1
|
Chen Y, Liu H, Li Y, Shen X, Li S, Yang L, An X, Lei P, Wang X, Zhang H, Sheen J, Yu F, Liu X. The kinesin motor POS3 and the microtubule polymerase MOR1 coordinate chromosome congression during mitosis in Arabidopsis. THE PLANT CELL 2025; 37:koaf053. [PMID: 40096489 PMCID: PMC11975291 DOI: 10.1093/plcell/koaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Faithful chromosome segregation during mitosis is crucial for eukaryotic organisms. Centromere-associated protein-E (CENP-E), a kinetochore-localized kinesin motor, facilitates chromosome congression during mitosis in animals. However, it remains unclear whether plants rely on kinesins similar to CENP-E for chromosome alignment. In our genetic screens for Arabidopsis (Arabidopsis thaliana) mutants that are hypersensitive to the microtubule-destabilizing drug propyzamide, we identified propyzamide oversensitive3-1 (pos3-1), which harbors a mutation in a kinesin-like protein that shares sequence similarity with the N-terminal region of CENP-E. We demonstrated that POS3 dynamically associates with kinetochores during chromosome congression and segregation in mitosis. Moreover, loss of POS3 results in prolonged mitosis, increased aneuploidy, and misaligned chromosomes near the spindle poles. Unexpectedly, we discovered a direct physical interaction and functional link between POS3 and the microtubule polymerase MICROTUBULE ORGANIZATION1 (MOR1) in regulating chromosome alignment and segregation during mitosis. Finally, we showed that MOR1 is required for the kinetochore localization of POS3 in mitosis. Together, our findings establish the vital role of POS3 in chromosome congression and uncover a functional link between POS3 and MOR1 that is essential for proper chromosome alignment and segregation in plant mitosis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofeng Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanfeng Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuting Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xue An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Fei Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Vicars H, Mills A, Karg T, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces. Genetics 2025; 229:iyae188. [PMID: 39552081 PMCID: PMC11796462 DOI: 10.1093/genetics/iyae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently congress and align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset, acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in the presence of spindles with disrupted interpolar microtubules acentrics are rapidly shunted away from the poles, indicates that distributed plus-end-directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. Taken together, these studies suggest that plus-end forces mediated by the outer interpolar microtubules contribute significantly to acentric congression and alignment. Surprisingly, we observe disrupted telomere pairing and alignment of sister acentrics indicating that the kinetochore is required to ensure proper gene-to-gene alignment of sister chromatids. Finally, we demonstrate that like mammalian cells, the Drosophila congressed chromosomes on occasion exhibit a toroid configuration.
Collapse
Affiliation(s)
- Hannah Vicars
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alison Mills
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - Travis Karg
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, 1156 High Street Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Chen J, Wu S, He JJ, Liu YP, Deng ZY, Fang HK, Chen JF, Wei YL, She ZY. Kinesin-7 CENP-E mediates centrosome organization and spindle assembly to regulate chromosome alignment and genome stability. Cell Prolif 2025; 58:e13745. [PMID: 39266203 DOI: 10.1111/cpr.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Chromosome congression and alignment are essential for cell cycle progression and genomic stability. Kinesin-7 CENP-E, a plus-end-directed kinesin motor, is required for chromosome biorientation, congression and alignment in cell division. However, it remains unclear how chromosomes are aligned and segregated in the absence of CENP-E in mitosis. In this study, we utilize the CRISPR-Cas9 gene editing method and high-throughput screening to establish CENP-E knockout cell lines and reveal that CENP-E deletion results in defects in chromosome congression, alignment and segregation, which further promotes aneuploidy and genomic instability in mitosis. Both CENP-E inhibition and deletion lead to the dispersion of spindle poles, the formation of the multipolar spindle and spindle disorganization, which indicates that CENP-E is necessary for the organization and maintenance of spindle poles. In addition, CENP-E heterozygous deletion in spleen tissues also leads to the accumulation of dividing lymphocytes and cell cycle arrest in vivo. Furthermore, CENP-E deletion also disrupts the localization of key kinetochore proteins and triggers the activation of the spindle assembly checkpoint. In summary, our findings demonstrate that CENP-E promotes kinetochore-microtubule attachment and spindle pole organization to regulate chromosome alignment and spindle assembly checkpoint during cell division.
Collapse
Affiliation(s)
- Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Shan Wu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Jie-Jie He
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Yu-Peng Liu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Zhao-Yang Deng
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Han-Kai Fang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Jian-Fan Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, Mandáková T, Moore C, Mathers TC, Cowan L, Monnahan P, Koch J, Wolf EM, Lysak MA, Kolar F, Higgins JD, Koch MA, Yant L. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep 2024; 43:114576. [PMID: 39116207 DOI: 10.1016/j.celrep.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
Collapse
Affiliation(s)
- Sian M Bray
- The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK
| | - Tuomas Hämälä
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Silvia Busoms
- The John Innes Centre, Norwich NR4 7UH, UK; Department of Plant Physiology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sina Fischer
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Chris Moore
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Cowan
- The University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | - Eva M Wolf
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Kolar
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic; The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Levi Yant
- The University of Nottingham, Nottingham NG7 2RD, UK; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic.
| |
Collapse
|
5
|
Sun D, Zhu Y, Peng W, Zheng S, Weng J, Dong S, Li J, Chen Q, Ge C, Liao L, Dong Y, Liu Y, Meng W, Jiang Y. SETDB1 regulates short interspersed nuclear elements and chromatin loop organization in mouse neural precursor cells. Genome Biol 2024; 25:175. [PMID: 38961490 PMCID: PMC11221086 DOI: 10.1186/s13059-024-03327-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.
Collapse
Affiliation(s)
- Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yueyan Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenzhu Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shenghui Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shulong Dong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaqi Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Qi Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Chuanhui Ge
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Liyong Liao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuhao Dong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Weida Meng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Vicars H, Karg T, Mills A, Sullivan W. Acentric chromosome congression and alignment on the metaphase plate via kinetochore-independent forces in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567057. [PMID: 38798431 PMCID: PMC11118298 DOI: 10.1101/2023.11.14.567057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Chromosome congression and alignment on the metaphase plate involves lateral and microtubule plus-end interactions with the kinetochore. Here we take advantage of our ability to efficiently generate a GFP-marked acentric X chromosome fragment in Drosophila neuroblasts to identify forces acting on chromosome arms that drive congression and alignment. We find acentrics efficiently align on the metaphase plate, often more rapidly than kinetochore-bearing chromosomes. Unlike intact chromosomes, the paired sister acentrics oscillate as they move to and reside on the metaphase plate in a plane distinct and significantly further from the main mass of intact chromosomes. Consequently, at anaphase onset acentrics are oriented either parallel or perpendicular to the spindle. Parallel-oriented sisters separate by sliding while those oriented perpendicularly separate via unzipping. This oscillation, together with the fact that in monopolar spindles acentrics are rapidly shunted away from the poles, indicates that distributed plus-end directed forces are primarily responsible for acentric migration. This conclusion is supported by the observation that reduction of EB1 preferentially disrupts acentric alignment. In addition, reduction of Klp3a activity, a gene required for the establishment of pole-to-pole microtubules, preferentially disrupts acentric alignment. Taken together these studies suggest that plus-end forces mediated by the outer pole-to-pole microtubules are primarily responsible for acentric metaphase alignment. Surprisingly, we find that a small fraction of sister acentrics are anti-parallel aligned indicating that the kinetochore is required to ensure parallel alignment of sister chromatids. Finally, we find induction of acentric chromosome fragments results in a global reorganization of the congressed chromosomes into a torus configuration. Article Summary The kinetochore serves as a site for attaching microtubules and allows for successful alignment, separation, and segregation of replicated sister chromosomes during cell division. However, previous studies have revealed that sister chromosomes without kinetochores (acentrics) often align to the metaphase plate, undergo separation and segregation, and are properly transmitted to daughter cells. In this study, we discuss the forces acting on chromosomes, independent of the kinetochore, underlying their successful alignment in early mitosis.
Collapse
|
7
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
8
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
9
|
Weber J, Legal T, Lezcano AP, Gluszek-Kustusz A, Paterson C, Eibes S, Barisic M, Davies OR, Welburn JPI. A conserved CENP-E region mediates BubR1-independent recruitment to the outer corona at mitotic onset. Curr Biol 2024; 34:1133-1141.e4. [PMID: 38354735 DOI: 10.1016/j.cub.2024.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
The outer corona plays an essential role at the onset of mitosis by expanding to maximize microtubule attachment to kinetochores.1,2 The low-density structure of the corona forms through the expansion of unattached kinetochores. It comprises the RZZ complex, the dynein adaptor Spindly, the plus-end directed microtubule motor centromere protein E (CENP-E), and the Mad1/Mad2 spindle-assembly checkpoint proteins.3,4,5,6,7,8,9,10 CENP-E specifically associates with unattached kinetochores to facilitate chromosome congression,11,12,13,14,15,16 interacting with BubR1 at the kinetochore through its C-terminal region (2091-2358).17,18,19,20,21 We recently showed that CENP-E recruitment to BubR1 at the kinetochores is both rapid and essential for correct chromosome alignment. However, CENP-E is also recruited to the outer corona by a second, slower pathway that is currently undefined.19 Here, we show that BubR1-independent localization of CENP-E is mediated by a conserved loop that is essential for outer-corona targeting. We provide a structural model of the entire CENP-E kinetochore-targeting domain combining X-ray crystallography and Alphafold2. We reveal that maximal recruitment of CENP-E to unattached kinetochores critically depends on BubR1 and the outer corona, including dynein. Ectopic expression of the CENP-E C-terminal domain recruits the RZZ complex, Mad1, and Spindly, and prevents kinetochore biorientation in cells. We propose that BubR1-recruited CENP-E, in addition to its essential role in chromosome alignment to the metaphase plate, contributes to the recruitment of outer corona proteins through interactions with the CENP-E corona-targeting domain to facilitate the rapid capture of microtubules for efficient chromosome alignment and mitotic progression.
Collapse
Affiliation(s)
- Jeraldine Weber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Alicia Perez Lezcano
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Agata Gluszek-Kustusz
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Calum Paterson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 3C Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Owen R Davies
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK.
| |
Collapse
|
10
|
Wu J, Raas MW, Alcaraz PS, Vos HR, Tromer EC, Snel B, Kops GJ. A farnesyl-dependent structural role for CENP-E in expansion of the fibrous corona. J Cell Biol 2024; 223:e202303007. [PMID: 37934467 PMCID: PMC10630089 DOI: 10.1083/jcb.202303007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Correct chromosome segregation during cell division depends on proper connections between spindle microtubules and kinetochores. During prometaphase, kinetochores are temporarily covered with a dense protein meshwork known as the fibrous corona. Formed by oligomerization of ROD/ZW10/ZWILCH-SPINDLY (RZZ-S) complexes, the fibrous corona promotes spindle assembly, chromosome orientation, and spindle checkpoint signaling. The molecular requirements for formation of the fibrous corona are not fully understood. Here, we show that the fibrous corona depends on the mitotic kinesin CENP-E and that poorly expanded fibrous coronas after CENP-E depletion are functionally compromised. This previously unrecognized role for CENP-E does not require its motor activity but instead is driven by farnesyl modification of its C-terminal kinetochore- and microtubule-binding domain. We show that in cells, CENP-E binds Spindly and recruits RZZ-S complexes to ectopic locations in a farnesyl-dependent manner. CENP-E is recruited to kinetochores following RZZ-S, and-while not required for RZZ-S oligomerization per se-promotes subsequent fibrous corona expansion. Our comparative genomics analyses suggest that the farnesylation motif in CENP-E orthologs emerged alongside the full RZZ-S module in an ancestral lineage close to the fungi-animal split (Obazoa), revealing potential conservation of the mechanisms for fibrous corona formation. Our results show that proper spindle assembly has a potentially conserved non-motor contribution from the kinesin CENP-E through stabilization of the fibrous corona meshwork during its formation.
Collapse
Affiliation(s)
- Jingchao Wu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Maximilian W.D. Raas
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Paula Sobrevals Alcaraz
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harmjan R. Vos
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eelco C. Tromer
- Faculty of Science and Engineering, Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Geert J.P.L. Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
11
|
Cmentowski V, Ciossani G, d'Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona. EMBO J 2023; 42:e114838. [PMID: 37984321 PMCID: PMC10711656 DOI: 10.15252/embj.2023114838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
European Institute of OncologyMilanItaly
| | - Ennio d'Amico
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
Division of Structural StudiesMRC Laboratory of Molecular BiologyCambridgeUK
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Mikito Owa
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Brian Dynlacht
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
12
|
Nair VM, Sabu AS, Hussain A, Kombarakkaran DP, Lakshmi RB, Manna TK. E3-ubiquitin ligase, FBXW7 regulates mitotic progression by targeting BubR1 for ubiquitin-mediated degradation. Cell Mol Life Sci 2023; 80:374. [PMID: 38008853 PMCID: PMC11072012 DOI: 10.1007/s00018-023-05019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/28/2023]
Abstract
Faithful chromosome segregation requires correct attachment of kinetochores with the spindle microtubules. Erroneously-attached kinetochores recruit proteins to activate Spindle assembly checkpoint (SAC), which senses the errors and signals cells to delay anaphase progression for error correction. Temporal control of the levels of SAC activating-proteins is critical for checkpoint activation and silencing, but its mechanism is not fully understood. Here, we show that E3 ubiquitin ligase, SCF-FBXW7 targets BubR1 for ubiquitin-mediated degradation and thereby controls SAC in human cells. Depletion of FBXW7 results in prolonged metaphase arrest with increased stabilization of BubR1 at kinetochores. Similar kinetochore stabilization is also observed for BubR1-interacting protein, CENP-E. FBXW7 induced ubiquitination of both BubR1 and the BubR1-interacting kinetochore-targeting domain of CENP-E, but CENP-E domain degradation is dependent on BubR1. Interestingly, Cdk1 inhibition disrupts FBXW7-mediated BubR1 targeting and further, phospho-resistant mutation of Cdk1-targeted phosphorylation site, Thr 620 impairs BubR1-FBXW7 interaction and FBXW7-mediated BubR1 ubiquitination, supporting its role as a phosphodegron for FBXW7. The results demonstrate SCF-FBXW7 as a key regulator of spindle assembly checkpoint that controls stability of BubR1 and its associated CENP-E at kinetochores. They also support that upstream Cdk1 specific BubR1 phosphorylation signals the ligase to activate the process.
Collapse
Affiliation(s)
- Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Amit Santhu Sabu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Ahmed Hussain
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Delvin P Kombarakkaran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
13
|
Cmentowski V, Ciossani G, d’Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. A mechanism that integrates microtubule motors of opposite polarity at the kinetochore corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538277. [PMID: 37163019 PMCID: PMC10168246 DOI: 10.1101/2023.04.25.538277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin 7) and Dynein-Dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we report near-complete depletion of RZZS and DD from kinetochores after depletion of CENP-E and the outer kinetochore protein KNL1. With inhibited MPS1, CENP-E, which we show binds directly to RZZS, is required to retain kinetochore RZZS. An RZZS phosphomimetic mutant bypasses this requirement. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ennio d’Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Comprehensive pan-cancer analysis identifies centromere associated protein E as a novel prognostic and immunological biomarker in human tumors. Biochim Biophys Acta Gen Subj 2023; 1867:130346. [PMID: 36931353 DOI: 10.1016/j.bbagen.2023.130346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Centromere-associated protein E (CENP-E), a core component of the kinetochore, mediates chromosome congression and spindle microtubule capture during mitosis. Partial experimental evidence has illustrated the carcinogenic effects of CENPE in tumors, but the corresponding pan-cancer analysis of CENPE still lacking. Based on public databases, including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA), we take an array of bioinformatics methods to investigate the potential oncogenic roles of CENPE. Then, we validated CENPE, cell cycle-related proteins, and immune checkpoint molecule findings expression in clinical colon cancer samples by western blot. Our results showed that CENPE was up-regulated in almost all tumors, and the expression level of CENPE was associated with worse overall survival (OS) and disease-specific survival (DSS) in patients. The strong relationship between CENPE with gene mutation and MMR has also been validated. Moreover, CENPE gene expression was positively correlated with immune checkpoint molecular, and reversely correlated with infiltration levels of most immune cells. In the human colon cancer tissues, the expression of CENPE, cell cycle-related proteins, and immune checkpoint molecules were significantly higher than in the adjacent normal tissues. Our results indicated that CENPE can function as an oncogene in various cancers, and may be regarded as a promising prognostic and diagnostic biomarker in cancer treatment.
Collapse
|
15
|
Lin YF, Hu Q, Guyer A, Fachinetti D, Ly P. Induction of chromosome-specific micronuclei and chromothripsis by centromere inactivation. Methods Cell Biol 2022; 182:1-20. [PMID: 38359973 PMCID: PMC11008423 DOI: 10.1016/bs.mcb.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromothripsis describes the catastrophic fragmentation of individual chromosomes followed by its haphazard reassembly into a derivative chromosome harboring complex rearrangements. This process can be initiated by mitotic cell division errors when one or more chromosomes aberrantly mis-segregate into micronuclei and acquire extensive DNA damage. Approaches to induce the formation of micronuclei encapsulating random chromosomes have been used; however, the eventual reincorporation of the micronucleated chromosome into daughter cell nuclei poses a challenge in tracking the chromosome for multiple cell cycles. Here we outline an approach to genetically engineer stable human cell lines capable of efficient chromosome-specific micronuclei induction. This strategy, which targets the CENP-B-deficient Y chromosome centromere for inactivation, allows the stepwise process of chromothripsis to be experimentally recapitulated, including the mechanisms and timing of chromosome fragmentation. Lastly, we describe the integration of a selection marker onto the micronucleated Y chromosome that enables the diverse genomic rearrangement landscape arising from micronuclei formation to be interrogated.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qing Hu
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alison Guyer
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Peter Ly
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
16
|
She ZY, Xu MF, Jiang SY, Wei YL. Kinesin-7 CENP-E is essential for chromosome alignment and spindle assembly of mouse spermatocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119306. [PMID: 35680098 DOI: 10.1016/j.bbamcr.2022.119306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China.
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Sun-Ying Jiang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
17
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
18
|
Verma V, Maresca TJ. A celebration of the 25th anniversary of chromatin-mediated spindle assembly. Mol Biol Cell 2022; 33:rt1. [PMID: 35076260 PMCID: PMC9236140 DOI: 10.1091/mbc.e21-08-0400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Formation of a bipolar spindle is required for the faithful segregation of chromosomes during cell division. Twenty-five years ago, a transformative insight into how bipolarity is achieved was provided by Rebecca Heald, Eric Karsenti, and colleagues in their landmark publication characterizing a chromatin-mediated spindle assembly pathway in which centrosomes and kinetochores were dispensable. The discovery revealed that bipolar spindle assembly is a self-organizing process where microtubules, which possess an intrinsic polarity, polymerize around chromatin and become sorted by mitotic motors into a bipolar structure. On the 25th anniversary of this seminal paper, we discuss what was known before, what we have learned since, and what may lie ahead in understanding the bipolar spindle.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst, MA 01003
| |
Collapse
|
19
|
Song X, Conti D, Shrestha RL, Braun D, Draviam VM. Counteraction between Astrin-PP1 and Cyclin-B-CDK1 pathways protects chromosome-microtubule attachments independent of biorientation. Nat Commun 2021; 12:7010. [PMID: 34853300 PMCID: PMC8636589 DOI: 10.1038/s41467-021-27131-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
Defects in chromosome-microtubule attachment can cause chromosomal instability (CIN), frequently associated with infertility and aggressive cancers. Chromosome-microtubule attachment is mediated by a large macromolecular structure, the kinetochore. Sister kinetochores of each chromosome are pulled by microtubules from opposing spindle-poles, a state called biorientation which prevents chromosome missegregation. Kinetochore-microtubule attachments that lack the opposing-pull are detached by Aurora-B/Ipl1. It is unclear how mono-oriented attachments that precede biorientation are spared despite the lack of opposing-pull. Using an RNAi-screen, we uncover a unique role for the Astrin-SKAP complex in protecting mono-oriented attachments. We provide evidence of domains in the microtubule-end associated protein that sense changes specific to end-on kinetochore-microtubule attachments and assemble an outer-kinetochore crescent to stabilise attachments. We find that Astrin-PP1 and Cyclin-B-CDK1 pathways counteract each other to preserve mono-oriented attachments. Thus, CIN prevention pathways are not only surveying attachment defects but also actively recognising and stabilising mature attachments independent of biorientation. Chromosome instability frequently occurs due to issues with chromosome-microtubule attachments. Here the authors show that the Astrin-PP1 and Cyclin-B-CDK1 pathways counteract each other to protect chromosome-microtubule attachments independent of biorientation.
Collapse
Affiliation(s)
- Xinhong Song
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | - Duccio Conti
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK.,Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Roshan L Shrestha
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dominique Braun
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Viji M Draviam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, E1 4NS, UK. .,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
20
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
21
|
Cilluffo D, Chiavetta RF, Bivona S, Contino F, Coronnello C, Feo S, Di Leonardo A, Barra V. Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts. Genes (Basel) 2021; 12:1322. [PMID: 34573304 PMCID: PMC8466516 DOI: 10.3390/genes12091322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Institute for Innovation and Biomedical Research (IRIB), CNR, 90146 Palermo, Italy
| | - Roberta Flavia Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | - Serena Bivona
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
| | - Flavia Contino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| |
Collapse
|
22
|
Maiato H. Mitosis under the macroscope. Semin Cell Dev Biol 2021; 117:1-5. [PMID: 34172396 DOI: 10.1016/j.semcdb.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
23
|
Li N, Zhou P, Tang H, He L, Fang X, Zhao J, Wang X, Qi Y, Sun C, Lin Y, Qin F, Yang M, Zhang Z, Liao C, Zheng S, Peng X, Xue T, Zhu Q, Li H, Li Y, Liu L, Huang J, Liu L, Peng C, Kaindl AM, Gecz J, Han D, Liu D, Xu K, Hu H. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2021; 145:119-141. [PMID: 34077496 PMCID: PMC8967106 DOI: 10.1093/brain/awab209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Yifei Qi
- Division of Uterine Vascular Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fengying Qin
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Zhan Zhang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaofang Peng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ting Xue
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qianying Zhu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029, Shanghai, China
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin, 13353, Berlin, Germany
| | - Jozef Gecz
- Adelaide Medical School, University of Adelaide, SA5005, Adelaide, Australia
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| |
Collapse
|
24
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
25
|
Shake It Off: The Elimination of Erroneous Kinetochore-Microtubule Attachments and Chromosome Oscillation. Int J Mol Sci 2021; 22:ijms22063174. [PMID: 33804687 PMCID: PMC8003821 DOI: 10.3390/ijms22063174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023] Open
Abstract
Cell proliferation and sexual reproduction require the faithful segregation of chromosomes. Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently erroneous due to the random nature of the attachment process; however, erroneous attachments are selectively eliminated. Proper attachment generates greater tension at the kinetochore than erroneous attachments, and it is thought that attachment selection is dependent on this tension. However, studies of meiotic chromosome segregation suggest that attachment elimination cannot be solely attributed to tension, and the precise mechanism of selective elimination of erroneous attachments remains unclear. During attachment elimination, chromosomes oscillate between the spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the recent finding.
Collapse
|
26
|
Owa M, Dynlacht B. A non-canonical function for Centromere-associated protein-E controls centrosome integrity and orientation of cell division. Commun Biol 2021; 4:358. [PMID: 33742057 PMCID: PMC7979751 DOI: 10.1038/s42003-021-01861-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Centromere-associated protein-E (CENP-E) is a kinesin motor localizing at kinetochores. Although its mitotic functions have been well studied, it has been challenging to investigate direct consequences of CENP-E removal using conventional methods because CENP-E depletion resulted in mitotic arrest. In this study, we harnessed an auxin-inducible degron system to achieve acute degradation of CENP-E. We revealed a kinetochore-independent role for CENP-E that removes pericentriolar material 1 (PCM1) from centrosomes in late S/early G2 phase. After acute loss of CENP-E, centrosomal Polo-like kinase 1 (Plk1) localization is abrogated through accumulation of PCM1, resulting in aberrant phosphorylation and destabilization of centrosomes, which triggers shortened astral microtubules and oblique cell divisions. Furthermore, we also observed centrosome and cell division defects in cells from a microcephaly patient with mutations in CENPE. Orientation of cell division is deregulated in some microcephalic patients, and our unanticipated findings provide additional insights into how microcephaly can result from centrosomal defects.
Collapse
Affiliation(s)
- Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Iegiani G, Gai M, Di Cunto F, Pallavicini G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma Cells. Cancers (Basel) 2021; 13:cancers13051028. [PMID: 33804489 PMCID: PMC7957796 DOI: 10.3390/cancers13051028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective, since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. CENPE is a gene critical for normal proliferation and survival of neural progenitors. Since there is evidence that MB cells are very similar to neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In MB cell lines, CENPE depletion induced defects in division and resulted in cell death. To consolidate CENPE as a target for MB treatment, we tested GSK923295, a specific inhibitor already in clinical trials for other cancer types. GSK923295 induced effects similar to CENPE depletion at low nM levels, supporting the idea that CENPE’s inhibition could be a viable strategy for MB treatment. Abstract Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE’s inhibition could be a therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| |
Collapse
|
28
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
29
|
Konjikusic MJ, Gray RS, Wallingford JB. The developmental biology of kinesins. Dev Biol 2021; 469:26-36. [PMID: 32961118 PMCID: PMC10916746 DOI: 10.1016/j.ydbio.2020.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Kinesins are microtubule-based motor proteins that are well known for their key roles in cell biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct kinesin genes in vertebrate genomes have also been associated with specific phenotypes in embryonic development. In this review, we highlight the specific developmental roles of kinesins, link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of how this large and important family of proteins contributes to the development and morphogenesis of animals.
Collapse
Affiliation(s)
- Mia J Konjikusic
- Department of Molecular Biosciences, USA; Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, USA.
| | | |
Collapse
|
30
|
Montaudon E, Nikitorowicz-Buniak J, Sourd L, Morisset L, El Botty R, Huguet L, Dahmani A, Painsec P, Nemati F, Vacher S, Chemlali W, Masliah-Planchon J, Château-Joubert S, Rega C, Leal MF, Simigdala N, Pancholi S, Ribas R, Nicolas A, Meseure D, Vincent-Salomon A, Reyes C, Rapinat A, Gentien D, Larcher T, Bohec M, Baulande S, Bernard V, Decaudin D, Coussy F, Le Romancer M, Dutertre G, Tariq Z, Cottu P, Driouch K, Bièche I, Martin LA, Marangoni E. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat Commun 2020; 11:4053. [PMID: 32792481 PMCID: PMC7426966 DOI: 10.1038/s41467-020-17697-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
A significant proportion of patients with oestrogen receptor (ER) positive breast cancers (BC) develop resistance to endocrine treatments (ET) and relapse with metastatic disease. Here we perform whole exome sequencing and gene expression analysis of matched primary breast tumours and bone metastasis-derived patient-derived xenografts (PDX). Transcriptomic analyses reveal enrichment of the G2/M checkpoint and up-regulation of Polo-like kinase 1 (PLK1) in PDX. PLK1 inhibition results in tumour shrinkage in highly proliferating CCND1-driven PDX, including different RB-positive PDX with acquired palbociclib resistance. Mechanistic studies in endocrine resistant cell lines, suggest an ER-independent function of PLK1 in regulating cell proliferation. Finally, in two independent clinical cohorts of ER positive BC, we find a strong association between high expression of PLK1 and a shorter metastases-free survival and poor response to anastrozole. In conclusion, our findings support clinical development of PLK1 inhibitors in patients with advanced CCND1-driven BC, including patients progressing on palbociclib treatment.
Collapse
Affiliation(s)
- Elodie Montaudon
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | | | - Laura Sourd
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Ludivine Morisset
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Rania El Botty
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Pierre Painsec
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Fariba Nemati
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
| | | | | | | | - Camilla Rega
- Institute of Cancer Research, 123 Old Brompton Road, SW7 3RP, London, UK
| | | | - Nikiana Simigdala
- Institute of Cancer Research, 123 Old Brompton Road, SW7 3RP, London, UK
| | - Sunil Pancholi
- Institute of Cancer Research, 123 Old Brompton Road, SW7 3RP, London, UK
| | - Ricardo Ribas
- Institute of Cancer Research, 123 Old Brompton Road, SW7 3RP, London, UK
| | - André Nicolas
- Department of Pathology, Institut Curie, Paris, France
| | | | | | - Cécile Reyes
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Audrey Rapinat
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - David Gentien
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Thibaut Larcher
- INRA, APEX-PAnTher, Oniris, Rue De La Géraudière Cedex 3, 44322, Nantes, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | | | - Didier Decaudin
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Florence Coussy
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Muriel Le Romancer
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69000, Lyon, France
| | | | - Zakia Tariq
- Department of Genetics, Institut Curie, Paris, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - Lesley-Ann Martin
- Institute of Cancer Research, 123 Old Brompton Road, SW7 3RP, London, UK
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
31
|
She ZY, Yu KW, Zhong N, Xiao Y, Wei YL, Lin Y, Li YL, Lu MH. Kinesin-7 CENP-E regulates chromosome alignment and genome stability of spermatogenic cells. Cell Death Discov 2020; 6:25. [PMID: 32351712 PMCID: PMC7171076 DOI: 10.1038/s41420-020-0261-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Accepted: 04/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kinesin-7 CENP-E is an essential kinetochore motor required for chromosome alignment and congression. However, the specific functions of CENP-E in the spermatogenic cells during spermatogenesis remain unknown. In this study, we find that CENP-E proteins are expressed in the spermatogonia, spermatocytes, and the elongating spermatids. CENP-E inhibition by specific inhibitor GSK923295 results in the disruption of spermatogenesis and cell cycle arrest of spermatogenic cells. Both spermatogonia and spermatocytes are arrested in metaphase and several chromosomes are not aligned at the equatorial plate. We find that CENP-E inhibition leads to chromosome misalignment, the spindle disorganization, and the formation of the aneuploidy cells. Furthermore, the inhibition of CENP-E results in the defects in the formation of spermatids, including the sperm head condensation and the sperm tail formation. We have revealed that kinesin-7 CENP-E is essential for chromosome alignment and genome stability of the spermatogenic cells.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Kai-Wei Yu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Ning Zhong
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Yu Xiao
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, 350001 China
- Medical Research Center, Fujian Provincial Children’s Hospital, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001 China
| | - Yang Lin
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122 China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian, 350122 China
| |
Collapse
|
32
|
Rathert AR, Meyer AM, Foote AP, Kern RJ, Cunningham-Hollinger HC, Kuehn LA, Lindholm-Perry AK. Ruminal transcript abundance of the centromere-associated protein E gene may influence residual feed intake in beef steers. Anim Genet 2020; 51:453-456. [PMID: 32166767 DOI: 10.1111/age.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
A better understanding regarding the mechanisms by which the rumen processes feed may assist us in identifying animals with superior feed efficiency. Studies to evaluate the gene expression of rumen tissue have previously been performed to analyze their relationship with feed efficiency. Continuing this research is critical to determine whether the expression of the genes identified is associated with feed efficiency in additional populations of beef cattle to ensure that they are robust across breed and environment. A previous rumen-transcriptome study on Hereford × Angus steers identified 122 differentially expressed genes (PFDR < 0.05) associated with residual feed intake (RFI), a measure of feed efficiency. The purpose of our study was to test the most divergent, up- and down-regulated genes in the rumen tissue of an unrelated population of Hereford × Angus steers that included two contemporary groups. A total of 13 genes were evaluated by quantitative real-time PCR. The centromere-associated protein E (CENPE) gene was expressed in lower concentrations in the rumen epithelium of steers in the more efficient (low RFI) group in both contemporary groups of animals, which was the same as the previous study. In addition, CENPE, a gene involved in chromosome alignment during mitosis, has also been associated with growth traits in cattle and pigs. There was no relationship between the expression of the other 12 genes tested with RFI in the population of steers in this study, which illustrates the importance of validating gene expression data in additional populations.
Collapse
Affiliation(s)
- A R Rathert
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, 68933, USA.,Department of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - A M Meyer
- Department of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - A P Foote
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, 68933, USA
| | - R J Kern
- Ward Laboratories, Inc., Kearney, NE, 68848, USA
| | | | - L A Kuehn
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, 68933, USA
| | - A K Lindholm-Perry
- U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, 68933, USA
| |
Collapse
|
33
|
The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019; 9:cells9010049. [PMID: 31878213 PMCID: PMC7016623 DOI: 10.3390/cells9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.
Collapse
|
34
|
Nellikka RK, Sreeja JS, Dharmapal D, John R, Monteiro A, Macedo JC, Conde C, Logarinho E, Sunkel CE, Sengupta S. α-Fodrin is required for the organization of functional microtubules during mitosis. Cell Cycle 2019; 18:2713-2726. [PMID: 31455186 DOI: 10.1080/15384101.2019.1656476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The cytoskeleton protein α-fodrin plays a major role in maintaining structural stability of membranes. It was also identified as part of the brain γ-tubulin ring complex, the major microtubule nucleator. Here, we investigated the requirement of α-fodrin for microtubule spindle assembly during mitotic progression. We found that α-fodrin depletion results in abnormal mitosis with uncongressed chromosomes, leading to prolonged activation of the spindle assembly checkpoint and a severe mitotic delay. Further, α-fodrin repression led to the formation of shortened spindles with unstable kinetochore-microtubule attachments. We also found that the mitotic kinesin CENP-E had reduced levels at kinetochores to likely account for the chromosome misalignment defects in α-fodrin-depleted cells. Importantly, we showed these cells to exhibit reduced levels of detyrosinated α-tubulin, which primarily drives CENP-E localization. Since proper microtubule dynamics and chromosome alignment are required for completion of normal mitosis, this study reveals an unforeseen role of α-fodrin in regulating mitotic progression. Future studies on these lines of observations should reveal important mechanistic insight for fodrin's involvement in cancer.
Collapse
Affiliation(s)
- Rohith Kumar Nellikka
- Cancer Research Program-III, Rajiv Gandhi Centre for Biotechnology, University of Kerala , Thiruvananthapuram , India
| | - Jamuna S Sreeja
- Cancer Research Program-III, Rajiv Gandhi Centre for Biotechnology, University of Kerala , Thiruvananthapuram , India
| | - Dhrishya Dharmapal
- Cancer Research Program-III, Rajiv Gandhi Centre for Biotechnology, University of Kerala , Thiruvananthapuram , India
| | - Rince John
- Cancer Research Program-III, Rajiv Gandhi Centre for Biotechnology, University of Kerala , Thiruvananthapuram , India
| | | | | | - Carlos Conde
- i3S-IBMC, Universidade do Porto , Porto , Portugal
| | | | - Claudio E Sunkel
- i3S-IBMC, Universidade do Porto , Porto , Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Suparna Sengupta
- Cancer Research Program-III, Rajiv Gandhi Centre for Biotechnology, University of Kerala , Thiruvananthapuram , India
| |
Collapse
|
35
|
Yu KW, Zhong N, Xiao Y, She ZY. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biol Cell 2019; 111:143-160. [PMID: 30784092 DOI: 10.1111/boc.201800082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Chromosome congression is essential for faithful chromosome segregation and genomic stability in cell division. Centromere-associated protein E (CENP-E), a plus-end-directed kinesin motor, is required for congression of pole-proximal chromosomes in metaphase. CENP-E accumulates at the outer plate of kinetochores and mediates the kinetochore-microtubule capture. CENP-E also transports the chromosomes along spindle microtubules towards the equatorial plate. CENP-E interacts with Bub1-related kinase, Aurora B and core kinetochore components during kinetochore-microtubule attachment. In this review, we introduce the structures and mechanochemistry of kinesin-7 CENP-E. We highlight the complicated interactions between CENP-E and partner proteins during chromosome congression. We summarise the detailed roles and mechanisms of CENP-E in mitosis and meiosis, including the kinetochore-microtubule capture, chromosome congression/alignment in metaphase and the regulation of spindle assembly checkpoint. We also shed a light on the roles of CENP-E in tumourigenesis and CENP-E's specific inhibitors.
Collapse
Affiliation(s)
- Kai-Wei Yu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ning Zhong
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yu Xiao
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
36
|
Tang JC, Wu K, Zheng X, Xu M, Dai Y, Wei SS, Cai XJ. GSK923295 as a potential antihepatocellular carcinoma agent causing delay on liver regeneration after partial hepatectomy. Chin Med J (Engl) 2019; 132:311-318. [PMID: 30681497 PMCID: PMC6595801 DOI: 10.1097/cm9.0000000000000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The clinical trials emerged centromere protein E inhibitor GSK923295 as a promising anticancer drug, but its function in hepatocellular carcinoma (HCC) remain needs to be fully elucidated, especially as chemotherapy after hepatectomy for liver tumors. We aimed to describe anti-HCC activities of GSK923295 and compare its antiproliferative effects on liver regeneration after partial hepatectomy (PH). METHODS All subjects were randomized to treatment with either vehicle or GSK923295. Antitumor activity of GSK923295 was assessed by xenograft growth assays. The C57BL/6 mice were subjected to 70% PH and the proliferation was calculated by liver coefficient, further confirmed by immunohistochemistry. The proliferation and cell cycle analysis of liver cell AML12 and HCC cells LM3, HUH7, and HepG2 were investigated using the cell counting kit-8 assay and Flow Cytometry. The chromosome misalignment and segregation in AML12 cells were visualized by immunofluorescence. RESULTS Treatment with GSK923295 induced antiproliferation in HCC cell lines. It also caused delay on HCC tumor growth instead of regression both in a HCC cell line xenograft model and patient-derived tumor xenograft model. With microarray analysis, CENtromere Protein E was gradually increased in mouse liver after PH. Exposure of liver cells to GSK923295 resulted in delay on a cell cycle in mitosis with a phenotype of misaligned chromosomes and chromosomes clustered. In 70% PH mouse model, GSK923295 treatment also remarkably reduced liver regeneration in later stage, in parallel with the mitotic marker phospho-histone H3 elevation. CONCLUSION The anticancer drug GSK923295 causes a significant delay on HCC tumor growth and liver regeneration after PH in later stage.
Collapse
Affiliation(s)
- Jia-Cheng Tang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Veneziano L, Barra V, Cilluffo D, Di Leonardo A. Proliferation of aneuploid cells induced by CENP-E depletion is counteracted by the p14 ARF tumor suppressor. Mol Genet Genomics 2018; 294:149-158. [PMID: 30264192 DOI: 10.1007/s00438-018-1495-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
Abstract
The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures the fidelity of chromosomes segregation. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, which are both well-known hallmarks of cancer cells. Centromere protein-E (CENP-E) is a crucial component of the SAC and its function is to facilitate kinetochore microtubule attachment required to achieve and maintain chromosome alignment. The present study investigates the possible role of p14ARF as a controller of aneuploid cells proliferation. We used RNA interference to induce aneuploidy by partial depletion of CENP-E in human primary fibroblasts (IMR90) and in near diploid tumor cells (HCT116). In contrast to IMR90 aneuploid cell number, which was drastically reduced and leaned towards the WT condition, HCT116 aneuploid cell numbers were slightly decreased at later time points. This euploidy restoration was accompanied by increased p14ARF expression in IMR90 cells and followed ectopic p14ARF re-expression in p14ARF-null HCT116 cells. Collectively, our results suggest that hampering proliferation of aneuploid cells could be an additional role of the p14ARF tumor suppressor.
Collapse
Affiliation(s)
- Lorena Veneziano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.,Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France
| | - Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy. .,Centro di OncoBiologia Sperimentale (COBS), Palermo, Italy.
| |
Collapse
|
38
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
39
|
El-Arabey AA, Salama SA, Abd-Allah AR. CENP-E as a target for cancer therapy: Where are we now? Life Sci 2018; 208:192-200. [PMID: 30031812 DOI: 10.1016/j.lfs.2018.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
Abstract
In 2015, more than 1.6 million new cancer cases with 589,430 deaths were estimated over worldwide. Cancer is a complex disease with abnormal cell growth control which is hallmarked by chromosome misalignment and consequently genomic instability. Mitosis is a well-known target for chemotherapy as taxol and colchicines inhibit tumor cell division by inhibiting mitotic spindle plasticity. Accumulating evidence has revealed that the Centromere-associated Protein E (CENP-E) is expressed during mitosis and plays critical roles in inaccurate chromosome alignment. Thus, CENP-E might represent a druggable target for several solid tumors which do not have targeted therapy. Moreover, CENP-E appears during the mitotic phase of cell cycle and not implicates in the neuronal function. Hence, we will shed light on CENP-E as an emerging target for chemotherapy in clinical oncology and highlight challenges and excitement down the road.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Salama Abdu Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
40
|
Ciossani G, Overlack K, Petrovic A, Huis In 't Veld PJ, Koerner C, Wohlgemuth S, Maffini S, Musacchio A. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J Biol Chem 2018; 293:10084-10101. [PMID: 29748388 PMCID: PMC6028960 DOI: 10.1074/jbc.ra118.003154] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Indexed: 01/23/2023] Open
Abstract
The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising ∼2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end–directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod/Zwilch/ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E/BUBR1 and CENP-F/BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1/CENP-F and BUBR1/CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related.
Collapse
Affiliation(s)
- Giuseppe Ciossani
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Katharina Overlack
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Arsen Petrovic
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Pim J Huis In 't Veld
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Carolin Koerner
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Sabine Wohlgemuth
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Stefano Maffini
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Andrea Musacchio
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and .,the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany
| |
Collapse
|
41
|
Ohashi A, Ohori M, Iwai K. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission. Oncotarget 2018; 7:79964-79980. [PMID: 27835888 PMCID: PMC5346764 DOI: 10.18632/oncotarget.13206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659-2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
42
|
Liang Y, Ahmed M, Guo H, Soares F, Hua JT, Gao S, Lu C, Poon C, Han W, Langstein J, Ekram MB, Li B, Davicioni E, Takhar M, Erho N, Karnes RJ, Chadwick D, van der Kwast T, Boutros PC, Arrowsmith CH, Feng FY, Joshua AM, Zoubeidi A, Cai C, He HH. LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. Cancer Res 2017; 77:5479-5490. [PMID: 28916652 DOI: 10.1158/0008-5472.can-17-0496] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
Androgen receptor (AR) signaling is a key driver of prostate cancer, and androgen-deprivation therapy (ADT) is a standard treatment for patients with advanced and metastatic disease. However, patients receiving ADT eventually develop incurable castration-resistant prostate cancer (CRPC). Here, we report that the chromatin modifier LSD1, an important regulator of AR transcriptional activity, undergoes epigenetic reprogramming in CRPC. LSD1 reprogramming in this setting activated a subset of cell-cycle genes, including CENPE, a centromere binding protein and mitotic kinesin. CENPE was regulated by the co-binding of LSD1 and AR to its promoter, which was associated with loss of RB1 in CRPC. Notably, genetic deletion or pharmacological inhibition of CENPE significantly decreases tumor growth. Our findings show how LSD1-mediated epigenetic reprogramming drives CRPC, and they offer a mechanistic rationale for its therapeutic targeting in this disease. Cancer Res; 77(20); 5479-90. ©2017 AACR.
Collapse
Affiliation(s)
- Yi Liang
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Junjie T Hua
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Catherine Lu
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Christine Poon
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Jens Langstein
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Muhammad B Ekram
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Brian Li
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Elai Davicioni
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | - Mandeep Takhar
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | - Nicholas Erho
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | | | - Dianne Chadwick
- UHN Program in BioSpecimen Sciences, Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Theodorus van der Kwast
- Department of Pathology and Laboratory Medicine, Toronto General Hospital/University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
- Department of Urology, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Anthony M Joshua
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, Australia
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Housheng H He
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Zhang H, Aonbangkhen C, Tarasovetc EV, Ballister ER, Chenoweth DM, Lampson MA. Optogenetic control of kinetochore function. Nat Chem Biol 2017; 13:1096-1101. [PMID: 28805800 PMCID: PMC5605432 DOI: 10.1038/nchembio.2456] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores act as hubs for multiple activities during cell division, including microtubule interactions and spindle checkpoint signaling. Each kinetochore can act autonomously, and activities change rapidly as proteins are recruited to, or removed from, kinetochores. Understanding this dynamic system requires tools that can manipulate kinetochores on biologically relevant temporal and spatial scales. Optogenetic approaches have the potential to provide temporal and spatial control with molecular specificity. Here we report new chemical inducers of protein dimerization that allow us to both recruit proteins to and release them from kinetochores using light. We use these dimerizers to manipulate checkpoint signaling and molecular motor activity. Our findings demonstrate specialized properties of the CENP-E (kinesin-7) motor for directional chromosome transport to the spindle equator and for maintenance of metaphase alignment. This work establishes a foundation for optogenetic control of kinetochore function, which is broadly applicable to experimental probing of other dynamic cellular processes.
Collapse
Affiliation(s)
- Huaiying Zhang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chanat Aonbangkhen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ekaterina V. Tarasovetc
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward R. Ballister
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David M. Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
44
|
McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer 2017; 24:T23-T31. [PMID: 28696210 DOI: 10.1530/erc-17-0187] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability.
Collapse
|
45
|
Park JE, Hymel D, Burke TR, Lee KS. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents. F1000Res 2017; 6:1024. [PMID: 28721210 PMCID: PMC5497816 DOI: 10.12688/f1000research.11398.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1) has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Ly P, Cleveland DW. Interrogating cell division errors using random and chromosome-specific missegregation approaches. Cell Cycle 2017. [PMID: 28650219 DOI: 10.1080/15384101.2017.1325047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Accurate segregation of the duplicated genome in mitosis is essential for maintaining genetic stability. Errors in this process can cause numerical and/or structural chromosome abnormalities - hallmark genomic features commonly associated with both tumorigenesis and developmental disorders. A cell-based approach was recently developed permitting inducible missegregation of the human Y chromosome by selectively disrupting kinetochore assembly onto the Y centromere. Although this strategy initially requires several steps of genetic manipulation, it is easy to use, highly efficient and specific for the Y without affecting the autosomes or the X, and does not require cell cycle synchronization or mitotic perturbation. Here we describe currently available tools for studying chromosome segregation errors, aneuploidy, and micronuclei, as well as discuss how the Y-specific missegregation system has been used to elucidate how chromosomal micronucleation can trigger a class of extensive rearrangements termed chromothripsis. The combinatorial use of these different tools will allow unresolved aspects of cell division defects and chromosomal instability to be experimentally explored.
Collapse
Affiliation(s)
- Peter Ly
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| | - Don W Cleveland
- a Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
47
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
48
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Abstract
Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.
Collapse
|
50
|
de Wolf B, Kops GJPL. Kinetochore Malfunction in Human Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:69-91. [DOI: 10.1007/978-3-319-57127-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|