Courtney Finlayson
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Torban E, Goodyer P. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer. Am J Physiol Renal Physiol 2024; 326:F3-F19. [PMID: 37916284 DOI: 10.1152/ajprenal.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
In 1990, mutations of the Wilms' tumor-1 gene (WT1), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline WT1 mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of WT1 leads to malignant transformation. Here, we discuss how alternative splicing of WT1 generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the WT1 mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University and Research Institute of McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Ng JKM, Li JJX, Lai BSW, Tsang JY, Chan AWS, Cheung CMT, Ip ECC, Tse GM. WT1 as a myoepithelial marker: a comparative study of breast, cutaneous, and salivary gland lesions. Hum Pathol 2023; 135:76-83. [PMID: 36739952 DOI: 10.1016/j.humpath.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
WT1 immunostain is expressed in various benign and malignant neoplasms, as well as normal myoepithelial cells. WT1 shows differential expression in non-neoplastic, benign, and malignant neoplastic myoepithelial cells of the salivary gland. In this study, WT1 immunostain and other myoepithelial markers were compared to investigate the value of WT1 as a myoepithelial marker, and to delineate the expression profile of WT1 in nonsalivary gland myoepithelial cells. WT1, p63, and calponin immunostains were performed on normal and lesional tissues from the breast (adenosis, sclerosing adenosis, lactating adenoma, nipple adenoma, tubular adenoma, adenomyoepithelioma, and adenoid cystic carcinoma [ACC]), skin (cutaneous mixed tumor, hidradenoma, spiradenoma, and ACC), and salivary gland (pleomorphic adenoma and ACC). The stained slides were digitized and orientated with H&E images and assessed simultaneously using QuPath. A total of 129, 58, and 56 breast, cutaneous, and salivary gland lesions, respectively, were included. There was poor agreement between WT1-p63 and WT1-calponin (κ < 0.1) in all organs, with absence of WT1 expression in normal salivary gland myoepithelium and most ACCs. There were no significant differences in WT1 expression in myoepithelial cells in normal breast tissue and benign breast neoplasms. Compared to pleomorphic adenomas, cutaneous mixed tumors showed lower WT1 expression (P < .001). WT1 is a less sensitive myoepithelial marker than calponin and p63. However, its unique pattern of expression in salivary gland primary for pleomorphic adenomas/cutaneous mixed tumor can favor a diagnosis of benign salivary gland tumors, particularly in small biopsy specimens.
Collapse
Affiliation(s)
- Joanna K M Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joshua J X Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Billy S W Lai
- Department of Pathology, North District Hospital, Hong Kong
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Agnes W S Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Christina M T Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Edric C C Ip
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Differential expression profiling of onco and tumor-suppressor genes from major-signaling pathways in Wilms' tumor. Pediatr Surg Int 2022; 38:1601-1617. [PMID: 36107237 DOI: 10.1007/s00383-022-05202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Wilms' tumor is the most-frequent malignant-kidney tumor in children under 3-4 years of age and is caused by genetic alterations of oncogenes (OG) and tumor-suppressor genes (TG). Wilms' tumor has been linked to many OG-&-TG. However, only WT1 has a proven role in the development of this embryonic-tumor. METHODS The study investigates the level of mRNA expression of 16 OGs and 20 TGs involved in key-signaling pathways, including chromatin modification; RAS; APC; Cell Cycle/Apoptosis; Transcriptional Regulation; PI3K; NOTCH-&-HH; PI3K & RAS of 24-fresh Wilms'-tumor cases by capture-and-reporter probe Code-Sets chemistry, as CNVs in these pathway genes have been reported. RESULTS Upon extensively investigating, MEN1, MLL2, MLL3, PBRM1, PRDM1, SMARCB1, SETD2, WT1, PTPN11, KRAS, HRAS, NF1, APC, RB1, FUBP1, BCOR, U2AF1, PIK3CA, PTEN, EBXW7, SMO, ALK, CBL, EP300-and-GATA1 were found to be significantly up-regulated in 58.34, 62.5, 79.17, 91.67, 58, 66.66,54, 58.34, 66.67, 75, 62.5, 62.5, 58, 79.17, 79.17, 75, 70.84, 50, 50, 75, 66.66, 62.50, 61.66, 58.34-and-62.50% of cases respectively, whereas BRAF, NF2, CDH1, BCL2, FGFR3, ERBB2, MET, RET, EGFR-and-GATA2 were significantly down regulated in 58, 87.50, 79.16, 54.16, 79.17, 91.66, 66.66, 58.33, 91.66-and-62.50% of cases, respectively. Interestingly, the WT1 gene was five-fold down regulated in 41.66% of cases only. CONCLUSION Hence, extensive profiling of OGs and TGs association of major-signaling pathways in Wilms' tumor cases may aid in disease diagnosis. PBRM1 (up-regulated in 91.67% of cases), ERBB2 and EGFR (down-regulated in 91.66 and 91.66% of cases, respectively) could be marker genes. However, validation of all relevant results in a larger number of samples is required.
Collapse
|
12
|
Guaragna MS, Ledesma FL, Manzano VZ, Maciel-Guerra AT, Guerra-Júnior G, Silva MM, Luiz de Brito P, Palandi de Mello M. Bilateral Wilms' tumor in a child with Denys-Drash syndrome: novel frameshift variant disrupts the WT1 nuclear location signaling region. J Pediatr Endocrinol Metab 2022; 35:837-843. [PMID: 35304980 DOI: 10.1515/jpem-2021-0673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Wilm's Tumor (WT) is the most common pediatric kidney cancer. Whereas most WTs are isolated, approximately 5% are associated with syndromes such as Denys-Drash (DDS), characterized by early onset nephropathy, disorders of sex development and predisposition to WT. CASE PRESENTATION A 46,XY patient presenting with bilateral WT and genital ambiguity without nephropathy was heterozygous for the novel c.851_854dup variant in WT1 gene sequence. This variant affects the protein generating the frameshift p.(Ser285Argfs*14) that disrupts a nuclear localization signal (NLS) region. CONCLUSIONS This molecular finding is compatible with the severe scenario regarding the Wilm's tumor presented by the patient even though nephropathy was absent.
Collapse
Affiliation(s)
- Mara Sanches Guaragna
- Center for Molecular Biology and Genetic Engineering - CBMEG, State University of Campinas, São Paulo, Brazil.,Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil
| | - Felipe Lourenço Ledesma
- Department of Pathology, Clinical Hospital of the University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Andréa Trevas Maciel-Guerra
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Gil Guerra-Júnior
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil.,Department of Pediatrics, School of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Marcelo Milone Silva
- Children and Adolescents Cancer Center (GACC) São José dos Campos, São Paulo, Brazil
| | - Pedro Luiz de Brito
- Children and Adolescents Cancer Center (GACC) São José dos Campos, São Paulo, Brazil
| | - Maricilda Palandi de Mello
- Center for Molecular Biology and Genetic Engineering - CBMEG, State University of Campinas, São Paulo, Brazil.,Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
van Heyningen V. A Journey Through Genetics to Biology. Annu Rev Genomics Hum Genet 2022; 23:1-27. [PMID: 35567277 DOI: 10.1146/annurev-genom-010622-095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
14
|
Abstract
MicroRNAs (miRNAs) belong to a class of endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, through both translational repression and mRNA destabilization. They are key regulators of kidney morphogenesis, modulating diverse biological processes in different renal cell lineages. Dysregulation of miRNA expression disrupts early kidney development and has been implicated in the pathogenesis of developmental kidney diseases. In this Review, we summarize current knowledge of miRNA biogenesis and function and discuss in detail the role of miRNAs in kidney morphogenesis and developmental kidney diseases, including congenital anomalies of the kidney and urinary tract and Wilms tumor. We conclude by discussing the utility of miRNAs as potentially novel biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Débora Malta Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maliha Tayeb
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Chen M, Cen C, Wang N, Shen Z, Wang M, Liu B, Li J, Cui X, Wang Y, Gao F. The functions of Wt1 in mouse gonad development and somatic cells differentiation. Biol Reprod 2022; 107:269-274. [PMID: 35244683 DOI: 10.1093/biolre/ioac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms' tumour 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yanbo Wang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Tang F, Lu Z, Lei H, Lai Y, Lu Z, Li Z, Tang Z, Zhang J, He Z. DNA Methylation Data-Based Classification and Identification of Prognostic Signature of Children With Wilms Tumor. Front Cell Dev Biol 2022; 9:683242. [PMID: 35004665 PMCID: PMC8740190 DOI: 10.3389/fcell.2021.683242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background: As an epigenetic alteration, DNA methylation plays an important role in early Wilms tumorigenesis and is possibly used as marker to improve the diagnosis and classification of tumor heterogeneity. Methods: Methylation data, RNA-sequencing (RNA-seq) data, and corresponding clinical information were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The prognostic values of DNA methylation subtypes in Wilms tumor were identified. Results: Four prognostic subtypes of Wilms tumor patients were identified by consensus cluster analysis performed on 312 independent prognostic CpG sites. Cluster one showed the best prognosis, whereas Cluster two represented the worst prognosis. Unique CpG sites identified in Cluster one that were not identified in other subtypes were assessed to construct a prognostic signature. The prognostic methylation risk score was closely related to prognosis, and the area under the curve (AUC) was 0.802. Furthermore, the risk score based on prognostic signature was identified as an independent prognostic factor for Wilms tumor in univariate and multivariate Cox regression analyses. Finally, the abundance of B cell infiltration was higher in the low-risk group than in the high-risk group, based on the methylation data. Conclusion: Collectively, we divided Wilms tumor cases into four prognostic subtypes, which could efficiently identify high-risk Wilms tumor patients. Prognostic methylation risk scores that were significantly associated with the adverse clinical outcomes were established, and this prognostic signature was able to predict the prognosis of Wilms tumor in children, which may be useful in guiding clinicians in therapeutic decision-making. Further independent studies are needed to validate and advance this hypothesis.
Collapse
Affiliation(s)
- Fucai Tang
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zeguang Lu
- The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Hanqi Lei
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.,Department of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongchang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zechao Lu
- The First Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhibiao Li
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhicheng Tang
- The Third Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Zhang
- The Sixth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Arroyo-Parejo Drayer P, Seeherunvong W, Katsoufis CP, DeFreitas MJ, Seeherunvong T, Chandar J, Abitbol CL. Spectrum of Clinical Manifestations in Children With WT1 Mutation: Case Series and Literature Review. Front Pediatr 2022; 10:847295. [PMID: 35498778 PMCID: PMC9051246 DOI: 10.3389/fped.2022.847295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mutations of the Wilms tumor suppressor-1 gene (WT1) are associated with life-threatening glomerulopathy, disorders of sexual development, Wilm's tumor, and gonadal malignancies. Our objectives were to describe the clinical presentations, age of progression, and onset of complications of WT1 mutation through a case series and literature review. METHODS A retrospective study included all patients followed at the University of Miami/Holtz Children's Hospital from January 2000 to December 2020 with a diagnosis of WT1 mutation. A literature review of WT1 mutation cases was analyzed for clinical manifestations, karyotype, and long-term outcomes. RESULTS The WT1 mutation was identified in 9 children, median age at presentation of 0.9 years (range 1 week to 7 years). A total of four had female phenotypes, and 5 had abnormalities of male external genitalia, while all had XY karyotypes. All progressed to end-stage kidney disease (ESKD) and received a kidney transplant at a median age of 5 years (1.5-15 years). During a median time of follow-up of 9 years (range 2-28 years), there were 2 allograft losses after 7 and 10 years and no evidence of post-transplant malignancy. From 333 cases identified from the literature review, the majority had female phenotype 66% (219/333), but the predominant karyotype was XY (55%, 183/333). Of the female phenotypes, 32% (69/219) had XY sex reversal. Wilm's tumor occurred in 24%, predominantly in males with gonadal anomalies. CONCLUSIONS Early recognition of WT1 mutation is essential for comprehensive surveillance of potential malignancy, avoidance of immunosuppressants for glomerulopathy, and establishing long-term multidisciplinary management.
Collapse
Affiliation(s)
- Patricia Arroyo-Parejo Drayer
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wacharee Seeherunvong
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chryso P Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marissa J DeFreitas
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Tossaporn Seeherunvong
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States.,Pediatric Renal Transplantation, Miami Transplant Institute, Jackson Health System, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Wang Y, Chen Q, Zhang F, Yang X, Shang L, Ren S, Pan Y, Zhou Z, Li G, Fang Y, Jin L, Wu Y, Zhang X. Whole exome sequencing identified a rare WT1 loss-of-function variant in a non-syndromic POI patient. Mol Genet Genomic Med 2022; 10:e1820. [PMID: 34845858 PMCID: PMC8801142 DOI: 10.1002/mgg3.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a highly heterogeneous disease, and up to 25% of cases can be explained by genetic causes. The transcription factor WT1 has long been reported to play a crucial role in ovary function. Wt1-mutated female mice exhibited POI-like phenotypes. METHODS AND RESULTS In this study, whole exome sequencing (WES) was applied to find the cause of POI in Han Chinese women. A nonsense variant in the WT1 gene: NM_024426.6:c.1387C>T(p.R463*) was identified in a non-syndromic POI woman. The variant is a heterozygous de novo mutation that is very rare in the human population. The son of the patient inherited the mutation and developed Wilms' tumor and urethral malformation at the age of 7. According to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines, the novel variant is categorized as pathogenic. Western blot analysis further demonstrated that the WT1 variant could produce a truncated WT1 isoform in vitro. CONCLUSIONS A rare heterozygous nonsense WT1 mutant is associated with non-syndromic POI and Wilms' tumor. Our finding characterized another pathogenic WT1 variant, providing insight into genetic counseling.
Collapse
Affiliation(s)
- Yingchen Wang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Qing Chen
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Feng Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Xi Yang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Lingyue Shang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Shuting Ren
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yuncheng Pan
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Zixue Zhou
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Guoqing Li
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yunzheng Fang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Li Jin
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yanhua Wu
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- National Demonstration Center for Experimental Biology EducationSchool of Life SciencesFudan UniversityShanghaiChina
| | - Xiaojin Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| |
Collapse
|
19
|
Zhuo Z, Hua RX, Zhang H, Lin H, Fu W, Zhu J, Cheng J, Zhang J, Li S, Zhou H, Xia H, Liu G, Jia W, He J. METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children. BMC Cancer 2021; 21:1294. [PMID: 34863142 PMCID: PMC8643011 DOI: 10.1186/s12885-021-09019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Wilms tumor is a highly heritable malignancy. Aberrant METTL14, a critical component of N6-methyladenosine (m6A) methyltransferase, is involved in carcinogenesis. The association between genetic variants in the METTL14 gene and Wilms tumor susceptibility remains to be fully elucidated. We aimed to assess whether variants within this gene are implicated in Wilms tumor susceptibility. METHODS A total of 403 patients and 1198 controls were analyzed. METTL14 genotypes were assessed by TaqMan genotyping assay. RESULT Among the five SNPs analyzed, rs1064034 T > A and rs298982 G > A exhibited a significant association with decreased susceptibility to Wilms tumor. Moreover, the joint analysis revealed that the combination of five protective genotypes exerted significantly more protective effects against Wilms tumor than 0-4 protective genotypes with an OR of 0.69. The stratified analysis further identified the protective effect of rs1064034 T > A, rs298982 G > A, and combined five protective genotypes in specific subgroups. The above significant associations were further validated by haplotype analysis and false-positive report probability analysis. Preliminary mechanism exploration indicated that rs1064034 T > A and rs298982 G > A are correlated with the expression and splicing event of their surrounding genes. CONCLUSIONS Collectively, our results suggest that METTL14 gene SNPs may be genetic modifiers for the development of Wilms tumor.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huizhu Zhang
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Shannxi, Taiyuan, 030013, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
20
|
Welch TR, Sima J. 50 Years Ago in TheJournal ofPediatrics: Fifty Years from Syndrome to Gene. J Pediatr 2021; 237:205. [PMID: 34563321 DOI: 10.1016/j.jpeds.2021.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Jody Sima
- Division of Hematology Oncology, Upstate Medical University, Upstate Golisano Children's Hospital, Syracuse, New York
| |
Collapse
|
21
|
Bizzarri C, Antonella Giannone G, Gervasoni J, Benedetti S, Albanese F, Dello Strologo L, Guzzo I, Mucciolo M, Diomedi Camassei F, Emma F, Cappa M, Porzio O. Unusual Presentation of Denys-Drash Syndrome in a Girl with Undisclosed Consumption of Biotin. J Clin Res Pediatr Endocrinol 2021; 13:347-352. [PMID: 32840097 PMCID: PMC8388055 DOI: 10.4274/jcrpe.galenos.2020.2020.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We describe a 46,XX girl with Denys-Drash syndrome, showing both kidney disease and genital abnormalities, in whom a misdiagnosis of hyperandrogenism was made. A 15 year-old girl was affected by neonatal nephrotic syndrome, progressing to end stage kidney failure. Hair loss and voice deepening were noted during puberty. Pelvic ultrasound and magnetic resonance imaging showed utero-tubaric agenesis, vaginal atresia and urogenital sinus, with inguinal gonads. Gonadotrophin and estradiol levels were normal, but testosterone was increased up to 285 ng/dL at Tanner stage 3. She underwent prophylactic gonadectomy. Histopathology reported fibrotic ovarian cortex containing numerous follicles in different maturation stages and rudimental remnants of Fallopian tubes. No features of gonadoblastoma were detected. Unexpectedly, testosterone levels were elevated four months after gonadectomy (157 ng/dL). Recent medical history revealed chronic daily comsumption of high dose biotin, as a therapeutic support for hair loss. Laboratory immunoassay instruments used streptavidin-biotin interaction to detect hormones and, in competitive immunoassays, high concentrations of biotin can result in false high results. Total testosterone, measured using liquid chromatography tandem mass spectrometry, was within reference intervals. Similar testosterone levels were detected on repeat immunoassay two weeks after biotin uptake interruption. Discordance between clinical presentation and biochemical results in patients taking biotin, should raise the suspicion of erroneous results. Improved communication among patients, health care providers, and laboratory professionals is required concerning the likelihood of biotin interference with immunoassays.
Collapse
Affiliation(s)
- Carla Bizzarri
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Endocrinology, Rome, Italy
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabina Benedetti
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy
| | - Federica Albanese
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy
| | - Luca Dello Strologo
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Isabella Guzzo
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Mafalda Mucciolo
- IRCCS Ospedale Pediatrico Bambino Gesù, Medical Genetics Laboratory, Rome, Italy
| | | | - Francesco Emma
- IRCCS Ospedale Pediatrico Bambino Gesù, Units of Nephrology and Dialysis, Rome, Italy
| | - Marco Cappa
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Endocrinology, Rome, Italy
| | - Ottavia Porzio
- IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory, Rome, Italy,University of Rome “Tor Vergata”, Department of Experimental Medicine, Rome, Italy,* Address for Correspondence: IRCCS Ospedale Pediatrico Bambino Gesù, Unit of Medical Laboratory; University of Rome “Tor Vergata”, Department of Experimental Medicine, Rome, Italy Phone: +390668592210 E-mail:
| |
Collapse
|
22
|
Hua RX, Fu W, Lin A, Zhou H, Cheng J, Zhang J, Li S, Liu G, Xia H, Zhuo Z, He J. Role of FTO gene polymorphisms in Wilms tumor predisposition: A five-center case-control study. J Gene Med 2021; 23:e3348. [PMID: 33894035 DOI: 10.1002/jgm.3348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is the most frequently occurring renal malignancy in pediatrics. The FTO gene exhibits a featured genetic contribution to cancer development. Nonetheless, its single nucleotide polymorphism (SNP) contribution to Wilms tumor remains unknown. METHODS In the present study, 402 Wilms tumor patients and 1198 healthy controls were successfully genotyped for FTO gene SNPs (rs1477196 G>A, rs9939609 T>A, rs7206790 C>G and rs8047395 A>G) using TaqMan SNP genotyping assays. Odds ratios (ORs) and 95% confidence intervals (CIs), generated from unconditional logistic regression, were applied to quantify the effects of FTO gene SNPs on Wilms tumor risk. RESULTS We found that the rs8047395 A>G polymorphism was significantly correlated with an increased risk for Wilms tumor (GG versus AA/AG: adjusted OR = 1.38, 95% CI = 1.04-1.85, p = 0.027). Carriers with 1 and 1-2 risk genotypes are more susceptible of developing Wilms tumor than those without risk genotypes. Stratified analysis of rs8047395 and risk genotypes revealed more significant relationships with Wilms tumor risk in certain subgroups. Preliminary functional annotations revealed that the rs8047395 A allele increases expression levels of the FTO gene as determined by expression quantitative trait locus analysis. CONCLUSIONS The present study provides evidence that rs8047395 may regulate FTO gene expression and thus confer susceptibility to Wilms tumor. The candidate FTO gene rs8047395 A>G polymorphism identified in this study warrants independent investigation.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Liu Y, Lin H, Hua R, Zhang J, Cheng J, Li S, Zhou H, Zhuo Z, Bian J. Impact of YTHDF1 gene polymorphisms on Wilms tumor susceptibility: A five-center case-control study. J Clin Lab Anal 2021; 35:e23875. [PMID: 34151473 PMCID: PMC8373325 DOI: 10.1002/jcla.23875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Wilms tumor is the most frequent renal malignancy in children. YTHDF1 is associated with the development of several kinds of cancers, yet whether common variants of the YTHDF1 gene influence Wilms tumor risk is unknown. We present, here, a hospital-based case-control study specifically designed to investigate the role of YTHDF1 genetic variants on Wilms tumor. METHODS We successfully genotyped samples of 408 Wilms tumor cases and 1198 controls which were collected from five hospitals across China. The unconditional logistic regression was adopted to analyze the contributions of YTHDF1 gene single nucleotide polymorphisms (SNPs) to the risk of Wilms tumor. The odds ratio (OR) and 95% confidence interval (CI) were generated to evaluate the conferring risk of YTHDF1 gene SNPs (rs6011668 C>T, rs6090311 A>G). RESULTS Neither of the two SNPs could contribute to the risk of Wilms tumor. A negative association was also detected in the combined effects of protective genotypes on Wilms tumor risk. The stratification analysis revealed that compared with those with CC genotype, rs6011668 CT/TT genotype was associated with increased Wilms tumor risk in those ≤18 months (OR = 1.54, 95% CI = 1.02-2.30, p = 0.038), and with decreased Wilms tumor risk in those >18 months (OR = 0.70, 95% CI = 0.50-0.97, p = 0.034). CONCLUSION Our present work sheds some light on the potential role of YTHDF1 gene polymorphisms on Wilms tumor risk.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of PathologyXi'an Children’s Hospital, The Affiliated Children’s Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jiwen Cheng
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children’s Medical CenterGuangzhouChina
| | - Jun Bian
- Department of General SurgeryXi'an Children’s Hospital, Xi'an Jiaotong University Affiliated Children’s HospitalXi'anChina
| |
Collapse
|
24
|
Xu X, Bi R, Shui R, Yu B, Cheng Y, Tu X, Yang W. Clinicopathological significance of WT1 expression in invasive breast carcinoma with >90% mucinous component. J Clin Pathol 2021; 75:832-836. [PMID: 34244341 DOI: 10.1136/jclinpath-2021-207464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/28/2021] [Indexed: 11/03/2022]
Abstract
AIMS This study was aimed to investigate the clinicopathological significance of immunohistochemical (IHC) Wilm's tumour 1 (WT1) expression in invasive breast carcinoma with >90% mucinous components. METHODS One hundred specimens of invasive breast carcinoma with >90% mucinous component were collected. All H&E-stained slides were reviewed, and the clinicopathological data, including sex, age, tumour size, nuclear grade, histological grade, growth pattern and lymph node (LN) status, were collected. IHC staining of WT1, oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki-67 was performed. Fluorescence in situ hybridisation was used to verify the amplification of the HER2 gene. The relationship between WT1 expression and clinicopathological features was analysed statistically. RESULTS WT1 expression was detected in 67% (67/100) of invasive breast carcinoma with >90% mucinous components. WT1 expression was significantly associated with low-to-intermediate nuclear grade/histological grade, ER and PR positivity, HER2 negativity, Ki-67 proliferation index <30% and noLN metastasis (all p<0.001). Micropapillary architecture was observed in 80% of cases. WT1 expression was not significantly correlated with different percentage of micropapillary components (p=0.422). None of the histological grade 3 tumours, tumours with HER2 overexpression/amplification and triple-negative specimens showed WT1 expression. CONCLUSIONS WT1 expression was significantly related with low-intermediate nuclear/histological grade, ER positivity, HER2 negativity, a lower Ki-67 proliferation index and no LN metastasis in invasive breast carcinoma with >90% mucinous component. The micropapillary growth pattern in this type of tumour did not show a specific relationship with WT1 expression.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruohong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baohua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufan Cheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Tu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Antonarakis SE. History of the methodology of disease gene identification. Am J Med Genet A 2021; 185:3266-3275. [PMID: 34159713 PMCID: PMC8596769 DOI: 10.1002/ajmg.a.62400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
The past 45 years have witnessed a triumph in the discovery of genes and genetic variation that cause Mendelian disorders due to high impact variants. Important discoveries and organized projects have provided the necessary tools and infrastructure for the identification of gene defects leading to thousands of monogenic phenotypes. This endeavor can be divided in three phases in which different laboratory strategies were employed for the discovery of disease-related genes: (i) the biochemical phase, (ii) the genetic linkage followed by positional cloning phase, and (iii) the sequence identification phase. However, much more work is needed to identify all the high impact genomic variation that substantially contributes to the phenotypic variation.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- University of Geneva Medical School, Geneva, Switzerland.,Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| |
Collapse
|
26
|
Akramov NR, Shavaliev RF, Osipova IV. New mutation in WT1 gene in a boy with an incomplete form of Denys-Drash syndrome: A CARE-compliant case report. Medicine (Baltimore) 2021; 100:e25864. [PMID: 34106634 PMCID: PMC8133155 DOI: 10.1097/md.0000000000025864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Pediatric patients with WTl-associated syndromes (including Wilms' tumor-aniridia syndrome and Denys-Drash syndrome), Perlman syndrome, mosaic aneuploidy, and Fanconi anemia with a biallelic breast cancer type 2 susceptibility protein mutation have the highest risk of developing Wilms' tumor. PATIENT CONCERNS AND DIAGNOSIS We describe a patient with bilateral metachronous Wilms' tumor, ambiguous genitalia characterized by 46, XY disorder of sexual development (DSD) with scrotal hypospadias and bilateral abdominal cryptorchidism, but without nephropathy. At the age of 7 months, the child underwent left nephrectomy with left orchiopexy. At follow-up after 8 months, a second tumor with a diameter of 10 mm was detected in abdominal CT scans at the lower pole of the right kidney. INTERVENTION Intra-operative macroscopic inspection of the right kidney revealed a tight attachment of the right proximal ureter to the tumor. Thus, retroperitoneoscopic resection of the lower pole of the right kidney had to be changed to an open surgical procedure with partial resection of the proximal ureter and high uretero-ureterostomy. We subsequently performed orchiopexy and two-stage correction of hypospadias using a free skin graft. OUTCOMES At the last follow-up at the age of 8 years, no pathology requiring treatment was noted. A pair-end-reading (2 × 125) DNA analysis with an average coverage of at least 70 to 100 × revealed a previously unknown heterozygous mutation in exon 7 of the Wilms' tumor suppressor gene 1 (WT1) gene (chr11:32417947G>A), leading to the appearance of a site of premature translation termination in codon 369 (p.Arg369Ter, NM_024426.4). This mutation had not been registered previously in the control samples "1000 genomes," Exome Sequencing Project 6500, and the Exome Aggregation Consortium. Thus, to the best of our knowledge this represents a newly identified mutation causing incomplete Denys-Drash syndrome.
Collapse
Affiliation(s)
- Nail R. Akramov
- Kazan State Medical University
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - Rafael F. Shavaliev
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | - Ilsiya V. Osipova
- Children's Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russian Federation
| |
Collapse
|
27
|
Liu Z, Cao H, Zhang K, Xing J. Nephrogenic rests in adult: A case report. Asian J Surg 2021; 44:665-666. [PMID: 33632553 DOI: 10.1016/j.asjsur.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022] Open
Affiliation(s)
- Zhengsheng Liu
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Huang Cao
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kaiyan Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Jinchun Xing
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China; Department of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
28
|
Szemes M, Melegh Z, Bellamy J, Park JH, Chen B, Greenhough A, Catchpoole D, Malik K. Transcriptomic Analyses of MYCN-Regulated Genes in Anaplastic Wilms' Tumour Cell Lines Reveals Oncogenic Pathways and Potential Therapeutic Vulnerabilities. Cancers (Basel) 2021; 13:656. [PMID: 33562123 PMCID: PMC7915280 DOI: 10.3390/cancers13040656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The MYCN proto-oncogene is deregulated in many cancers, most notably in neuroblastoma, where MYCN gene amplification identifies a clinical subset with very poor prognosis. Gene expression and DNA analyses have also demonstrated overexpression of MYCN mRNA, as well as focal amplifications, copy number gains and presumptive change of function mutations of MYCN in Wilms' tumours with poorer outcomes, including tumours with diffuse anaplasia. Surprisingly, however, the expression and functions of the MYCN protein in Wilms' tumours still remain obscure. In this study, we assessed MYCN protein expression in primary Wilms' tumours using immunohistochemistry of tissue microarrays. We found MYCN protein to be expressed in tumour blastemal cells, and absent in stromal and epithelial components. For functional studies, we used two anaplastic Wilms' tumour cell-lines, WiT49 and 17.94, to study the biological and transcriptomic effects of MYCN depletion. We found that MYCN knockdown consistently led to growth suppression but not cell death. RNA sequencing identified 561 MYCN-regulated genes shared by WiT49 and 17.94 cell-lines. As expected, numerous cellular processes were downstream of MYCN. MYCN positively regulated the miRNA regulator and known Wilms' tumour oncogene LIN28B, the genes encoding methylosome proteins PRMT1, PRMT5 and WDR77, and the mitochondrial translocase genes TOMM20 and TIMM50. MYCN repressed genes including the developmental signalling receptor ROBO1 and the stromal marker COL1A1. Importantly, we found that MYCN also repressed the presumptive Wilms' tumour suppressor gene REST, with MYCN knockdown resulting in increased REST protein and concomitant repression of RE1-Silencing Transcription factor (REST) target genes. Together, our study identifies regulatory axes that interact with MYCN, providing novel pathways for potential targeted therapeutics for poor-prognosis Wilms' tumour.
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Biyao Chen
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Daniel Catchpoole
- The Kids Research Institute, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; (J.B.); (J.H.P.); (B.C.); (A.G.)
| |
Collapse
|
29
|
Wang Z, Zhuo Z, Li L, Hua RX, Li L, Zhang J, Cheng J, Zhou H, Li S, He J, Yan S. The contribution of YTHDF2 gene rs3738067 A>G to the Wilms tumor susceptibility. J Cancer 2021; 12:6165-6169. [PMID: 34539889 PMCID: PMC8425210 DOI: 10.7150/jca.62154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Linyan Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| |
Collapse
|
30
|
Pruteanu DP, Olteanu DE, Cosnarovici R, Mihut E, Nagy V. Genetic predisposition in pediatric oncology. Med Pharm Rep 2020; 93:323-334. [PMID: 33225257 PMCID: PMC7664724 DOI: 10.15386/mpr-1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/10/2020] [Accepted: 07/25/2020] [Indexed: 11/23/2022] Open
Abstract
Identifying patients with a genetic predisposition for developing malignant tumors has a significant impact on both the patient and family. Recognition of genetic predisposition, before diagnosing a malignant pathology, may lead to early diagnosis of a neoplasia. Recognition of a genetic predisposition syndrome after the diagnosis of neoplasia can result in a change of treatment plan, a specific follow-up of adverse treatment effects and, of course, a long-term follow-up focusing on the early detection of a second neoplasia. Responsible for genetic syndromes that predispose individuals to malignant pathology are germline mutations. These mutations are present in all cells of conception, they can be inherited or can occur de novo. Several mechanisms of inheritance are described: Mendelian autosomal dominant, Mendelian autosomal recessive, X-linked patterns, constitutional chromosomal abnormality and non-Mendelian inheritance. In the following review we will present the most important genetic syndromes in pediatric oncology.
Collapse
Affiliation(s)
- Doina Paula Pruteanu
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Rodica Cosnarovici
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Emilia Mihut
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Viorica Nagy
- Department of Pediatric Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Ma L, Hua RX, Lin H, Zhu J, Fu W, Lin A, Zhang J, Cheng J, Zhou H, Li S, Zhuo Z, He J. The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene 2020; 754:144839. [PMID: 32504654 DOI: 10.1016/j.gene.2020.144839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Wilms tumor is the most frequently occurring pediatric renal malignancy. Wilms tumor suppressor-1-associated protein (WTAP) is a vital component of N6-methyltransferase complex involved in tumorigenesis. However, the roles of WTAP gene single nucleotide polymorphisms (SNPs) in Wilms tumor risk have not been clarified to date. We successfully genotyped three WTAP gene SNPs using TaqMan assay in 405 Wilms tumor patients and 1197 cancer-free controls of Chinese children. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to determine the effects of WTAP gene SNPs on Wilms tumor risk. Carriers of the rs1853259 G variant are less susceptible to developing Wilms tumor, with an adjusted OR of 0.78 (AG vs. AA: 95% CI = 0.61-0.995, P = 0.046). Single locus analysis of rs9457712 G > A and rs7766006 G > T, as well as the combined analysis of risk genotypes, failed to unveil an association with Wilms tumor risk, respectively. Stratified analysis of the three SNPs and their combined risk effects showed more significant relationships with Wilms tumor risk under certain subgroups. In all, we found weak evidence of the association between WTAP gene SNPs and the risk of Wilms tumor. Further replication studies with greater sample size and different ethnicities are necessary to verify our findings.
Collapse
Affiliation(s)
- Li Ma
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Management Office, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
32
|
Inferring clonal composition from multiple tumor biopsies. NPJ Syst Biol Appl 2020; 6:27. [PMID: 32843649 PMCID: PMC7447821 DOI: 10.1038/s41540-020-00147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate mutation frequency estimates require accounting for CNAs—a challenging endeavour using the genetic profile of a single tumor biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition of Wilms’ tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.
Collapse
|
33
|
Testis formation in XX individuals resulting from novel pathogenic variants in Wilms' tumor 1 ( WT1) gene. Proc Natl Acad Sci U S A 2020; 117:13680-13688. [PMID: 32493750 PMCID: PMC7306989 DOI: 10.1073/pnas.1921676117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1 Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor β-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.
Collapse
|
34
|
Hua R, Liu J, Fu W, Zhu J, Zhang J, Cheng J, Li S, Zhou H, Xia H, He J, Zhuo Z. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: A five-center case-control study. J Clin Lab Anal 2020; 34:e23251. [PMID: 32091154 PMCID: PMC7307367 DOI: 10.1002/jcla.23251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is a frequently diagnosed renal cancer among children with unclear genetic causes. N6-methyladenosine (m6 A) modification genes play critical roles in tumorigenesis. However, whether genetic variations of m6 A modification genes predispose to Wilms tumor remain unclear. ALKBH5 (AlkB homolog 5), a crucial member of m6 A modification genes, encodes a demethylase that functions to reverse m6 A RNA methylation. METHODS Herein, we evaluated the association of single nucleotide polymorphisms (SNPs) in the m6 A modification gene ALKBH5 and Wilms tumor susceptibility in a large multi-center case-control study. A total of 414 Wilms tumor cases and 1199 healthy controls were genotyped for ALKBH5 rs1378602 and rs8400 polymorphisms by TaqMan. RESULTS No significant association was detected between these two polymorphisms and Wilms tumor risk. Moreover, 1, 2, and 1-2 protective genotypes (rs1378602 AG/AA or rs8400 GG) did not significantly reduce Wilms tumor risk, compared with risk genotypes only. Stratification analysis revealed a significant relationship between rs1378602 AG/AA genotypes and decreased Wilms tumor risk in children in clinical stage I diseases [adjusted odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.32-0.98, P = .042]. The presence of 1-2 protective genotypes was correlated with decreased Wilms tumor risk in subgroups of age > 18 months, when compared to the absence of protective genotypes (adjusted OR = 0.74, 95% CI = 0.56-0.98, P = .035). CONCLUSION Collectively, our results demonstrate that ALKBH5 SNPs may exert a weak influence on susceptibility to Wilms tumor. This finding increases the understanding of the role of the m6 A gene in tumorigenesis of Wilms tumor.
Collapse
Affiliation(s)
- Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiabin Liu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Wen Fu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Jiao Zhang
- Department of Pediatric Surgerythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Suhong Li
- Department of PathologyChildren Hospital and Women Health Center of ShanxiTaiyuanChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huimin Xia
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
35
|
Li S, Lin A, Han D, Zhou H, Cheng J, Zhang J, Fu W, Zhuo Z, He J. LINC00673 rs11655237 C>T and susceptibility to Wilms tumor: A five-center case-control study. J Gene Med 2019; 21:e3133. [PMID: 31657076 DOI: 10.1002/jgm.3133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor, a frequently occurring pediatric renal cancer worldwide, originated from the embryonal nephric mesenchyme. However, epidemiological data on the association between LINC00673 polymorphisms and Wilms tumor risk are scant. This case-control study was conducted to investigate the potential role of the LINC00673 rs11655237 C>T polymorphism in the susceptibility to Wilms tumor. METHODS In the present study, we conducted a genotyping analysis of LINC00673 rs11655237 C>T in 414 cases and 1199 controls recruited from five hospitals in China. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated from multiple logistic regression models to determine the association of LINC00673 rs11655237 C>T polymorphism and Wilms tumor susceptibility. RESULTS No significant association between the LINC00673 rs11655237 C>T polymorphism and Wilms tumor risk was observed (CT versus CC: adjusted OR = 0.90, 95% CI = 0.71-1.15; TT versus CC: adjusted OR = 0.86, 95% CI = 0.50-1.49; TT/CT versus CC: adjusted OR = 0.90, 95% CI = 0.71-1.13; and TT versus CC/CT: adjusted OR = 0.89, 95% CI = 0.52-1.53). We also failed to make any remarkable findings for this genotype in the stratification analysis. CONCLUSIONS In summary, we failed to provide any evidence in favor of the significant susceptibility of rs11655237 C>T polymorphism in LINC00673 to Wilms tumor. These data could be useful for reinforcing our understanding of the potential contribution of LINC00673 rs11655237 C>T to Wilms tumor susceptibility.
Collapse
Affiliation(s)
- Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dandan Han
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Abstract
Wilms tumour is the most common renal malignancy of childhood. The disease is curable in the majority of cases, albeit at considerable cost in terms of late treatment-related effects in some children. However, one in ten children with Wilms tumour will die of their disease despite modern treatment approaches. The genetic changes that underpin Wilms tumour have been defined by studies of familial cases and by unbiased DNA sequencing of tumour genomes. Together, these approaches have defined the landscape of cancer genes that are operative in Wilms tumour, many of which are intricately linked to the control of fetal nephrogenesis. Advances in our understanding of the germline and somatic genetic changes that underlie Wilms tumour may translate into better patient outcomes. Improvements in risk stratification have already been seen through the introduction of molecular biomarkers into clinical practice. A host of additional biomarkers are due to undergo clinical validation. Identifying actionable mutations has led to potential new targets, with some novel compounds undergoing testing in early phase trials. Avenues that warrant further exploration include targeting Wilms tumour cancer genes with a non-redundant role in nephrogenesis and targeting the fetal renal transcriptome.
Collapse
Affiliation(s)
- Taryn Dora Treger
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Sato Y, Haruta M, Kaneko Y, Nakasato Y, Kurosawa H, Yoshihara S. Paternally inherited WT1 mutation plus uniparental disomy of 11p may be an essential mechanism for development of WT1-mutated familial Wilms tumor. Pediatr Blood Cancer 2019; 66:e27442. [PMID: 30221469 DOI: 10.1002/pbc.27442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Yuya Sato
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Masayuki Haruta
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | - Yasuhiko Kaneko
- Department of Cancer Diagnosis, Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | - Yoshimasa Nakasato
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hidemitsu Kurosawa
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
38
|
Shimizu N, Matsuda M. Identification of a Novel Zebrafish Mutant Line that Develops Testicular Germ Cell Tumors. Zebrafish 2018; 16:15-28. [PMID: 30300574 DOI: 10.1089/zeb.2018.1604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Testicular tumors are the most common solid malignant tumors in men 20-35 years of age. Although most of testicular tumors are curable, current treatments still fail in 15%-20% of patients. However, insufficient understanding of the molecular basis and lack of animal models limit development of more effective treatments. This study reports the identification of a novel zebrafish mutant line, ns1402, which develops testicular germ cell tumors (TGCTs). While both male and female ns1402 mutants were fertile at young age, male ns1402 mutants became infertile as early as 9 months of age. This infertility was associated with progressive loss of mature sperm. Failure of spermatogenesis was, at least in part, explained by progressive loss of mature Leydig cells, a source of testosterone that is essential for spermatogenesis. Interestingly, TGCTs in ns1402 mutants contained a large number of Sertoli cells and gene expression profiles of Sertoli cells were altered before loss of mature Leydig cells. This suggests that changes in Sertoli cell properties happened first, followed by loss of mature Leydig cells and failure of spermatogenesis. Taken together, this study emphasizes the importance of cell-cell interactions and cell signaling in the testis for spermatogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Miho Matsuda
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
39
|
Murphy AJ, Davidoff AM. Bilateral Wilms Tumor: A Surgical Perspective. CHILDREN-BASEL 2018; 5:children5100134. [PMID: 30250006 PMCID: PMC6210093 DOI: 10.3390/children5100134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 12/27/2022]
Abstract
Historically, the management of bilateral Wilms tumor (BWT) was non-standardized and suffered from instances of prolonged chemotherapy and inconsistent surgical management which resulted in suboptimal renal and oncologic outcomes. Because of the risk of end-stage renal disease associated with the management of BWT, neoadjuvant chemotherapy and nephron-sparing surgery have been adopted as the guiding management principles. This management strategy balances acceptable oncologic outcomes against the risk of end-stage renal disease. A recent multi-institutional Children’s Oncology Group study (AREN0534) has confirmed the benefits of standardized 3-drug neoadjuvant chemotherapy and the utilization of nephron-sparing surgery in BWT patients; however, less than 50% of patients underwent bilateral nephron-sparing surgery. The coordination of neoadjuvant chemotherapy and the timing and implementation of bilateral nephron-sparing surgery are features of BWT management that require collaboration between oncologists and surgeons. This review discusses the surgical management strategy in the context of BWT disease biology, with an emphasis on timepoints during therapy at which surgical decision making can greatly impact this disease and minimize long-term toxicities.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Halliday BJ, Fukuzawa R, Markie DM, Grundy RG, Ludgate JL, Black MA, Skeen JE, Weeks RJ, Catchpoole DR, Roberts AGK, Reeve AE, Morison IM. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour. PLoS Genet 2018; 14:e1007399. [PMID: 29912901 PMCID: PMC6005459 DOI: 10.1371/journal.pgen.1007399] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Wilms tumour is a childhood tumour that arises as a consequence of somatic and rare germline mutations, the characterisation of which has refined our understanding of nephrogenesis and carcinogenesis. Here we report that germline loss of function mutations in TRIM28 predispose children to Wilms tumour. Loss of function of this transcriptional co-repressor, which has a role in nephrogenesis, has not previously been associated with cancer. Inactivation of TRIM28, either germline or somatic, occurred through inactivating mutations, loss of heterozygosity or epigenetic silencing. TRIM28-mutated tumours had a monomorphic epithelial histology that is uncommon for Wilms tumour. Critically, these tumours were negative for TRIM28 immunohistochemical staining whereas the epithelial component in normal tissue and other Wilms tumours stained positively. These data, together with a characteristic gene expression profile, suggest that inactivation of TRIM28 provides the molecular basis for defining a previously described subtype of Wilms tumour, that has early age of onset and excellent prognosis. The germline and somatic molecular events associated with Wilms tumour, a childhood kidney cancer, have been progressively defined over the past three decades. Among the uncharacterised tumours are a group of tumours that have monomorphic epithelial histology, familial association, distinctively clustered gene-expression patterns, early age of diagnosis, and excellent prognosis. Here, we describe germline mutations and loss of function of TRIM28 in familial Wilms tumours, along with somatic loss of function in a non-familial Wilms tumour. All TRIM28-mutant tumours showed the rare monomorphic epithelial histology, suggesting that loss of TRIM28 expression could be a useful marker to define a group of tumours with excellent prognosis. Future studies could lead to identification and reassurance of families that carry TRIM28 mutations, and to the use of reduced intensity of treatment for children who develop TRIM28-null tumours.
Collapse
Affiliation(s)
- Benjamin J. Halliday
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ryuji Fukuzawa
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Department of Pathology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - David M. Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jackie L. Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael A. Black
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Robert J. Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Daniel R. Catchpoole
- Tumour Bank, Children’s Cancer Research Unit, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Aedan G. K. Roberts
- Tumour Bank, Children’s Cancer Research Unit, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Anthony E. Reeve
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
41
|
Diposarosa R, Pamungkas KO, Sribudiani Y, Herman H, Suciati LP, Rahayu NS, Effendy SH. Description of mutation spectrum and polymorphism of Wilms' tumor 1 (WT1) gene in hypospadias patients in the Indonesian population. J Pediatr Urol 2018; 14:237.e1-237.e7. [PMID: 29958641 DOI: 10.1016/j.jpurol.2017.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/19/2017] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Hypospadias is one of the most common congenital anomalies of the penis. Previous studies reported mutation of the Wilms' tumor 1 (WT1) gene as a cause of hypospadias. The aim of this study is to describe the WT1 mutation spectrum and polymorphism in hypospadias patients in Indonesia. MATERIAL AND METHODS DNA was isolated from 74 hypospadias patients at the Division of Pediatric Surgery, Department of Surgery Hasan Sadikin Hospital. All exons in the WT1 gene were amplified by a PCR method, followed by Sanger sequencing. Mutation analysis was performed using BioEdit software and in silico analysis using Mutation Taster, Polymorphism Phenotyping-2 (PolyPhen-2), and Sorting Intolerant from Tolerant (SIFT). RESULT DNA analysis results showed two types of heterozygous mutations in five subjects (Table), hence the frequency of WT1 mutations was 6.7% (10/148 allele). The first mutation was a missense mutation identified in twin boys. The second was a novel heterozygous alteration in the non-coding region nine bp upstream of exon 6 (c.366-9T>C), which was identified in three patients. One heterozygous polymorphism in the coding region of exon 7 (c.471A>G/rs16754) was identified in 10 subjects. This variant did not cause any change in amino acid products (silence polymorphism). Allele frequency for the G allele (mutant allele) and A allele (wild type) was 13.5% and 86.5%, respectively. DISCUSSION WT1 is one of the best known hypospadias genes. The WT1 gene is involved in male genital development in the early and late periods of sex determination, and hence is known as a long-term expression gene in genitalia development. Mutation analysis of WT1 in a Chinese population identified that the WT1 mutation frequency was 4.4%. The WT1 mutation frequency identified in the present study was higher, at 6.7%. Coincidentally, research subjects with p.R158H variants were monozygotic twin siblings with midshaft hypospadias accompanied by undescended testis in one and penoscrotal hypospadia with micropenis in the other. The incidence of familial hypospadias in male siblings suffering from hypospadias was reported to be 9.6% in a study conducted by Sorensen et al. Moreover, in the present study polymorphism c.471A>G(rs16754) at exon 7 was identified heterozygously in 10 research subjects (minor allele frequency 13.5%). CONCLUSION WT1 mutations were identified in only a few cases of hypospadias and most of these were syndromic. This result implies that mutation of WT1 is not a common cause of hypospadias in the Indonesian population.
Collapse
Affiliation(s)
- Rizki Diposarosa
- Department of Surgery, Pediatric Surgery Division, Hasan Sadikin Hospital, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia.
| | - Kurniawan O Pamungkas
- Department of Surgery, Pediatric Surgery Division, Hasan Sadikin Hospital, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Yunia Sribudiani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia; Clinical Genetics Working Group, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Herry Herman
- Department of Surgery, Orthopedic Surgery Division, Hasan Sadikin Hospital, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Lita P Suciati
- Laboratory of Genetic and Biology Molecular, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Nurul S Rahayu
- Laboratory of Genetic and Biology Molecular, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Sjarif H Effendy
- Clinical Genetics Working Group, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia; Department of Pediatric, Hasan Sadikin Hospital, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
42
|
Urh K, Kunej T. Genome-wide screening for smallest regions of overlaps in cryptorchidism. Reprod Biomed Online 2018; 37:85-99. [PMID: 29631949 DOI: 10.1016/j.rbmo.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
Cryptorchidism is a urogenital abnormality associated with increased rates of testicular neoplasia and impaired spermatogenesis. The field is facing expansion of genomics data; however, it lacks protocols for biomarker prioritization. Identification of smallest regions of overlap (SRO) presents an approach for candidate gene identification but has not yet been systematically conducted in cryptorchidism. The aim of this study was to conduct a genome-wide screening for SRO (GW-SRO) associated with cryptorchidism development. We updated the Cryptorchidism Gene Database to version 3, remapped genomic coordinates of loci from older assemblies to the GRCh38 and performed genome-wide screening for overlapping regions associated with cryptorchidism risk. A total of 73 chromosomal loci (68 involved in chromosomal mutations and five copy number variations) described in 37 studies associated with cryptorchidism risk in humans were used for SRO identification. Analysis resulted in 18 SRO, based on deletions, duplications, inversions, derivations and copy number variations. Screening for SRO was challenging owing to heterogeneous reporting of genomic locations. To our knowledge, this is the first GW-SRO study for cryptorchidism and it presents the basis for further narrowing of critical regions for cryptorchidism and planning functional experiments. The developed protocol could also be applied to other multifactorial diseases.
Collapse
Affiliation(s)
- Kristian Urh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Slovenia.
| |
Collapse
|
43
|
Li YF, Altman RB. Systematic target function annotation of human transcription factors. BMC Biol 2018; 16:4. [PMID: 29325558 PMCID: PMC5795274 DOI: 10.1186/s12915-017-0469-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background Transcription factors (TFs), the key players in transcriptional regulation, have attracted great experimental attention, yet the functions of most human TFs remain poorly understood. Recent capabilities in genome-wide protein binding profiling have stimulated systematic studies of the hierarchical organization of human gene regulatory network and DNA-binding specificity of TFs, shedding light on combinatorial gene regulation. We show here that these data also enable a systematic annotation of the biological functions and functional diversity of TFs. Result We compiled a human gene regulatory network for 384 TFs covering the 146,096 TF–target gene (TF–TG) relationships, extracted from over 850 ChIP-seq experiments as well as the literature. By integrating this network of TF–TF and TF–TG relationships with 3715 functional concepts from six sources of gene function annotations, we obtained over 9000 confident functional annotations for 279 TFs. We observe extensive connectivity between TFs and Mendelian diseases, GWAS phenotypes, and pharmacogenetic pathways. Further, we show that TFs link apparently unrelated functions, even when the two functions do not share common genes. Finally, we analyze the pleiotropic functions of TFs and suggest that the increased number of upstream regulators contributes to the functional pleiotropy of TFs. Conclusion Our computational approach is complementary to focused experimental studies on TF functions, and the resulting knowledge can guide experimental design for the discovery of unknown roles of TFs in human disease and drug response. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0469-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Fuga Li
- Stanford Genome Technology Center, Stanford, CA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Present address: Department of Bioinformatics, Illumina Inc., San Diego, CA, USA.
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
44
|
Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, Anderson RA, Kristensen SG, Andersen CY. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep 2017; 7:15961. [PMID: 29162857 PMCID: PMC5698446 DOI: 10.1038/s41598-017-15931-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1 was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human sex-differentiation is defined, with identification of new genes of potential importance.
Collapse
Affiliation(s)
- Linn S Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Emil H Ernst
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
| | - Rehannah Borup
- Microarray Center of Righshospitalet, Genomic Medicine, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Functional Genomics and Reproductive Health Group, Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Rasmus H Olesen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Erik Ernst
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
- Department of Obstetrics and Gynaecology, University Hospital of Aarhus, Skejby Sygehus, 8200, Aarhus N, Denmark
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Claus Y Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
45
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
46
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
47
|
Abstract
The process of sexual differentiation is central for reproduction of almost all metazoan and therefore for maintenance of practically all multicellular organisms. In sex development we can distinguish two different processes: First, sex determination is the developmental decision that directs the undifferentiated embryo into a sexually dimorphic individual. In mammals, sex determination equals gonadal development. The second process known as sex differentiation takes place once the sex determination decision has been made through factors produced by the gonads that determine the development of the phenotypic sex. Most of the knowledge on the factors involved in sexual development came from animal models and from studies of cases in whom the genetic or the gonadal sex does not match the phenotypical sex, i.e., patients affected by disorders of sex development (DSD). Generally speaking, factors influencing sex determination are transcriptional regulators, whereas factors important for sex differentiation are secreted hormones and their receptors. This review focuses on the factors involved in gonadal determination, and whenever possible, references on the "prismatic" clinical cases are given.
Collapse
Affiliation(s)
- Anna Biason-Lauber
- Department of Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
48
|
Chen M, Zhang L, Cui X, Lin X, Li Y, Wang Y, Wang Y, Qin Y, Chen D, Han C, Zhou B, Huff V, Gao F. Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression. Development 2016; 144:44-53. [PMID: 27888191 DOI: 10.1242/dev.144105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022]
Abstract
Supporting cells (Sertoli and granulosa) and steroidogenic cells (Leydig and theca-interstitium) are two major somatic cell types in mammalian gonads, but the mechanisms that control their differentiation during gonad development remain elusive. In this study, we found that deletion of Wt1 in the ovary after sex determination caused ectopic development of steroidogenic cells at the embryonic stage. Furthermore, differentiation of both Sertoli and granulosa cells was blocked when Wt1 was deleted before sex determination and most genital ridge somatic cells differentiated into steroidogenic cells in both male and female gonads. Further studies revealed that WT1 repressed Sf1 expression by directly binding to the Sf1 promoter region, and the repressive function was completely abolished when WT1 binding sites were mutated. This study demonstrates that Wt1 is required for the lineage specification of both Sertoli and granulosa cells by repressing Sf1 expression. Without Wt1, the expression of Sf1 was upregulated and the somatic cells differentiated into steroidogenic cells instead of supporting cells. Our study uncovers a novel mechanism of somatic cell differentiation during gonad development.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianjun Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Vicki Huff
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center; Graduate Programs in Human Molecular Genetics and Genes and Development, University of Texas, Houston, TX, USA
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Brok J, Treger TD, Gooskens SL, van den Heuvel-Eibrink MM, Pritchard-Jones K. Biology and treatment of renal tumours in childhood. Eur J Cancer 2016; 68:179-195. [PMID: 27969569 DOI: 10.1016/j.ejca.2016.09.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
In Europe, almost 1000 children are diagnosed with a malignant renal tumour each year. The vast majority of cases are nephroblastoma, also known as Wilms' tumour (WT). Most children are treated according to Société Internationale d'Oncologie Pédiatrique Renal Tumour Study Group (SIOP-RTSG) protocols with pre-operative chemotherapy, surgery, and post-operative treatment dependent on stage and histology. Overall survival approaches 90%, but a subgroup of WT, with high-risk histology and/or relapsed disease, still have a much poorer prognosis. Outcome is similarly poor for the rare non-WT, particularly for malignant rhabdoid tumour of the kidney, metastatic clear cell sarcoma of the kidney (CCSK), and metastatic renal cell carcinoma (RCC). Improving outcome and long-term quality of life requires more accurate risk stratification through biological insights. Biomarkers are also needed to signpost potential targeted therapies for high-risk subgroups. Our understanding of Wilms' tumourigenesis is evolving and several signalling pathways, microRNA processing and epigenetics are now known to play pivotal roles. Most rhabdoid tumours display somatic and/or germline mutations in the SMARCB1 gene, whereas CCSK and paediatric RCC reveal a more varied genetic basis, including characteristic translocations. Conducting early-phase trials of targeted therapies is challenging due to the scarcity of patients with refractory or relapsed disease, the rapid progression of relapse and the genetic heterogeneity of the tumours with a low prevalence of individual somatic mutations. A further consideration in improving population survival rates is the geographical variation in outcomes across Europe. This review provides a comprehensive overview of the current biological knowledge of childhood renal tumours alongside the progress achieved through international collaboration. Ongoing collaboration is needed to ensure consistency of outcomes through standardised diagnostics and treatment and incorporation of biomarker research. Together, these objectives constitute the rationale for the forthcoming SIOP-RTSG 'UMBRELLA' study.
Collapse
Affiliation(s)
- Jesper Brok
- Cancer Section, University College London, Institute of Child Health, UK; Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Taryn D Treger
- Cancer Section, University College London, Institute of Child Health, UK
| | - Saskia L Gooskens
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands; Department of Paediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands
| | | |
Collapse
|
50
|
Boublikova L, Bakardjieva-Mihaylova V, Skvarova Kramarzova K, Kuzilkova D, Dobiasova A, Fiser K, Stuchly J, Kotrova M, Buchler T, Dusek P, Grega M, Rosova B, Vernerova Z, Klezl P, Pesl M, Zachoval R, Krolupper M, Kubecova M, Stahalova V, Abrahamova J, Babjuk M, Kodet R, Trka J. Wilms tumor gene 1 (WT1), TP53, RAS/BRAF and KIT aberrations in testicular germ cell tumors. Cancer Lett 2016; 376:367-76. [PMID: 27085458 DOI: 10.1016/j.canlet.2016.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Wilms tumor gene 1 (WT1), a zinc-finger transcription factor essential for testis development and function, along with other genes, was investigated for their role in the pathogenesis of testicular germ cell tumors (TGCT). METHODS In total, 284 TGCT and 100 control samples were investigated, including qPCR for WT1 expression and BRAF mutation, p53 immunohistochemistry detection, and massively parallel amplicon sequencing. RESULTS WT1 was significantly (p < 0.0001) under-expressed in TGCT, with an increased ratio of exon 5-lacking isoforms, reaching low levels in chemo-naïve relapsed TGCT patients vs. high levels in chemotherapy-pretreated relapsed patients. BRAF V600E mutation was identified in 1% of patients only. p53 protein was lowly expressed in TGCT metastases compared to the matched primary tumors. Of 9 selected TGCT-linked genes, RAS/BRAF and WT1 mutations were frequent while significant TP53 and KIT variants were not detected (p = 0.0003). CONCLUSIONS WT1 has been identified as a novel factor involved in TGCT pathogenesis, with a potential prognostic impact. Distinct biologic nature of the two types of relapses occurring in TGCT has been demonstrated. Differential mutation rate of the key TGCT-related genes has been documented.
Collapse
Affiliation(s)
- L Boublikova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| | - V Bakardjieva-Mihaylova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Skvarova Kramarzova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - D Kuzilkova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - A Dobiasova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Fiser
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Stuchly
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - M Kotrova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - T Buchler
- Department of Oncology, 1st Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - P Dusek
- Department of Urology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - M Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - B Rosova
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Prague, Czech Republic
| | - Z Vernerova
- Department of Pathology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - P Klezl
- Department of Urology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - M Pesl
- Department of Urology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - R Zachoval
- Department of Urology, Thomayer Hospital, Prague, Czech Republic
| | - M Krolupper
- Department of Urology, Na Bulovce Hospital, Prague, Czech Republic
| | - M Kubecova
- Department of Oncology and Radiotherapy, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - V Stahalova
- Institute of Radiotherapy and Oncology, 1st Faculty of Medicine, Charles University and Na Bulovce Hospital, Prague, Czech Republic
| | - J Abrahamova
- Department of Oncology, 1st Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - M Babjuk
- Department of Urology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - R Kodet
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|