1
|
Lake CM, Gardner J, Briggs S, Yu Z, McKown G, Hawley RS. The deubiquitinase Usp7 in Drosophila melanogaster is required for synaptonemal complex maintenance. Proc Natl Acad Sci U S A 2024; 121:e2409346121. [PMID: 39190345 PMCID: PMC11388383 DOI: 10.1073/pnas.2409346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.
Collapse
Affiliation(s)
| | | | - Salam Briggs
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Grace McKown
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of KansasMedical Center, Kansas City, KS66160
| |
Collapse
|
2
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
3
|
Joshi JN, Changela N, Mahal L, Jang J, Defosse T, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. Mol Biol Cell 2024; 35:ar105. [PMID: 38865189 PMCID: PMC11321039 DOI: 10.1091/mbc.e24-02-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and coorientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that the SPC105R C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for lateral microtubule attachments and biorientation of homologues, which are critical for accurate chromosome segregation in meiosis I.
Collapse
Affiliation(s)
- Jay N. Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lia Mahal
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Janet Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Tyler Defosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Arunika Das
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Joanatta G. Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kim McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
4
|
Joshi JN, Changela N, Mahal L, Defosse T, Jang J, Wang LI, Das A, Shapiro JG, McKim K. Meiosis-specific functions of kinetochore protein SPC105R required for chromosome segregation in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585003. [PMID: 38559067 PMCID: PMC10980020 DOI: 10.1101/2024.03.14.585003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reductional division of meiosis I requires the separation of chromosome pairs towards opposite poles. We have previously implicated the outer kinetochore protein SPC105R/KNL1 in driving meiosis I chromosome segregation through lateral attachments to microtubules and co-orientation of sister centromeres. To identify the domains of SPC105R that are critical for meiotic chromosome segregation, an RNAi-resistant gene expression system was developed. We found that SPC105R's C-terminal domain (aa 1284-1960) is necessary and sufficient for recruiting NDC80 to the kinetochore and building the outer kinetochore. Furthermore, the C-terminal domain recruits BUBR1, which in turn recruits the cohesion protection proteins MEI-S332 and PP2A. Of the remaining 1283 amino acids, we found the first 473 are most important for meiosis. The first 123 amino acids of the N-terminal half of SPC105R contain the conserved SLRK and RISF motifs that are targets of PP1 and Aurora B kinase and are most important for regulating the stability of microtubule attachments and maintaining metaphase I arrest. The region between amino acids 124 and 473 are required for two activities that are critical for accurate chromosome segregation in meiosis I, lateral microtubule attachments and bi-orientation of homologs.
Collapse
|
5
|
Takahata Y, Miyakawa H. Developmental Staging of Sexual Egg Formation in Daphnia pulex: Unmated Females Resorb Meiotic Oocytes to Resist Starvation. Zoolog Sci 2022; 39:407-412. [DOI: 10.2108/zs220010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yugo Takahata
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
6
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
7
|
Jang JK, Gladstein AC, Das A, Shapiro JG, Sisco ZL, McKim KS. Multiple pools of PP2A regulate spindle assembly, kinetochore attachments and cohesion in Drosophila oocytes. J Cell Sci 2021; 134:jcs254037. [PMID: 34297127 PMCID: PMC8325958 DOI: 10.1242/jcs.254037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/14/2021] [Indexed: 01/06/2023] Open
Abstract
Meiosis in female oocytes lacks centrosomes, the microtubule-organizing centers. In Drosophila oocytes, meiotic spindle assembly depends on the chromosomal passenger complex (CPC). To investigate the mechanisms that regulate Aurora B activity, we examined the role of protein phosphatase 2A (PP2A) in Drosophila oocyte meiosis. We found that both forms of PP2A, B55 and B56, antagonize the Aurora B spindle assembly function, suggesting that a balance between Aurora B and PP2A activity maintains the oocyte spindle during meiosis I. PP2A-B56, which has a B subunit encoded by two partially redundant paralogs, wdb and wrd, is also required for maintenance of sister chromatid cohesion, establishment of end-on microtubule attachments, and metaphase I arrest in oocytes. WDB recruitment to the centromeres depends on BUBR1, MEI-S332 and kinetochore protein SPC105R. Although BUBR1 stabilizes microtubule attachments in Drosophila oocytes, it is not required for cohesion maintenance during meiosis I. We propose at least three populations of PP2A-B56 regulate meiosis, two of which depend on SPC105R and a third that is associated with the spindle.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim S. McKim
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet 2021; 17:e1009412. [PMID: 33961623 PMCID: PMC8104389 DOI: 10.1371/journal.pgen.1009412] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice. Meiosis is a fundamental process that consists of one round of genomic DNA replication and two rounds of chromosome segregation, producing four haploid cells. To properly distribute their genetic material, cells need to undergo complex chromosome events such as a physical linkage of homologous chromosomes (termed synapsis) and meiotic recombination. The molecules involved in these events have not been fully characterized yet, especially in mammals. Using a CRISPR/Cas9-screening system, we identified the potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis in male mice. Further, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). By observing meiosis of Zfp541 knockout germ cells, we found that Zfp541 was also essential for meiosis. These results show that the KCTD19/ZFP541 complex plays a critical role and is indispensable for male meiosis and fertility.
Collapse
|
9
|
Avilés-Pagán EE, Orr-Weaver TL. Activating embryonic development in Drosophila. Semin Cell Dev Biol 2018; 84:100-110. [PMID: 29448071 PMCID: PMC6301029 DOI: 10.1016/j.semcdb.2018.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/21/2017] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
The transition from oocyte to embryo marks the onset of development. This process requires complex regulation to link developmental signals with profound changes in mRNA translation, cell cycle control, and metabolism. This control is beginning to be understood for most organisms, and research in the fruit fly Drosophila melanogaster has generated new insights. Recent findings have increased our understanding of the roles played by hormone and Ca2+ signaling events as well as metabolic remodeling crucial for this transition. Specialized features of the structure and assembly of the meiotic spindle have been identified. The changes in protein levels, mRNA translation, and polyadenylation that occur as the oocyte becomes an embryo have been identified together with key aspects of their regulation. Here we highlight these important developments and the insights they provide on the intricate regulation of this dramatic transition.
Collapse
Affiliation(s)
- Emir E Avilés-Pagán
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Terry L Orr-Weaver
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
10
|
Radford SJ, Nguyen AL, Schindler K, McKim KS. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 2016; 126:351-364. [PMID: 27837282 DOI: 10.1007/s00412-016-0618-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.
Collapse
Affiliation(s)
- Sarah J Radford
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | | | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kim S McKim
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF, McKee BD, McKim KS. Dynamic and Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome Segregation. Curr Biol 2016; 26:1688-1698. [PMID: 27291057 PMCID: PMC4942336 DOI: 10.1016/j.cub.2016.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Assembly of the synaptonemal complex (SC) in Drosophila depends on two independent pathways defined by the chromosome axis proteins C(2)M and ORD. Because C(2)M encodes a Kleisin-like protein and ORD is required for sister-chromatid cohesion, we tested the hypothesis that these two SC assembly pathways depend on two cohesin complexes. Through single- and double-mutant analysis to study the mitotic cohesion proteins Stromalin (SA) and Nipped-B (SCC2) in meiosis, we provide evidence that there are at least two meiosis-specific cohesin complexes. One complex depends on C(2)M, SA, and Nipped-B. Despite the presence of mitotic cohesins SA and Nipped-B, this pathway has only a minor role in meiotic sister-centromere cohesion and is primarily required for homolog interactions. C(2)M is continuously incorporated into pachytene chromosomes even though SC assembly is complete. In contrast, the second complex, which depends on meiosis-specific proteins SOLO, SUNN, and ORD is required for sister-chromatid cohesion, localizes to the centromeres and is not incorporated during prophase. Our results show that the two cohesin complexes have unique functions and are regulated differently. Multiple cohesin complexes may provide the diversity of activities required by the meiotic cell. For example, a dynamic complex may allow the chromosomes to regulate meiotic recombination, and a stable complex may be required for sister-chromatid cohesion.
Collapse
Affiliation(s)
- Mercedes R Gyuricza
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Kathryn B Manheimer
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Vandana Apte
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Badri Krishnan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Eric F Joyce
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
12
|
Varadarajan R, Ayeni J, Jin Z, Homola E, Campbell SD. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes. Mol Biol Cell 2016; 27:2051-63. [PMID: 27170181 PMCID: PMC4927279 DOI: 10.1091/mbc.e16-02-0104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
Drosophila Myt1 is essential for male fertility. Loss of Myt1 activity causes defective fusomes and premature centriole disengagement during premeiotic G2 phase due to lack of Myt1 inhibition of Cyclin A/Cdk1. These functions are distinct from known roles for Myt1 inhibition of Cyclin B/Cdk1 used to regulate G2/MI timing. Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing.
Collapse
Affiliation(s)
- Ramya Varadarajan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Joseph Ayeni
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zhigang Jin
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
13
|
Radford SJ, Hoang TL, Głuszek AA, Ohkura H, McKim KS. Lateral and End-On Kinetochore Attachments Are Coordinated to Achieve Bi-orientation in Drosophila Oocytes. PLoS Genet 2015; 11:e1005605. [PMID: 26473960 PMCID: PMC4608789 DOI: 10.1371/journal.pgen.1005605] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 11/21/2022] Open
Abstract
In oocytes, where centrosomes are absent, the chromosomes direct the assembly of a bipolar spindle. Interactions between chromosomes and microtubules are essential for both spindle formation and chromosome segregation, but the nature and function of these interactions is not clear. We have examined oocytes lacking two kinetochore proteins, NDC80 and SPC105R, and a centromere-associated motor protein, CENP-E, to characterize the impact of kinetochore-microtubule attachments on spindle assembly and chromosome segregation in Drosophila oocytes. We found that the initiation of spindle assembly results from chromosome-microtubule interactions that are kinetochore-independent. Stabilization of the spindle, however, depends on both central spindle and kinetochore components. This stabilization coincides with changes in kinetochore-microtubule attachments and bi-orientation of homologs. We propose that the bi-orientation process begins with the kinetochores moving laterally along central spindle microtubules towards their minus ends. This movement depends on SPC105R, can occur in the absence of NDC80, and is antagonized by plus-end directed forces from the CENP-E motor. End-on kinetochore-microtubule attachments that depend on NDC80 are required to stabilize bi-orientation of homologs. A surprising finding was that SPC105R but not NDC80 is required for co-orientation of sister centromeres at meiosis I. Together, these results demonstrate that, in oocytes, kinetochore-dependent and -independent chromosome-microtubule attachments work together to promote the accurate segregation of chromosomes. In acentrosomal oocytes, spindle assembly depends on the chromosomes. The nature of the chromosome-microtubule interactions in oocytes that organize spindle bipolarity and orientation of the homologs has been unclear. We have found that several types of functional chromosome-microtubule interactions exist in oocytes, and that each type participates in unique aspects of chromosome orientation and spindle assembly. We present here a model for chromosome-based spindle assembly and chromosome movements in oocytes that highlights the multiple and unappreciated roles played by the kinetochores and has implications for how homologous chromosomes bi-orient during meiosis.
Collapse
Affiliation(s)
- Sarah J. Radford
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Tranchau L. Hoang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - A. Agata Głuszek
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hiroyuki Ohkura
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kim S. McKim
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
14
|
Laver JD, Marsolais AJ, Smibert CA, Lipshitz HD. Regulation and Function of Maternal Gene Products During the Maternal-to-Zygotic Transition in Drosophila. Curr Top Dev Biol 2015; 113:43-84. [PMID: 26358870 DOI: 10.1016/bs.ctdb.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila late-stage oocytes and early embryos are transcriptionally silent. Thus, control of gene expression during these developmental periods is posttranscriptional and posttranslational. Global changes in the transcriptome and proteome occur during oocyte maturation, after egg activation and fertilization, and upon zygotic genome activation. We review the scale, content, and dynamics of these global changes; the factors that regulate these changes; and the mechanisms by which they are accomplished. We highlight the intimate relationship between the clearance of maternal gene products and the activation of the embryo's own genome, and discuss the fact that each of these complementary components of the maternal-to-zygotic transition can be subdivided into several phases that serve different biological roles and are regulated by distinct factors.
Collapse
Affiliation(s)
- John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
16
|
DAVIS GREGORYK. Cyclical Parthenogenesis and Viviparity in Aphids as Evolutionary Novelties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:448-59. [DOI: 10.1002/jez.b.22441] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 11/09/2022]
Affiliation(s)
- GREGORY K. DAVIS
- Department of Biology; Bryn Mawr College; Bryn Mawr; Pennsylvania
| |
Collapse
|
17
|
Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3:a005553. [PMID: 21709181 DOI: 10.1101/cshperspect.a005553] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.
Collapse
Affiliation(s)
- Jessica R Von Stetina
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
18
|
Lake CM, Nielsen RJ, Hawley RS. The Drosophila zinc finger protein trade embargo is required for double strand break formation in meiosis. PLoS Genet 2011; 7:e1002005. [PMID: 21383963 PMCID: PMC3044681 DOI: 10.1371/journal.pgen.1002005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
| | | | | |
Collapse
|
19
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
20
|
Meyer RE, Delaage M, Rosset R, Capri M, Aït-Ahmed O. A single mutation results in diploid gamete formation and parthenogenesis in a Drosophila yemanuclein-alpha meiosis I defective mutant. BMC Genet 2010; 11:104. [PMID: 21080953 PMCID: PMC2998452 DOI: 10.1186/1471-2156-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. RESULTS We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. CONCLUSIONS We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction.
Collapse
Affiliation(s)
- Régis E Meyer
- Institut de Génétique Humaine (IGH), Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique (CNRS), 141 Rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
21
|
Takeo S, Hawley RS, Aigaki T. Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev Biol 2010; 344:957-67. [PMID: 20561515 DOI: 10.1016/j.ydbio.2010.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/15/2022]
Abstract
Ca(2+) signaling pathways play important roles to complete meiosis from metaphase II arrest in vertebrate oocytes. However, less is known about the molecular mechanism of completion of meiosis in Drosophila females. Here, we provide direct evidence that calcineurin, a Ca(2+)/calmodulin (CaM)-dependent phosphatase, is essential for meiotic progression beyond metaphase I in Drosophila oocytes. Oocytes from germline clones lacking CanB2, a calcineurin regulatory subunit B, failed to complete meiosis after egg activation, and laid eggs exhibited a meiotic arrested anaphase I chromosome configuration. Genetic analyses suggest that calcineurin activity is regulated by Sarah (Sra), a family member of regulators of calcineurin (RCANs), through a Sra phosphorylation-dependent mechanism. Our results support a view in which the phosphorylation of Sra not only acts to relieve the inhibitory effects of Sra, but also acts to activate calcineurin, thus explaining the role of RCAN proteins as positive regulators of calcineurin.
Collapse
Affiliation(s)
- Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
22
|
Gilliland WD, Hughes SF, Vietti DR, Hawley RS. Congression of achiasmate chromosomes to the metaphase plate in Drosophila melanogaster oocytes. Dev Biol 2008; 325:122-8. [PMID: 18977343 DOI: 10.1016/j.ydbio.2008.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/20/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
Chiasmata established by recombination are normally sufficient to ensure accurate chromosome segregation during meiosis by physically interlocking homologs until anaphase I. Drosophila melanogaster female meiosis is unusual in that it is both exceptionally tolerant of nonexchange chromosomes and competent in ensuring their proper segregation. As first noted by Puro and Nokkala [Puro, J., Nokkala, S., 1977. Meiotic segregation of chromosomes in Drosophila melanogaster oocytes. A cytological approach. Chromosoma 63, 273-286], nonexchange chromosomes move precociously towards the poles following formation of a bipolar spindle. Indeed, metaphase arrest has been previously defined as the stage at which nonexchange homologs are symmetrically positioned between the main chromosome mass and the poles of the spindle. Here we use studies of both fixed images and living oocytes to show that the stage in which achiasmate chromosomes are separated from the main mass does not in fact define metaphase arrest, but rather is a component of an extended prometaphase. At the end of prometaphase, the nonexchange chromosomes retract into the main chromosome mass, which is tightly repackaged with properly co-oriented centromeres. This repackaged state is the true metaphase arrest configuration in Drosophila female meiosis.
Collapse
|
23
|
Abstract
Meiotic chromosome segregation occurs in Drosophila oocytes on an acentrosomal spindle, which raises interesting questions regarding spindle assembly and function. One is how to organize a bipolar spindle without microtubule organizing centers at the poles. Another question is how to orient the chromosomes without kinetochore capture of microtubules that grow from the poles. We have characterized the mei-38 gene in Drosophila and found it may be required for chromosome organization within the karyosome. Nondisjunction of homologous chromosomes occurs in mei-38 mutants primarily at the first meiotic division in females but not in males where centrosomes are present. Most meiotic spindles in mei-38 oocytes are bipolar but poorly organized, and the chromosomes appear disorganized at metaphase. mei-38 encodes a novel protein that is conserved in the Diptera and may be a member of a multigene family. Mei-38 was previously identified (as ssp1) due to a role in mitotic spindle assembly in a Drosophila cell line. MEI-38 protein localizes to a specific population of spindle microtubules, appearing to be excluded from the overlap of interpolar microtubules in the central spindle. We suggest MEI-38 is required for the stability of parallel microtubules, including the kinetochore microtubules.
Collapse
|
24
|
Gilliland WD, Hughes SE, Cotitta JL, Takeo S, Xiang Y, Hawley RS. The multiple roles of mps1 in Drosophila female meiosis. PLoS Genet 2008; 3:e113. [PMID: 17630834 PMCID: PMC1914070 DOI: 10.1371/journal.pgen.0030113] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 05/23/2007] [Indexed: 12/02/2022] Open
Abstract
The Drosophila gene ald encodes the fly ortholog of mps1, a conserved kinetochore-associated protein kinase required for the meiotic and mitotic spindle assembly checkpoints. Using live imaging, we demonstrate that oocytes lacking Ald/Mps1 (hereafter referred to as Ald) protein enter anaphase I immediately upon completing spindle formation, in a fashion that does not allow sufficient time for nonexchange homologs to complete their normal partitioning to opposite half spindles. This observation can explain the heightened sensitivity of nonexchange chromosomes to the meiotic effects of hypomorphic ald alleles. In one of the first studies of the female meiotic kinetochore, we show that Ald localizes to the outer edge of meiotic kinetochores after germinal vesicle breakdown, where it is often observed to be extended well away from the chromosomes. Ald also localizes to numerous filaments throughout the oocyte. These filaments, which are not observed in mitotic cells, also contain the outer kinetochore protein kinase Polo, but not the inner kinetochore proteins Incenp or Aurora-B. These filaments polymerize during early germinal vesicle breakdown, perhaps as a means of storing excess outer kinetochore kinases during early embryonic development. Female meiosis is the process that ensures developing eggs (called oocytes) receive the proper complement of chromosomes. The failure to accurately segregate chromosomes results in aneuploidy, which is the leading cause of birth defects in humans. Cells contain checkpoints that help ensure proper chromosome segregation. Here, we present a study of the Drosophila homolog of monopolar spindles 1 (mps1), which is a key checkpoint component. Mutants in mps1 produce oocytes with the wrong number of chromosomes. Using live imaging of female meiosis, we find that mps1 mutants do not delay the cell cycle as is normally observed in wild-type flies. This delay gives chromosomes the time needed to properly align before cell division, and therefore the defect caused by mps1 mutants is due to chromosomes being forced to segregate before they have had time to properly align. Additionally, we find that mps1 as well as two other checkpoint proteins localize to numerous filaments throughout the oocyte. These filaments appear to form when the nuclear envelope breaks down, and disappear late in meiosis. While the function of these structures is not known, they appear similar to filaments seen in female meiosis in nematodes, and may be required to regulate these proteins.
Collapse
Affiliation(s)
- William D Gilliland
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stacie E Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey L Cotitta
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Youbin Xiang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
26
|
Horner VL, Wolfner MF. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dyn 2008; 237:527-44. [DOI: 10.1002/dvdy.21454] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Archambault V, Zhao X, White-Cooper H, Carpenter ATC, Glover DM. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet 2007; 3:e200. [PMID: 17997611 PMCID: PMC2065886 DOI: 10.1371/journal.pgen.0030200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo-Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle.
Collapse
Affiliation(s)
- Vincent Archambault
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Xinbei Zhao
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Helen White-Cooper
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adelaide T. C Carpenter
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David M Glover
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Doubilet S, McKim KS. Spindle assembly in the oocytes of mouse and Drosophila--similar solutions to a problem. Chromosome Res 2007; 15:681-96. [PMID: 17674154 DOI: 10.1007/s10577-007-1148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the oocytes of many organisms a bipolar spindle is assembled in the absence of centrosomes. In this article we review how this occurs in two model organisms, Drosophila melanogaster and Mus musculus. Common themes include an important role for the chromosomes but paradoxically, organization of a bipolar spindle may not involve kinetochore microtubules. Some comparisons are not yet possible, however, since the same genes have usually not been studied in both systems.
Collapse
Affiliation(s)
- Susan Doubilet
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
29
|
Lake CM, Teeter K, Page SL, Nielsen R, Hawley RS. A genetic analysis of the Drosophila mcm5 gene defines a domain specifically required for meiotic recombination. Genetics 2007; 176:2151-63. [PMID: 17565942 PMCID: PMC1950621 DOI: 10.1534/genetics.107.073551] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the minichromosome maintenance (MCM) family have pivotal roles in many biological processes. Although originally studied for their role in DNA replication, it is becoming increasingly apparent that certain members of this family are multifunctional and also play roles in transcription, cohesion, condensation, and recombination. Here we provide a genetic dissection of the mcm5 gene in Drosophila that demonstrates an unexpected function for this protein. First, we show that homozygotes for a null allele of mcm5 die as third instar larvae, apparently as a result of blocking those replication events that lead to mitotic divisions without impairing endo-reduplication. However, we have also recovered a viable and fertile allele of mcm5 (denoted mcm5(A7)) that specifically impairs the meiotic recombination process. We demonstrate that the decrease in recombination observed in females homozygous for mcm5(A7) is not due to a failure to create or repair meiotically induced double strand breaks (DSBs), but rather to a failure to resolve those DSBs into meiotic crossovers. Consistent with their ability to repair meiotically induced DSBs, flies homozygous for mcm5(A7) are fully proficient in somatic DNA repair. These results strengthen the observation that members of the prereplicative complex have multiple functions and provide evidence that mcm5 plays a critical role in the meiotic recombination pathway.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | | | | | | | |
Collapse
|
30
|
Horner VL, Czank A, Jang JK, Singh N, Williams BC, Puro J, Kubli E, Hanes SD, McKim KS, Wolfner MF, Goldberg ML. The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr Biol 2006; 16:1441-6. [PMID: 16860744 DOI: 10.1016/j.cub.2006.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
Activation of mature oocytes initiates development by releasing the prior arrest of female meiosis, degrading certain maternal mRNAs while initiating the translation of others, and modifying egg coverings. In vertebrates and marine invertebrates, the fertilizing sperm triggers activation events through a rise in free calcium within the egg. In insects, egg activation occurs independently of sperm and is instead triggered by passage of the egg through the female reproductive tract ; it is unknown whether calcium signaling is involved. We report here that mutations in sarah, which encodes an inhibitor of the calcium-dependent phosphatase calcineurin, disrupt several aspects of egg activation in Drosophila. Eggs laid by sarah mutant females arrest in anaphase of meiosis I and fail to fully polyadenylate and translate bicoid mRNA. Furthermore, sarah mutant eggs show elevated cyclin B levels, indicating a failure to inactivate M-phase promoting factor (MPF). Taken together, these results demonstrate that calcium signaling is involved in Drosophila egg activation and suggest a molecular mechanism for the sarah phenotype. We also find the conversion of the sperm nucleus into a functional male pronucleus is compromised in sarah mutant eggs, indicating that the Drosophila egg's competence to support male pronuclear maturation is acquired during activation.
Collapse
Affiliation(s)
- Vanessa L Horner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vallente RU, Cheng EY, Hassold TJ. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions. Chromosoma 2006; 115:241-9. [PMID: 16547726 DOI: 10.1007/s00412-006-0058-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/07/2006] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633-638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363-365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405-408; Pathak and Elder (1980) Hum Genet 54:171-175; Solari (1980) Chromosoma 81:315-337; Speed (1984) Hum Genet 66:176-180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215-226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833-848; Vidal et al. (1982) Hum Genet 60:301-304; Bojko (1983) Carlsberg Res Commun 48:285-305; Bojko (1985) Carlsberg Res Commun 50:43-72; Templado et al. (1984) Hum Genet 67:162-165; Navarro et al. (1986) Hum Reprod 1:523-527; Garcia et al. (1989) Hum Genet 2:147-53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.
Collapse
Affiliation(s)
- Rhea U Vallente
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
32
|
Jang JK, Rahman T, McKim KS. The kinesinlike protein Subito contributes to central spindle assembly and organization of the meiotic spindle in Drosophila oocytes. Mol Biol Cell 2005; 16:4684-94. [PMID: 16055508 PMCID: PMC1237074 DOI: 10.1091/mbc.e04-11-0964] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the oocytes of many species, bipolar spindles form in the absence of centrosomes. Drosophila melanogaster oocyte chromosomes have a major role in nucleating microtubules, which precedes the bundling and assembly of these microtubules into a bipolar spindle. Here we present evidence that a region similar to the anaphase central spindle functions to organize acentrosomal spindles. Subito mutants are characterized by the formation of tripolar or monopolar spindles and nondisjunction of homologous chromosomes at meiosis I. Subito encodes a kinesinlike protein and associates with the meiotic central spindle, consistent with its classification in the Kinesin 6/MKLP1 family. This class of proteins is known to be required for cytokinesis, but our results suggest a new function in spindle formation. The meiotic central spindle appears during prometaphase and includes passenger complex proteins such as AurB and Incenp. Unlike mitotic cells, the passenger proteins do not associate with centromeres before anaphase. In the absence of Subito, central spindle formation is defective and AurB and Incenp fail to properly localize. We propose that Subito is required for establishing and/or maintaining the central spindle in Drosophila oocytes, and this substitutes for the role of centrosomes in organizing the bipolar spindle.
Collapse
Affiliation(s)
- J K Jang
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
33
|
Zhang D, Li M, Ma W, Hou Y, Li YH, Li SW, Sun QY, Wang WH. Localization of Mitotic Arrest Deficient 1 (MAD1) in Mouse Oocytes During the First Meiosis and Its Functions as a Spindle Checkpoint Protein1. Biol Reprod 2005; 72:58-68. [PMID: 15342357 DOI: 10.1095/biolreprod.104.032987] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study was designed to investigate the localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at various stages during the first meiosis were fixed and immunostained for MAD1, kinetochores, microtubules, and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes were treated with nocodazole or Taxol before examination. The anti-MAD1 antibody was injected into the oocytes at the germinal vesicle (GV) stage for examination of chromosome alignment and spindle formation. It was found that MAD1 was present in the oocytes from the GV to prometaphase I stages around the nuclei. When the oocytes reached the metaphase I (M-I) to metaphase II (M-II) stages, MAD1 was mainly localized at the spindle poles. However, MAD1 relocated to the vicinity of the chromosomes when spindles were disassembled by nocodazole or cooling, and the relocated MAD1 moved back to the spindle poles during spindle recovery. Taxol treatment did not affect the MAD1 localization. Although anti-MAD1 antibody injection did not affect nuclear maturation, significantly higher proportions of injected oocytes had misaligned chromosomes when the oocytes reached the M-I to M-II stages. The results of the present study indicate that MAD1 is present in mouse oocytes at all stages during the first meiosis and that it participates in spindle checkpoint during meiosis. However, MAD1 could not check misaligned chromosomes during spindle recovery after the spindles were destroyed by drug or cooling, which caused some chromosomes to scatter in the oocytes.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ivanovska I, Lee E, Kwan KM, Fenger DD, Orr-Weaver TL. The Drosophila MOS ortholog is not essential for meiosis. Curr Biol 2004; 14:75-80. [PMID: 14711418 DOI: 10.1016/j.cub.2003.12.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In metazoan oocytes, a metaphase arrest coordinates the completion of meiosis with fertilization. Vertebrate mos maintains the metaphase II arrest of mature oocytes and prevents DNA replication between the meiotic divisions. We identified a Drosophila homolog of mos and showed it to be the mos ortholog by two additional criteria. The dmos transcripts are present in Drosophila oocytes but not embryos, and injection of dmos into Xenopus embryos blocks mitosis and elevates active MAPK levels. In Drosophila, MAPK is activated in oocytes, consistent with a role in meiosis. We generated deletions of dmos and found that, as in vertebrates, dmos is responsible for the majority of MAPK activation. Unexpectedly, the oocytes that do mature complete meiosis normally and produce fertilized embryos that develop, although there is a reduction in female fertility and loss of some oocytes by apoptosis. Therefore, Drosophila contains a mos ortholog that activates a MAPK cascade during oogenesis and is nonessential for meiosis. This could be because there are redundant pathways regulating meiosis, because residual, low levels of active MAPK are sufficient, or because active MAPK is dispensable for meiosis in Drosophila. These results highlight the complexity of meiotic regulation that evolved to ensure accurate control over the reproductive process.
Collapse
Affiliation(s)
- Irena Ivanovska
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
In this review, we describe the pathway for generating meiotic crossovers in Drosophila melanogaster females and how these events ensure the segregation of homologous chromosomes. As appears to be common to meiosis in most organisms, recombination is initiated with a double-strand break (DSB). The interesting differences between organisms appear to be associated with what chromosomal events are required for DSBs to form. In Drosophila females, the synaptonemal complex is required for most DSB formation. The repair of these breaks requires several DSB repair genes, some of which are meiosis-specific, and defects at this stage can have effects downstream on oocyte development. This has been suggested to result from a checkpoint-like signaling between the oocyte nucleus and gene products regulating oogenesis. Crossovers result from genetically controlled modifications to the DSB repair pathway. Finally, segregation of chromosomes joined by a chiasma requires a bipolar spindle. At least two kinesin motor proteins are required for the assembly of this bipolar spindle, and while the meiotic spindle lacks traditional centrosomes, some centrosome components are found at the spindle poles.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8020, USA.
| | | | | |
Collapse
|
36
|
Bickel SE, Orr-Weaver TL, Balicky EM. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr Biol 2002; 12:925-9. [PMID: 12062057 DOI: 10.1016/s0960-9822(02)00846-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Accurate chromosome partitioning during cell division requires that cohesion hold sister chromatids together until kinetochores correctly attach to spindle microtubules. In 1932, Darlington noted that sister-chromatid cohesion distal to the site of exchange also could play a vital role in maintaining the association of chiasmate homologs during meiosis. Cohesion linking a recombinant chromatid with a sister of each homologous pair would resist spindle forces that separate kinetochores of homologous chromosomes (see Figure 1). Although centromeric cohesion must be retained to ensure proper segregation during meiosis II, dissolution of arm cohesion would be required for anaphase I to occur. This hypothesis is supported by recent evidence in yeast and C. elegans that separase activity is essential for the segregation of recombinant homologs during meiosis I. We present evidence that Drosophila oocytes require sister-chromatid cohesion to maintain a physical attachment between recombinant chromosomes. Using FISH to monitor cohesion directly, we confirm that oocytes lacking ORD activity exhibit cohesion defects, consistent with previous genetic results. We also show that ord(null) oocytes that have undergone recombination are unable to arrest at metaphase I, indicating that chiasmata are unstable in the absence of cohesion. Our results support the model that arm cohesion provides a conserved mechanism that ensures physical attachment between recombinant homologs until anaphase I.
Collapse
Affiliation(s)
- Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 6044 Gilman, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
37
|
Giunta KL, Jang JK, Manheim EA, Subramanian G, McKim KS. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics 2002; 160:1489-501. [PMID: 11973304 PMCID: PMC1462067 DOI: 10.1093/genetics/160.4.1489] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The female meiotic spindle lacks a centrosome or microtubule-organizing center in many organisms. During cell division, these spindles are organized by the chromosomes and microtubule-associated proteins. Previous studies in Drosophila melanogaster implicated at least one kinesin motor protein, NCD, in tapering the microtubules into a bipolar spindle. We have identified a second Drosophila kinesin-like protein, SUB, that is required for meiotic spindle function. At meiosis I in males and females, sub mutations affect only the segregation of homologous chromosomes. In female meiosis, sub mutations have a similar phenotype to ncd; even though chromosomes are joined by chiasmata they fail to segregate at meiosis I. Cytological analyses have revealed that sub is required for bipolar spindle formation. In sub mutations, we observed spindles that were unipolar, multipolar, or frayed with no defined poles. On the basis of these phenotypes and the observation that sub mutations genetically interact with ncd, we propose that SUB is one member of a group of microtubule-associated proteins required for bipolar spindle assembly in the absence of the centrosomes. sub is also required for the early embryonic divisions but is otherwise dispensable for most mitotic divisions.
Collapse
Affiliation(s)
- Kelly L Giunta
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
38
|
Bosco G, Orr-Weaver TL. The cell cycle during oogenesis and early embryogenesis in Drosophila. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Chu T, Henrion G, Haegeli V, Strickland S. Cortex, a Drosophila gene required to complete oocyte meiosis, is a member of the Cdc20/fizzy protein family. Genesis 2001; 29:141-52. [PMID: 11252055 DOI: 10.1002/gene.1017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in cortex and grauzone cause abnormal arrest in Drosophila female meiosis. cortex was mapped to a 14 kb interval in 26F-27A by the male recombination mapping method. While these experiments mapped the gene accurately, they also illustrated some complexities of this method. Rescue results showed that a 2.8 kb genomic fragment from this interval was able to fully rescue the cortex phenotype. The 2.8 kb rescuing fragment contains a single open reading frame. The predicted amino acid sequence indicates that cortex encodes a WD-repeat protein and is a distant member of the Cdc20 protein family. Results from a developmental Northern analysis showed that the cortex transcript is expressed at high levels during oogenesis and early embryogenesis. Interestingly, the meiotic metaphase-anaphase II arrest defect in embryos laid by cortex homozygous females resembles the mitotic metaphase-anaphase defects observed in yeast cdc20 mutants. The predicted nature of the Cortex protein, together with the observed meiotic phenotype in cortex mutants, suggest that a similar pathway to the cdc20 dependent APC-mediated proteolysis pathway, which governs the metaphase-anaphase transition in mitosis, is also important in regulating oocyte meiosis.
Collapse
Affiliation(s)
- T Chu
- Department of Pharmacology, Program in Molecular Biology and Biochemistry, University at Stony Brook, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
40
|
Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS. The Drosophila UBC9 homologue lesswright mediates the disjunction of homologues in meiosis I. Genes Cells 2001; 6:215-24. [PMID: 11260265 DOI: 10.1046/j.1365-2443.2001.00413.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In Saccharomyces cerevisiae and other organisms, the UBC9 (ubiquitin-conjugating 9) protein modifies the function of many different target proteins through covalent attachment of the ubiquitin-like protein SMT-3/SUMO. RESULTS Using a second-site suppression screen of a mutation in the nod locus with a variable meiotic phenotype, we have identified mutations in the Drosophila melanogaster UBC9 homologue, encoded by the gene lesswright (lwr). lwr mutations dominantly suppress the nondisjunction and cytological defects of female meiotic mutations that affect spindle formation. The lwr lethal phenotype is rescued by a Drosophila UBC9/lwr transgene. CONCLUSIONS We suggest that LWR mediates the dissociation of heterochromatic regions of homologues at the end of meiotic prophase I. Our model proposes that when there is less LWR protein, homologues remain together longer, allowing for more normal spindle formation in mutant backgrounds and therefore more accurate meiotic chromosome segregation.
Collapse
Affiliation(s)
- S Apionishev
- Department of Biological Sciences, St. John's University, Jamaica, NY 11439, USA
| | | | | | | | | |
Collapse
|
41
|
Riparbelli MG, Callaini G, Glover DM. Failure of pronuclear migration and repeated divisions of polar body nuclei associated with MTOC defects in polo eggs of Drosophila. J Cell Sci 2000; 113 ( Pt 18):3341-50. [PMID: 10954431 DOI: 10.1242/jcs.113.18.3341] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meiotic spindle of Drosophila oocytes is acentriolar but develops an unusual central microtubule organising centre (MTOC) at the end of meiosis I. In polo oocytes, this common central pole for the two tandem spindles of meiosis II was poorly organised and in contrast to wild-type failed to maintain its associated Pav-KLP motor protein. Furthermore, the polar body nuclei failed to arrest at metaphase, and the four products of female meiosis all underwent repeated haploid division cycles on anastral spindles. This was linked to a failure to form the astral array of microtubules with which the polar body chromosomes are normally associated. The MTOC associated with the male pronucleus was also defective in polo eggs, and the sperm aster did not grow. Migration of the female pronucleus did not take place and so a gonomeric spindle could not form. We discuss these findings in relation to the known roles of polo like kinases in regulating the behaviour of MTOCs.
Collapse
Affiliation(s)
- M G Riparbelli
- University of Siena, Department of Evolutionary Biology, Via Mattioli 4, I-53100 Siena, Italy.
| | | | | |
Collapse
|
42
|
Liu H, Jang JK, Graham J, Nycz K, McKim KS. Two genes required for meiotic recombination in Drosophila are expressed from a dicistronic message. Genetics 2000; 154:1735-46. [PMID: 10747066 PMCID: PMC1461038 DOI: 10.1093/genetics/154.4.1735] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have isolated two alleles of a previously unidentified meiotic recombination gene, mei-217. Genetic analysis of these mutants shows that mei-217 is a typical "precondition" gene. The phenotypes of the mutants are meiosis specific. The strongest allele has <10% of the normal level of crossing over, and the residual events are distributed abnormally. We have used double mutant analysis to position mei-217 in the meiotic recombination pathway. In general, mutations causing defects in the initiation of meiotic recombination are epistatic to mutations in mei-41 and spnB. These two mutations, however, are epistatic to mei-217, suggesting that recombination is initiated normally in mei-217 mutants. It is likely that mei-217 mutants are able to make Holliday junction intermediates but are defective in the production of crossovers. These phenotypes are most similar to mutants of the mei-218 gene. This is striking because mei-217 and mei-218 are part of the same transcription unit and are most likely produced from a dicistronic message.
Collapse
Affiliation(s)
- H Liu
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | | | | | | | |
Collapse
|
43
|
Brown AL, Lee CH, Schwarz JK, Mitiku N, Piwnica-Worms H, Chung JH. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Natl Acad Sci U S A 1999; 96:3745-50. [PMID: 10097108 PMCID: PMC22365 DOI: 10.1073/pnas.96.7.3745] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.
Collapse
Affiliation(s)
- A L Brown
- Molecular Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10-7D13, 10 Center Drive, Bethesda, MD, 20892-1654, USA
| | | | | | | | | | | |
Collapse
|
44
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
45
|
Sekelsky JJ, Burtis KC, Hawley RS. Damage control: the pleiotropy of DNA repair genes in Drosophila melanogaster. Genetics 1998; 148:1587-98. [PMID: 9560378 PMCID: PMC1460071 DOI: 10.1093/genetics/148.4.1587] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J J Sekelsky
- Department of Genetics, Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
46
|
Bascom-Slack CA, Ross LO, Dawson DS. Chiasmata, crossovers, and meiotic chromosome segregation. ADVANCES IN GENETICS 1997; 35:253-84. [PMID: 9348650 DOI: 10.1016/s0065-2660(08)60452-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic recombination events are probably critical for the completion of several meiotic processes. In addition, recombination is likely to be involved in the events that lead up to synapsis of homologues in meiotic prophase. Recombination events that ultimately become resolved as exchanges are needed for the formation of chiasmata. Chiasmata maintain the association of paired homologues following loss of the synaptonemal complex and participate in the mechanism that signals that the bivalent has attached to the spindle in a bipolar orientation that will result in meiosis I disjunction.
Collapse
Affiliation(s)
- C A Bascom-Slack
- Department of Microbiology and Molecular Biology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
47
|
Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW, Vande Woude GF. CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci U S A 1997; 94:9165-70. [PMID: 9256453 PMCID: PMC23089 DOI: 10.1073/pnas.94.17.9165] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CENP-E, a kinesin-like protein that is known to associate with kinetochores during all phases of mitotic chromosome movement, is shown here to be a component of meiotic kinetochores as well. CENP-E is detected at kinetochores during metaphase I in both mice and frogs, and, as in mitosis, is relocalized to the midbody during telophase. CENP-E function is essential for meiosis I because injection of an antibody to CENP-E into mouse oocytes in prophase completely prevented progression of those oocytes past metaphase I. Beyond this, CENP-E is modified or masked during the natural, Mos-dependent, cell cycle arrest that occurs at metaphase II, although it is readily detectable at the kinetochores in metaphase II oocytes derived from mos-deficient (MOS-/-) mice that fail to arrest at metaphase II. This must reflect a masking of some CENP-E epitopes, not the absence of CENP-E, in meiosis II because a different polyclonal antibody raised to the tail of CENP-E detects CENP-E at kinetochores of metaphase II-arrested eggs and because CENP-E reappears in telophase of mouse oocytes activated in the absence of protein synthesis.
Collapse
Affiliation(s)
- N S Duesbery
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Williams BC, Dernburg AF, Puro J, Nokkala S, Goldberg ML. The Drosophila kinesin-like protein KLP3A is required for proper behavior of male and female pronuclei at fertilization. Development 1997; 124:2365-76. [PMID: 9199363 DOI: 10.1242/dev.124.12.2365] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster females homozygous for mutations in the gene encoding the kinesin-like protein KLP3A are sterile (Williams et al., 1995). We have investigated the basis of this sterility. The eggs produced by KLP3A mutant mothers are fertilized by sperm, and female meiosis appears to occur normally. However, the large majority of these embryos arrest their development soon thereafter with a characteristic phenotype. The four nuclei produced by female meiosis associate together in a polar body-like structure, while a bipolar spindle is established around the metaphase-arrested male pronucleus. Thus, the major defect caused by depletion of the KLP3A protein is either in specification of the female pronucleus, or in migration of the male and female pronuclei toward each other. We have also found that the KLP3A protein is located throughout the metaphase spindle during meiosis and the early embryonic mitotic divisions, but later accumulates specifically at the midzone of these same spindles during telophase. The protein is also present on two other microtubule structures: the sperm aster; and the radial, monastral array of microtubules established between the two meiosis II spindles. We discuss these results in light of possible functions of the KLP3A protein in pronuclear specification and migration.
Collapse
Affiliation(s)
- B C Williams
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
49
|
Tavosanis G, Llamazares S, Goulielmos G, Gonzalez C. Essential role for gamma-tubulin in the acentriolar female meiotic spindle of Drosophila. EMBO J 1997; 16:1809-19. [PMID: 9155007 PMCID: PMC1169784 DOI: 10.1093/emboj/16.8.1809] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microtubule nucleation in vivo requires gamma-tubulin, a highly conserved component of microtubule-organizing centers. In Drosophila melanogaster there are two gamma-tubulin genes, gammaTUB23C and gammaTUB37C. Here we report the cytological and molecular characterization of the 37C isoform. By Western blotting, this protein can only be detected in ovaries and embryos. Antibodies against this isoform predominantly label the centrosomes in embryos from early cleavage divisions until cycle 15, but fail to reveal any particular localization of gamma-tubulin in the developing egg chambers. The loss of function of this gene results in female sterility and has no effect on viability or male fertility. Early stages of oogenesis are unaffected by mutations in this gene, as judged both by morphological criteria and by localization of reporter genes, but the female meiotic spindle is extremely disrupted. Nuclear proliferation within the eggs laid by mutant females is also impaired. We conclude that the expression of the 37C gamma-tubulin isoform of D. melanogaster is under strict developmental regulation and that the organization of the female meiotic spindle requires gamma-tubulin.
Collapse
Affiliation(s)
- G Tavosanis
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
An emerging view is that the formation of active centromeres is modulated in an epigenetic manner reflecting the association of centromeres with heterochromatin. Support for this comes from studies on fission yeast centromeres, the properties of human neocentromeres and dicentric chromosomes, and analyses of Drosophila minichromosome deletion derivatives. A link has been established between tension across kinetochores and the phosphorylation status of kinetochore components. Vertebrate homologues of yeast MAD2 have recently been isolated and localized to kinetochores, indicating that components of the spindle integrity checkpoint are conserved. The linkage between sister chromatids is only dissolved at anaphase during mitotic and meiotic divisions. Phenotypic and localization data combined with their pattern of rapid degradation at anaphase have implicated several yeast and Drosophila proteins in aspects of sister chromatid cohesion.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|