1
|
Xiao X, Wu T, Gu F, Zhao M. Generation of artificial sequence-specific nucleases via a preassembled inert-template. Chem Sci 2015; 7:2051-2057. [PMID: 29899930 PMCID: PMC5968549 DOI: 10.1039/c5sc04398k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 02/01/2023] Open
Abstract
Sequence specific nucleases are important tools for processing nucleic acids in a predictable way. Herein, we demonstrate a conceptually new approach for generating sequence-specific nucleases via a preassembled inert-template (PAIT). A fairly stable DNase I/inert-DNA complex was prepared with a customized sequence specificity for a target DNA which contains a sequence complementary to the inert-DNA template. The complex could efficiently cleave the targeted sequence within either a long double-stranded DNA or a single-stranded DNA without affecting other unrelated DNA strands. The discrimination factor against single-base mismatch strands within a 14 nt target region was as high as 25.3. The strategy was also successfully applied to RNase A. Our findings may hold great potential for the development of a number of new powerful enzymatic tools.
Collapse
Affiliation(s)
- Xianjin Xiao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Feidan Gu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China .
| |
Collapse
|
2
|
Deuss PJ, den Heeten R, Laan W, Kamer PCJ. Bioinspired Catalyst Design and Artificial Metalloenzymes. Chemistry 2011; 17:4680-98. [DOI: 10.1002/chem.201003646] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Bencini A, Lippolis V. 1,10-Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.04.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Li L, Murthy NN, Telser J, Zakharov LN, Yap GPA, Rheingold AL, Karlin KD, Rokita SE. Targeted Guanine Oxidation by a Dinuclear Copper(II) Complex at Single Stranded/Double Stranded DNA Junctions. Inorg Chem 2006; 45:7144-59. [PMID: 16933915 DOI: 10.1021/ic0605930] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dinuclear copper(II) complex [Cu(II)2(PD'O-)(H2O)2](ClO4)3 (5) with terminal Cu(II)-H(2)O moieties and a Cu...Cu distance of 4.13 A (X-ray structure) has been synthesized and characterized by EPR spectroscopy (ferromagnetic coupling observed) and cyclic voltammetry. Dizinc(II) and mononuclear copper(II) analogues [Zn(II)2(PD'O-)(H2O)2]3+ (7) and [Cu(II)(mPD'OH)(H2O)]2+ (6), respectively, have also been synthesized and structurally characterized. Reacting 5/MPA/O(2) (MPA = 3-mercaptopropionic acid) with DNA leads to a highly specific oxidation of guanine (G) at a junction between single- and double-stranded DNA. Mass spectrometric analysis of the major products indicates a gain of +18 and +34 amu relative to initial DNA strands. The most efficient reaction requires G at the first and second unpaired positions of each strand extending from the junction. Less reaction is observed for analogous targets in which the G cluster is farther from the junction or contains less than four Gs. Consistent with our previous systems, the multinuclear copper center is required for selective reaction; mononuclear complex 6 is not effective. Hydrogen peroxide as a substitute for MPA/O2 also does not lead to activity. Structural analysis of a [Cu(II)2(PD'O-)(G)]3+ complex (8) and dizinc analogue [Zn(II)(2)(PD'O-)(G)](ClO4)3 (9) (G = guanosine) reveals coordination of the G O6 and N7 atoms with the two copper (or zinc) centers and suggests that copper-G coordination likely plays a role in recognition of the DNA target. The Cu2-O2 intermediate responsible for guanine oxidation appears to be different from that responsible for direct-strand scission induced by other multinuclear copper complexes; the likely course of reaction is discussed.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Coordination chemistry mimics of nuclease-activity in the hydrolytic cleavage of phosphodiester bond. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Xu Y, Huang X, Qian X, Yao W. N-Aroyloxylthioxo-naphthalimides as DNA photocleavers of aroyloxyl oxygen radicals: synthesis, evaluation, and substituents’ effect. Bioorg Med Chem 2004; 12:2335-41. [PMID: 15080930 DOI: 10.1016/j.bmc.2004.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 02/05/2004] [Indexed: 11/20/2022]
Abstract
Novel N-Aroyloxylthioxo-naphthalimides as highly efficient 'time-resolved' DNA photocleavers of aroyloxyl radicals type were designed and synthesized. The substituents at the aroyloxyl moiety have an important and unusual influence on the DNA photocleavage, and DNA photodamages of the compounds were unusually not depended on the electronic effects of substituents on the corresponding oxygen-centered radicals. With AM1 semi-empirical quantum calculation, it was found that their photocleaving activities were correlated with the densities of electron clouds on the N-O bonds in the triplet state. N-(m-Dichloro-benzoyloxy)-thioxo-naphthalimide could photodamage DNA effectively at less than the concentration of 2 microM.
Collapse
Affiliation(s)
- Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides & Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
7
|
DNA and RNA Cleavage Mediated by Phenanthroline-Cuprous Oligonucleotides: From Properties to Applications. ARTIFICIAL NUCLEASES 2004. [DOI: 10.1007/978-3-642-18510-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Qian X, Yao W, Chen G, Huang X, Mao P. N-Aroyloxynaphthalimides as novel highly efficient DNA photocleavers: substituent effects. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)01214-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Chemical cleavage is developing into a powerful tool for analysis and characterization of nucleic acids. Phenanthroline-Cu(II) cleavage has been used extensively for studies of DNA for the last two decades, but recently has been applied to structural studies of RNA as well. This approach has been used to study the structure and structural changes occurring in ribosomal RNA within the ribosomes. In this article we discuss the mechanism by which phenanthroline cleaves, the applications possible using this approach, and the results that can be obtained. Protocols for use of phenanthroline are outlined as well.
Collapse
Affiliation(s)
- G W Muth
- Division of Biological Sciences and Department of Chemistry, University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
10
|
Li JJ, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res 2000; 28:E52. [PMID: 10871351 PMCID: PMC102637 DOI: 10.1093/nar/28.11.e52] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Traditional methods to assay enzymatic cleavage of DNA are discontinuous and time consuming. In contrast, recently developed fluorescence methods are continuous and convenient. However, no fluorescence method has been developed for single-stranded DNA digestion. Here we introduce a novel method, based on molecular beacons, to assay single-stranded DNA cleavage by single strand-specific nucleases. A molecular beacon, a hairpin-shaped DNA probe labeled with a fluorophore and a quencher, is used as the substrate and enzymatic cleavage leads to fluorescence enhancement in the molecular beacon. This method permits real time detection of DNA cleavage and makes it easy to characterize the activity of DNA nucleases and to study the steady-state cleavage reaction kinetics. The excellent sensitivity, reproducibility and convenience will enable molecular beacons to be widely useful for the study of single-stranded DNA cleaving reactions.
Collapse
Affiliation(s)
- J J Li
- Department of Chemistry and University of Florida Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
11
|
|
12
|
Chen CH, Landgraf R, Walts AD, Chan L, Schlonk PM, Terwilliger TC, Sigman DS. Scission of DNA at a preselected sequence using a single-strand-specific chemical nuclease. CHEMISTRY & BIOLOGY 1998; 5:283-92. [PMID: 9578634 DOI: 10.1016/s1074-5521(98)90621-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We were interested in developing a protocol for cleaving large DNAs specifically. Previous attempts to develop such methods have failed to work because of high levels of nonspecific background scission. RESULTS R-loop formation was chosen for sequence-specific targeting, a method of hybridization whereby an RNA displaces a DNA strand of identical sequence in 70% formamide using Watson-Crick base-pairing, leading to a three-stranded structure. R-loops are stabilized in aqueous solution by modifying the bases with chemical reagents. The R-loop was cleaved using a novel nuclease prepared from the Thr48-->Cys mutant of the single-strand-specific M-13 gene V protein (GVP), which was alkylated with 5-(iodoacetamido-beta-alanyl)1,10-phenanthroline. The cleavage products of the pGEM plasmid were cloned in to the pCR 2.1-TOPO vector. Adenovirus 2 DNA (35.8 kb; tenfold larger than the pGEM plasmid) was also cleaved quantitatively at a preselected sequence. CONCLUSIONS A new method for cleaving duplex DNA at any preselected sequence was developed. The cleavage method relies on the chemical conversion of M-13 GVP into a nuclease, reflecting GVP's specificity for single-stranded DNA. The GVP chimera is the first example of a semisynthetic secondary structure specific nuclease. The chemical nuclease activity of 1,10-phenanthroline-copper is uniquely suited to this technique because it oxidizes the deoxyribose moiety without generating diffusible intermediates, providing clonable DNA fragments. The protocol could be useful in generating large DNA fragments for mapping the contiguity of probes or defining the exon-intron structure of transcription units.
Collapse
Affiliation(s)
- C H Chen
- Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Davies RR, Distefano MD. A Semisynthetic Metalloenzyme Based on a Protein Cavity That Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates. J Am Chem Soc 1997. [DOI: 10.1021/ja970820k] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ronald R. Davies
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark D. Distefano
- Contribution from the Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Kujau MJ, Siebert A, Wölfl S. Design of leader sequences that improve the efficiency of the enzymatic synthesis of 2'-amino-pyrimidine RNA for in vitro selection. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1997; 35:141-51. [PMID: 9470093 DOI: 10.1016/s0165-022x(97)00039-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The application of nucleic acids obtained by in vitro selection from a large pool of molecules with random sequences in medical diagnosis or therapy requires nucleic acids with enhanced stability in biological fluids. Chemical modifications introduced after selection are likely to alter the structure and the properties of the selected molecules. Therefore, the chemical modifications used must be present throughout the selection. This can be achieved for example by the incorporation of 2'-amino-pyrimidine nucleotides into RNA in the transcription step. Though modified molecules could be transcribed from some generally designed dsDNA templates, the efficiency of transcription and reverse transcription and reverse transcription was very low making this strategy too inefficient. Templates and primers with varying amounts of pyrimidines in the constant flanking region of the RNA molecule were designed and their efficiency in transcription and reverse transcription tested. The obtained 2'-amino-pyrimidine RNA molecules showed enhanced stability in serum and RNAse cocktails. Here we present optimized leader sequences flanking the random core-sequence and reaction conditions that allow the reliable utilization of this modification in in vitro selection.
Collapse
Affiliation(s)
- M J Kujau
- Hans-Knöll-Institut für Naturstoff-Forschung, Abt. Zell- und Molekularbiologie, Jena, Germany
| | | | | |
Collapse
|
15
|
Tsukahara S, Suzuki J, Ushijima K, Takai K, Takaku H. Nonenzymatic sequence-specific cleavage of duplex DNA via triple-helix formation by homopyrimidine phosphorothioate oligonucleotides. Bioorg Med Chem 1996; 4:2219-24. [PMID: 9022985 DOI: 10.1016/s0968-0896(96)00226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phenanthroline was attached covalently to the 5'-terminus of the unmodified and modified (3'-terminal phosphorothioate) oligonucleotide sequences, TTTTTTCTTCTCTTTCC (OP-17 mer) and TTTTTTTCTTCTCTTTCsC (OPRp-17 mer or OPSp-17 mer) via a phosphoramidite bond. Simian virus 40 DNA contains a single target site for these oligonucleotides. In the presence of copper ions, the efficient double-stranded cleavage at 37 degrees C and pH 7.0 was observed by agarose gel electrophoresis. The asymmetric distribution of the cleavage sites on the two strands revealed that the cleavage reaction took place in the minor groove, even though the linker was located in the major groove. Of particular interest are the 3'-terminal phosphorothioate oligonucleotide-phenanthroline derivatives (Rp or Sp), which were found to have cleavage activities of the same order as for the oligonucleotide phenanthroline (OP-17 mer). Furthermore, the OPSp-17 mer was intact after incubation in 10% fetal bovine serum for 24 h, whereas, the OPRp-17 mer was slightly more unstable than the OPSp-17 mer. However, the OP-17 mer was completely degraded. An increased resistance to nucleases has been observed by the introduction of phosphorothioate groups on the 3'-terminus of oligonucleotide-phenanthroline derivatives. This stabilization should help us to design much more efficient chemical recognition enzymes and antisense nucleic acid based anti-viral therapies, which could be used as tools in cellular biology.
Collapse
Affiliation(s)
- S Tsukahara
- Department of Industrial Chemistry, Chiba Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
16
|
Landgraf R, Ramamurthi KS, Sigman DS. Kinetics of spontaneous displacement of RNA from heteroduplexes by DNA. Nucleic Acids Res 1996; 24:3246-52. [PMID: 8774908 PMCID: PMC146063 DOI: 10.1093/nar/24.16.3246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used R-loop formation and direct hybridization techniques to analyze the kinetics by which RNA is displaced from a heteroduplex by DNA of identical sequence. Using random walk simulations we were able to calculate the step times for a single displacement reaction. For RNA with a GC content of 57-60% the data indicate an RNA exchange probability of 50.06%, which is indicative of a modest destabilization of the heteroduplex compared with a DNA duplex in the presence of magnesium. The average step time for the reversible exchange of a single nucleotide is 345.0 (+/- 1.3) ms/step. An acceleration of the displacement reaction was observed in the absence of magnesium. A comparison with step times for elongation shows that RNA displacement would not be rate limiting to transcription elongation under two conditions: (i) if magnesium is eliminated from the newly synthesized heteroduplex; (ii) if displacement is kept in a forward only exchange mode through binding of the emerging RNA. Distamycin, a minor groove binding drug, is very effective as a 'catalyst' of RNA displacement. This effect is likely to be due to preferential binding of distamycin to the minor groove of the DNA duplex as opposed to the heteroduplex. This kinetic assay could therefore serve as a convenient assay for the determination of binding preferences of nucleic acid ligands.
Collapse
Affiliation(s)
- R Landgraf
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles 90024-1570, USA
| | | | | |
Collapse
|
17
|
Landgraf R, Chen CH, Sigman DS. Double stranded scission of DNA directed through sequence-specific R-loop formation. Nucleic Acids Res 1995; 23:3524-30. [PMID: 7567465 PMCID: PMC307233 DOI: 10.1093/nar/23.17.3524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
R-loop formation with short (100 nt) RNAs provides a highly flexible and stringent method to achieve sequence-specific separation of target DNA at any given sequence. After stabilization of R-loops with glyoxal and removal of the RNA through RNase treatment the remaining single-stranded DNA bubble provides a highly favorable substrate for attenuated micrococcal nuclease. We investigated this method for sequence-specific scission of double-stranded DNA and achieved quantitative scission of 3-5 kb plasmids. The applicability to larger size DNA is demonstrated through specific excision of the intervening segment between two R-loops from a P1 plasmid of approximately 120 kb.
Collapse
Affiliation(s)
- R Landgraf
- Department of Biological Chemistry, School of Medicine, University of California-Los Angeles 90024-1570, USA
| | | | | |
Collapse
|
18
|
Landgraf R, Chen CH, Sigman DS. R-loop stability as a function of RNA structure and size. Nucleic Acids Res 1995; 23:3516-23. [PMID: 7567464 PMCID: PMC307232 DOI: 10.1093/nar/23.17.3516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The sequence-specific formation of R-loops can be assayed using RNAs which overlap a HindIII cleavage site in a 3.5 kb plasmid. Chemical modification of the displaced DNA strand has permitted stabilization of these R-loops and allowed a systematic investigation of the dependence of these triple-stranded structures on the chain length and structure of the input RNA. RNAs as short as 50 nt form stable R-loops if 5-allylamine uridines (Uaa-RNA) are used in place of normal uridines; normal RNAs must be 100 nt long to form R-loops quantitatively. Since acetic anhydride decreases the hybridization efficiency of Uaa-RNAs, the positive charge of the RNAs must diminish the electrostatic repulsion of the three negatively charged phosphodiester backbones. The dependence of R-loop stability on the length of RNA can be stimulated with a random walk model, which also applies to strand migration within Holiday junctions. R-loop hybridization provides a versatile method to generate single-stranded DNA in a sequence-selective manner.
Collapse
Affiliation(s)
- R Landgraf
- Department of Biological Chemistry, School of Medicine, University of California-Los Angeles 90024-1570, USA
| | | | | |
Collapse
|
19
|
Lin Y, Qiu Q, Gill SC, Jayasena SD. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res 1994; 22:5229-34. [PMID: 7529404 PMCID: PMC332065 DOI: 10.1093/nar/22.24.5229] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report the use of modified RNA, in which the 2'-OH group of pyrimidines is replaced by a 2'-amino (2'-NH2) group to identify high affinity ligands specific for human neutrophil elastase (HNE) by in vitro selection. Compared to unmodified RNA the 2'-NH2-modified RNA ligands show enhanced stability in human serum and urine. Use of RNase T1 cleavage data in the presence of K+ and Li+ ions suggests that the modified RNA ligands selected for HNE form an intermolecular G-quartet structure.
Collapse
Affiliation(s)
- Y Lin
- NeXagen, Inc., Boulder, CO 80301
| | | | | | | |
Collapse
|