1
|
Peng X, Tang W, Jiang Y, Peng A, Xiao Y, Zhang Y. Recent advances in CDC7 kinase inhibitors: Novel strategies for the treatment of cancers and neurodegenerative diseases. Eur J Med Chem 2025; 289:117491. [PMID: 40090297 DOI: 10.1016/j.ejmech.2025.117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Cell division cycle 7 (CDC7) plays an indispensable regulatory role in various cellular processes, encompassing the initiation of DNA replication and the maintenance of replication checkpoints. However, dysregulation of CDC7 protein levels is closely associated with the development and progression of several human diseases, particularly cancers and neurodegenerative diseases. Therefore, targeting the CDC7 kinase is deemed a potential avenue for disease management. Currently, a few CDC7 inhibitors have progressed to clinical trials. Nevertheless, limited clinical efficacy coupled with severe adverse reactions necessitates the implementation of innovative technologies to enhance therapeutic effectiveness and minimize adverse events. Herein, we highlight the structure, biological functions and significance in disease progression of CDC7, and discuss the preclinical and clinical states of CDC7 inhibitors. Our focus centers on the structure-activity relationship (SAR) and binding modes of CDC7 inhibitors, offering perspectives on novel CDC7-targeting drugs for clinical application.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentao Tang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Jiang
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anjiao Peng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Pitolli C, Marini A, Sette C, Pagliarini V. Physiological and pathological roles of the transcriptional kinases CDK12 and CDK13 in the central nervous system. Cell Death Differ 2025; 32:371-381. [PMID: 39533070 PMCID: PMC11893892 DOI: 10.1038/s41418-024-01413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cyclin-dependent kinases 12 (CDK12) and 13 (CDK13) govern several steps of gene expression, including transcription, RNA processing and translation. The main target of CDK12/13 is the serine 2 residue of the carboxy-terminal domain of RNA polymerase II (RNAPII), thus influencing the directionality, elongation rate and processivity of the enzyme. The CDK12/13-dependent regulation of RNAPII activity influences the expression of selected target genes with important functional roles in the proliferation and viability of all eukaryotic cells. Neuronal cells are particularly affected by the loss of CDK12/13, as result of the high dependency of neuronal genes on RNAPII processivity for their expression. Deregulation of CDK12/13 activity strongly affects brain physiology by influencing the stemness potential and differentiation properties of neuronal precursor cells. Moreover, mounting evidence also suggest the involvement of CDK12/13 in brain tumours. Herein, we discuss the functional role(s) of CDK12 and CDK13 in gene expression regulation and highlight similarities and differences between these highly homologous kinases, with particular attention to their impact on brain physiology and pathology. Lastly, we provide an overview of CDK12/13 inhibitors and of their efficacy in brain tumours and other neoplastic diseases.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Alberto Marini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy.
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy.
| |
Collapse
|
3
|
Giarolla J, Holdaway KA, Nazari M, Aiad L, Sarkar B, Georg GI. Targeting cyclin-dependent kinase 2 (CDK2) interactions with cyclins and Speedy 1 (Spy1) for cancer and male contraception. Future Med Chem 2025; 17:607-627. [PMID: 40034037 PMCID: PMC11901406 DOI: 10.1080/17568919.2025.2463868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The review discusses progress in discovering cyclin-dependent kinase 2 (CDK2) inhibitors for cancer treatment and their potential for male contraception. It summarizes first-, second-, and third-generation CDK inhibitors and selective CDK2 inhibitors currently in clinical trials for cancer. Novel strategies to discover allosteric inhibitors, covalent inhibitors, and degraders are also discussed.
Collapse
Affiliation(s)
- Jeanine Giarolla
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Departamento de Farmacia, School of Pharmaceutical Sciences, University of São Paulo—USP, São Paulo, SP, Brazil
| | - Kelsey A. Holdaway
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Nazari
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Laila Aiad
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Bidisha Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I. Georg
- Medicinal Chemistry, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
4
|
Ali GME, Ewida MA, Elmetwali AM, Ewida HA, George RF, Mahmoud WR, Ismail NSM, Ahmed MS, Georgey HH. Discovery of pyrazole-based analogs as CDK2 inhibitors with apoptotic-inducing activity: design, synthesis and molecular dynamics study. RSC Adv 2024; 14:34537-34555. [PMID: 39479486 PMCID: PMC11520566 DOI: 10.1039/d4ra06500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
The discovery of novel CDK2 inhibitors is crucial for developing targeted anticancer therapies. Thus, in this study, we aimed to design, synthesize, and evaluate a series of novel pyrazole derivatives (2a-g, 7a-d, 8a and b, 9, and 10) for their potential as CDK2/cyclin A2 enzyme inhibitors. The newly synthesized compounds were screened in vitro at 50 μM for CDK2 inhibition, followed by IC50 profiling of the most promising candidates. Compounds 4, 7a, 7d, and 9 exhibited the strongest inhibition, with IC50 values of 3.82, 2.0, 1.47, and 0.96 μM, respectively. To assess their anti-proliferative effects, all target compounds were further screened against a panel of 60 National Cancer Institute (NCI) cell lines representing various carcinoma types. Among them, compound 4 demonstrated exceptional anti-proliferative activity with a mean growth inhibition (GI) of 96.47% across the panel, while compound 9 showed a mean GI of 65.90%. Additionally, compounds 2b and 7c exhibited notable inhibition against MCF7 breast cancer cells, with GI rates of 86.1% and 79.41%, respectively. Compound 4 was selected for further five-dose concentration evaluations, displaying a full-panel GI50 value of 3.81 μM, with a subpanel range of 2.36-9.17 μM. Western blot analysis of compounds 4 and 9 in HCT-116 cell lines confirmed their inhibitory effects on CDK2. Furthermore, compound 4 induced significant cell cycle arrest at the G1 phase and promoted apoptosis. In silico molecular docking studies revealed that compounds 4, 7a, 7d, and 9 adopt a similar binding mode as AT7519 (I) within the CDK2 binding site. Molecular dynamics simulations further validated the stability of these compounds within the catalytic domain of CDK2. ADME/TOPKAT analyses indicated their favorable pharmacokinetic profiles, which were confirmed by their low toxicity in normal cell lines. Based on these findings, it was concluded that the synthesized pyrazole derivatives, particularly compound 4, show potent CDK2 inhibition and significant anticancer activity, with promising drug-like properties and minimal toxicity. This positions them as strong candidates for further development as CDK2-targeting anticancer agents.
Collapse
Affiliation(s)
- Ghada M E Ali
- Central Administration of Drug Control, EDA P.O. Box: 29 Cairo Egypt
| | - Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Amira M Elmetwali
- Central Administration of Drug Control, EDA P.O. Box: 29 Cairo Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
- Pharmaceutical Sciences Department, School of Pharmacy, Texas Tech University Health Science Center Amarillo Texas USA
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Mahmoud S Ahmed
- Pharmaceutical Sciences Department, School of Pharmacy, Texas Tech University Health Science Center Amarillo Texas USA
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University 11786 Cairo Egypt
| |
Collapse
|
5
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
6
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
9
|
Karimbayli J, Pellarin I, Belletti B, Baldassarre G. Insights into the structural and functional activities of forgotten Kinases: PCTAIREs CDKs. Mol Cancer 2024; 23:135. [PMID: 38951876 PMCID: PMC11218289 DOI: 10.1186/s12943-024-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy.
| |
Collapse
|
10
|
Zhang Y, Shan L, Tang W, Ge Y, Li C, Zhang J. Recent Discovery and Development of Inhibitors that Target CDK9 and Their Therapeutic Indications. J Med Chem 2024; 67:5185-5215. [PMID: 38564299 DOI: 10.1021/acs.jmedchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CDK9 is a cyclin-dependent kinase that plays pivotal roles in multiple cellular functions including gene transcription, cell cycle regulation, DNA damage repair, and cellular differentiation. Targeting CDK9 is considered an attractive strategy for antitumor therapy, especially for leukemia and lymphoma. Several potent small molecule inhibitors, exemplified by TG02 (4), have progressed to clinical trials. However, many of them face challenges such as low clinical efficacy and multiple adverse reactions and may necessitate the exploration of novel strategies to lead to success in the clinic. In this perspective, we present a comprehensive overview of the structural characteristics, biological functions, and preclinical status of CDK9 inhibitors. Our focus extends to various types of inhibitors, including pan-inhibitors, selective inhibitors, dual-target inhibitors, degraders, PPI inhibitors, and natural products. The discussion encompasses chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, providing detailed insight into the diverse landscape of CDK9 inhibitors.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Wentao Tang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yating Ge
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - ChengXian Li
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
11
|
Pegram L, Riccardi D, Ahn N. Activation Loop Plasticity and Active Site Coupling in the MAP Kinase, ERK2. J Mol Biol 2023; 435:168309. [PMID: 37806554 PMCID: PMC10676806 DOI: 10.1016/j.jmb.2023.168309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Previous studies of the protein kinase, ERK2, using NMR and hydrogen-exchange measurements have shown changes in dynamics accompanying its activation by phosphorylation. However, knowledge about the conformational motions involved is incomplete. Here, we examined ERK2 using long conventional molecular dynamics (MD) simulations starting from crystal structures of phosphorylated (2P) and unphosphorylated (0P) forms. Individual trajectories were run for (5 to 25) μs, totaling 727 μs. The results show unexpected flexibility of the A-loop, with multiple long-lived (>5 μs) conformational states in both 2P- and 0P-ERK2. Differential contact network and principal component analyses reveal coupling between the A-loop fold and active site dynamics, with evidence for conformational selection in the kinase core of 2P-ERK2 but not 0P-ERK2. Simulations of 2P-ERK2 show A-loop states corresponding to restrained dynamics within the N-lobe, including regions around catalytic residues. One A-loop conformer forms lasting interactions with the L16 segment, leading to reduced RMSF and greater compaction in the active site. By contrast, simulations of 0P-ERK2 reveal excursions of A-loop residues away from the C-lobe, leading to greater active site mobility. Thus, the A-loop in ERK2 switches between distinct conformations that reflect coupling with the active site, possibly via the L16 segment. Crystal packing interactions suggest that lattice contacts with the A-loop may restrain its structural variation in X-ray structures of ERK2. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.
Collapse
Affiliation(s)
- Laurel Pegram
- Department of Biochemistry, University of Colorado, Boulder, CO 80305, USA
| | - Demian Riccardi
- Thermodynamics Research Center, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA
| | - Natalie Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO 80305, USA.
| |
Collapse
|
12
|
Stahl K, Graziadei A, Dau T, Brock O, Rappsilber J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat Biotechnol 2023; 41:1810-1819. [PMID: 36941363 PMCID: PMC10713450 DOI: 10.1038/s41587-023-01704-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
While AlphaFold2 can predict accurate protein structures from the primary sequence, challenges remain for proteins that undergo conformational changes or for which few homologous sequences are known. Here we introduce AlphaLink, a modified version of the AlphaFold2 algorithm that incorporates experimental distance restraint information into its network architecture. By employing sparse experimental contacts as anchor points, AlphaLink improves on the performance of AlphaFold2 in predicting challenging targets. We confirm this experimentally by using the noncanonical amino acid photo-leucine to obtain information on residue-residue contacts inside cells by crosslinking mass spectrometry. The program can predict distinct conformations of proteins on the basis of the distance restraints provided, demonstrating the value of experimental data in driving protein structure prediction. The noise-tolerant framework for integrating data in protein structure prediction presented here opens a path to accurate characterization of protein structures from in-cell data.
Collapse
Affiliation(s)
- Kolja Stahl
- Robotics and Biology Laboratory, Technische Universität Berlin, Berlin, Germany
| | - Andrea Graziadei
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Therese Dau
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
- Fritz Lipmann Institute, Leibniz Institute on Aging, Jena, Germany
| | - Oliver Brock
- Robotics and Biology Laboratory, Technische Universität Berlin, Berlin, Germany.
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany.
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany.
- Si-M/'Der Simulierte Mensch', a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Li T, Tang HC, Tsai KL. Unveiling the noncanonical activation mechanism of CDKs: insights from recent structural studies. Front Mol Biosci 2023; 10:1290631. [PMID: 38028546 PMCID: PMC10666765 DOI: 10.3389/fmolb.2023.1290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The Cyclin-dependent kinases (CDKs) play crucial roles in a range of essential cellular processes. While the classical two-step activation mechanism is generally applicable to cell cycle-related CDKs, both CDK7 and CDK8, involved in transcriptional regulation, adopt distinct mechanisms for kinase activation. In both cases, binding to their respective cyclin partners results in only partial activity, while their full activation requires the presence of an additional subunit. Recent structural studies of these two noncanonical kinases have provided unprecedented insights into their activation mechanisms, enabling us to understand how the third subunit coordinates the T-loop stabilization and enhances kinase activity. In this review, we summarize the structure and function of CDK7 and CDK8 within their respective functional complexes, while also describing their noncanonical activation mechanisms. These insights open new avenues for targeted drug discovery and potential therapeutic interventions in various diseases related to CDK7 and CDK8.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
14
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
15
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
López-Hernández MN, Vázquez-Ramos JM. Maize CDKA2;1a and CDKB1;1 kinases have different requirements for their activation and participate in substrate recognition. FEBS J 2023; 290:2463-2488. [PMID: 36259272 DOI: 10.1111/febs.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
Cyclin-dependent kinases (CDKs), in association with cyclins, control cell cycle progression by phosphorylating a large number of substrates. In animals, activation of CDKs regularly requires both the association with a cyclin and then phosphorylation of a highly conserved threonine residue in the CDK activation loop (the classical mechanism), mediated by a CDK-activating kinase (CAK). In addition to this typical mechanism of activation, some CDKs can also be activated by the association of a cyclin to a monomeric CDK previously phosphorylated by CAK although not all CDKs can be activated by this mechanism. In animals and yeast, cyclin, in addition to being required for CDK activation, provides substrate specificity to the cyclin/CDK complex; however, in plants both the mechanisms of CDKs activation and the relevance of the CDK-associated cyclin for substrate targeting have been poorly studied. In this work, by co-expressing proteins in E. coli, we studied maize CDKA2;1a and CDKB1;1, two of the main types of CDKs that control the cell cycle in plants. These kinases could be activated by the classical mechanism and by the association of CycD2;2a to a phosphorylated intermediate in its activation loop, a previously unproven mechanism for the activation of plant CDKs. Unlike CDKA2;1a, CDKB1;1 did not require CAK for its activation, since it autophosphorylated in its activation loop. Phosphorylation of CDKB1;1 and association of CycD2;2 was not enough for its full activation as association of maize CKS, a scaffolding protein, differentially stimulated substrate phosphorylation. Our results suggest that both CDKs participate in substrate recognition.
Collapse
Affiliation(s)
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
17
|
Pegram L, Riccardi D, Ahn N. Activation loop plasticity and active site coupling in the MAP kinase, ERK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537040. [PMID: 37090603 PMCID: PMC10120733 DOI: 10.1101/2023.04.15.537040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Changes in the dynamics of the protein kinase, ERK2, have been shown to accompany its activation by dual phosphorylation. However, our knowledge about the conformational changes represented by these motions is incomplete. Previous NMR relaxation dispersion studies showed that active, dual-phosphorylated ERK2 undergoes global exchange between at least two energetically similar conformations. These findings, combined with measurements by hydrogen exchange mass spectrometry (HX-MS), suggested that the global conformational exchange involves motions of the activation loop (A-loop) that are coupled to regions surrounding the kinase active site. In order to better understand the contribution of dynamics to the activation of ERK2, we applied long conventional molecular dynamics (MD) simulations starting from crystal structures of active, phosphorylated (2P), and inactive, unphosphorylated (0P) ERK2. Individual trajectories were run for (5 to 25) µ s and totaled 727 µ s. The results showed that the A-loop is unexpectedly flexible in both 2P- and 0P-ERK2, and able to adopt multiple long-lived (>5 µ s) conformational states. Simulations starting from the X-ray structure of 2P-ERK2 (2ERK) revealed A-loop states corresponding to restrained dynamics within the N-lobe, including regions surrounding catalytic residues. One A-loop conformer forms lasting interactions with the C-terminal L16 segment and shows reduced RMSF and greater compaction in the active site. By contrast, simulations starting from the most common X-ray conformation of 0P-ERK2 (5UMO) reveal frequent excursions of A-loop residues away from a C-lobe docking site pocket and towards a new state that shows greater dynamics in the N-lobe and disorganization around the active site. Thus, the A-loop in ERK2 appears to switch between distinct conformational states that reflect allosteric coupling with the active site, likely occurring via the L16 segment. Analyses of crystal packing interactions across many structural datasets suggest that the A-loop observed in X-ray structures of ERK2 may be driven by lattice contacts and less representative of the solution structure. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.
Collapse
|
18
|
Mingione VR, Paung Y, Outhwaite IR, Seeliger MA. Allosteric regulation and inhibition of protein kinases. Biochem Soc Trans 2023; 51:373-385. [PMID: 36794774 PMCID: PMC10089111 DOI: 10.1042/bst20220940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
The human genome encodes more than 500 different protein kinases: signaling enzymes with tightly regulated activity. Enzymatic activity within the conserved kinase domain is influenced by numerous regulatory inputs including the binding of regulatory domains, substrates, and the effect of post-translational modifications such as autophosphorylation. Integration of these diverse inputs occurs via allosteric sites that relate signals via networks of amino acid residues to the active site and ensures controlled phosphorylation of kinase substrates. Here, we review mechanisms of allosteric regulation of protein kinases and recent advances in the field.
Collapse
Affiliation(s)
- Victoria R. Mingione
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - YiTing Paung
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ian R. Outhwaite
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
19
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
20
|
Elekofehinti OO. Computer-aided identification of bioactive compounds from Gongronema latifolium leaf with therapeutic potential against GSK3β, PTB1B and SGLT2. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
21
|
Sharma M, Sharma N, Muddassir M, Rahman QI, Dwivedi UN, Akhtar S. Structure-based pharmacophore modeling, virtual screening and simulation studies for the identification of potent anticancerous phytochemical lead targeting cyclin-dependent kinase 2. J Biomol Struct Dyn 2022; 40:9815-9832. [PMID: 34151738 DOI: 10.1080/07391102.2021.1936178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclin-dependent kinases are of critical importance in directing various cell cycle phases making them as potential tumor targets. Cyclin-dependent kinase 2 (CDK2) in particular plays a significant part during cell cycle events and its imbalance roots out tumorogenic environment. Herein, we built a structure-based pharmacophore model complementing the ATP pocket site of CDK2 with four pharmacophoric features, using a series of structures obtained from cluster analysis during MD simulation assessment. This was followed by its validation and further database screening against Taiwan indigenous plants database (5284 compounds). The screened compounds were subjected toward Lipinski's rule (RO5) and ADMET filter followed by docking analysis and simulation study. In filtering hits (10 compounds) via molecular docking against CDK2, Schinilenol with -8.1 kcal/mol fetched out as a best lead phytoinhibitor in the presence of standard drug (Dinaciclib). Additionally, pharmacophore mapping analysis also indicated relative fit values of dinaciclib and schinilenol as 2.37 and 2.31, respectively. Optimization, flexibility prediction and the stability of CDK2 in complex with the ligands were also ascertained by means of molecular dynamics for 50 ns, which further proposed schinilenol having better binding stability than dinaciclib with RMSD values ranging from 0.31 to 0.34 nm. Reactivity site, biological activity detection and cardiotoxicity assessment also proposed schinilenol as a better phytolead inhibitor than the existing dinaciclib. Abbreviations: CDK2: Cyclin dependent kinase2; ATP: Adenosine triphosphate; MD: Molecular dynamics, RO5: Rule of five; ADMET: Absorption, distribution, metabolism, and excretion; RMSD: Root mean square deviation; DS: Discovery Studio; SOM: Site of metabolism; RBPM: receptor based pharmacophore model; TIP: Schinilenol; hERG: human Ether-à-go-go - Related GeneCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mala Sharma
- Department of Biosciences, Integral University, Lucknow, India
| | - Neha Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, India.,Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
22
|
Ajiboye B, Fagbola T, Folorunso I, Salami A, Aletile O, Akomolede B, Ayemoni F, Akinfemiwa K, Anwo V, Ojeleke M, Oyinloye B. In silico identification of chemical compounds in Spondias mombin targeting aldose reductase and glycogen synthase kinase 3β to abate diabetes mellitus. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Arter C, Trask L, Ward S, Yeoh S, Bayliss R. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. J Biol Chem 2022; 298:102247. [PMID: 35830914 PMCID: PMC9382423 DOI: 10.1016/j.jbc.2022.102247] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are key components in cellular signaling pathways as they carry out the phosphorylation of proteins, primarily on Ser, Thr, and Tyr residues. The catalytic activity of protein kinases is regulated, and they can be thought of as molecular switches that are controlled through protein-protein interactions and post-translational modifications. Protein kinases exhibit diverse structural mechanisms of regulation and have been fascinating subjects for structural biologists from the first crystal structure of a protein kinase over 30 years ago, to recent insights into kinase assemblies enabled by the breakthroughs in cryo-EM. Protein kinases are high-priority targets for drug discovery in oncology and other disease settings, and kinase inhibitors have transformed the outcomes of specific groups of patients. Most kinase inhibitors are ATP competitive, deriving potency by occupying the deep hydrophobic pocket at the heart of the kinase domain. Selectivity of inhibitors depends on exploiting differences between the amino acids that line the ATP site and exploring the surrounding pockets that are present in inactive states of the kinase. More recently, allosteric pockets outside the ATP site are being targeted to achieve high selectivity and to overcome resistance to current therapeutics. Here, we review the key regulatory features of the protein kinase family, describe the different types of kinase inhibitors, and highlight examples where the understanding of kinase regulatory mechanisms has gone hand in hand with the development of inhibitors.
Collapse
Affiliation(s)
- Chris Arter
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Luke Trask
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah Ward
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Engineering and Physical Sciences, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
24
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
25
|
Shekhar M, Smith Z, Seeliger MA, Tiwary P. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Angew Chem Int Ed Engl 2022; 61:e202200983. [PMID: 35486370 DOI: 10.1002/anie.202200983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zachary Smith
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
26
|
Said MA, Abdelrahman MA, Abourehab MAS, Fares M, Eldehna WM. A patent review of anticancer CDK2 inhibitors (2017-present). Expert Opin Ther Pat 2022; 32:885-898. [PMID: 35583393 DOI: 10.1080/13543776.2022.2078193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The success of the CDK4/6 inhibitor Ibrance™ (Palbociclib) as an anticancer agent inspired and directed more efforts towards the discovery of selective cyclin-dependent kinase (CDKs) inhibitors. CDK2 is a member of the CDKs family that plays an important role in regulating the progression of cells into both S- and M-phases of the cell cycle. Studies suggest that overexpression of CDK2 may be implicated in tumor growth in cancer. AREAS COVERED : This review covers the patent literature of CDK2 inhibitors published between 2017 and 2021. We searched the online databases of the European Patent Office, American Chemical Society, and Google patents. EXPERT OPINION Developing selective CDK2 inhibitors is challenging due to the absence of a previously approved selective CDK2 inhibitor. However, ongoing efforts by Incyte Corporation and Pfizer Inc., which are reported herein, may stand out as a new starting point and bring novel information critical for the medicinal chemistry and drug design scientists in the field of CDK2 inhibitors development.
Collapse
Affiliation(s)
- Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohamed A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt.,School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
27
|
Sheetz JB, Lemmon MA, Tsutsui Y. Dynamics of protein kinases and pseudokinases by HDX-MS. Methods Enzymol 2022; 667:303-338. [PMID: 35525545 PMCID: PMC9148214 DOI: 10.1016/bs.mie.2022.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dynamics of the protein kinase fold are deeply intertwined with its structure. The past three decades of kinase biophysical studies revealed key dynamic features of the kinase domain and, more recently, how these features may endow catalytically impaired kinases-or pseudokinases-with signaling properties. Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is proving to be a valuable approach for studies of kinase and pseudokinase domain dynamics. Here, we briefly discuss the methods that have provided insights into protein kinase dynamics, describe how HDX-MS is being used to answer questions in the kinase/pseudokinase field, and provide a detailed protocol for collecting an HDX-MS dataset to study the impacts of small molecule binding to a pseudokinase domain. As more small molecules are discovered that can disrupt pseudokinase conformations, HDX-MS is likely to be a powerful approach for exploring drug-induced changes in pseudokinase dynamics and structure.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States
| | - Mark A Lemmon
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States.
| | - Yuko Tsutsui
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States.
| |
Collapse
|
28
|
Shekhar M, Smith Z, Seeliger M, Tiwary P. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset Of Resistance Mutations in Kinases. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mrinal Shekhar
- Broad Institute Center for Development of Therapeutics UNITED STATES
| | - Zachary Smith
- University of Maryland at College Park Institute for Physical Science and Technology UNITED STATES
| | - Markus Seeliger
- Stony Brook University Department of Pharmacological Sciences UNITED STATES
| | - Pratyush Tiwary
- university of maryland chemistry and biochemistry university of maryland 20740 college park UNITED STATES
| |
Collapse
|
29
|
Yousuf M, Shamsi A, Anjum F, Shafie A, Islam A, Haque QMR, Elasbali AM, Yadav DK, Hassan MI. Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS One 2022; 17:e0263693. [PMID: 35148332 PMCID: PMC8836317 DOI: 10.1371/journal.pone.0263693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0–4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0–11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0–8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon City, South Korea
- * E-mail: (DKY); (MIH)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail: (DKY); (MIH)
| |
Collapse
|
30
|
Valle‑Mendiola A, Bustos‑Rodríguez R, Domínguez‑Melendez V, Zerecero‑Carreón O, Gutiérrez‑Hoya A, Weiss‑Steider B, Soto‑cruz I. Mutations in the helix αC of the catalytic domain from the EGFR affect its activity in cervical cancer cell lines. Oncol Lett 2022; 23:71. [PMID: 35069880 PMCID: PMC8756430 DOI: 10.3892/ol.2022.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
The EGFR is a protein that belongs to the ErbB family of tyrosine kinase receptors. The EGFR is often overexpressed in human carcinomas. Amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain occur in patients with cancer. In cervical cancer, the expression level of the EGFR protein appears to directly associate with human papillomavirus infection. Our previous research demonstrated that in the cervical cancer cell lines, CALO and INBL, the EGFR is non-phosphorylated. The aim of the current study was to analyze the catalytic activity of the isolated EGFR and the presence of mutations in the control region αC. Catalytic activity was assessed by a universal in vitro kinase assay using polyGluTyr as a substrate, and the proteins were visualized by western blotting. For mutation analysis, DNA from CALO and INBL cell lines was isolated, and PCR was used to amplify the exons corresponding to the helix αC in the EGFR. The PCR products were visualized by agarose gel electrophoresis. The bands were isolated using a Zymoclean Gel DNA Recovery kit and directly sequenced. The EGFR, which was isolated and analyzed using the in vitro kinase assay, had catalytic activity. The receptor contained some mutations in the helix αC of the catalytic domain in both cell lines. The observed changes in the amino acid sequence may induce a different spatial arrangement and, therefore, a different conformation, which may confer different activities to this receptor. Thus, it was concluded that non-phosphorylated EGFR has catalytic activity, and it bears some amino acid changes in the helix αC of the catalytic domain in the CALO and INBL cells. These results suggest that the EGFR may function as an activator of other ErbB family receptors in these cervical cancer cells.
Collapse
Affiliation(s)
- Arturo Valle‑Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Ricardo Bustos‑Rodríguez
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | | | - Octavio Zerecero‑Carreón
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Adriana Gutiérrez‑Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Benny Weiss‑Steider
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| | - Isabel Soto‑cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, UMIEZ Campus II, FES Zaragoza, National University of Mexico, Iztapalapa, Mexico City 09230, Mexico
| |
Collapse
|
31
|
de Azevedo WF. Protein-ligand interactions. High-resolution structures of CDK2. Curr Drug Targets 2021; 23:438-440. [PMID: 34906055 DOI: 10.2174/1389450122666211214113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Walter Filgueira de Azevedo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681 Porto Alegre/RS 90619-900. Brazil
| |
Collapse
|
32
|
Li HX, Yang WY, Li LP, Zhou H, Li WY, Ma Y, Wang RL. Molecular dynamics study of CDC25B R492L mutant causing the activity decrease of CDC25B. J Mol Graph Model 2021; 109:108030. [PMID: 34509094 DOI: 10.1016/j.jmgm.2021.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 11/25/2022]
Abstract
Cell division cycle 25B (CDC25B) was responsible for regulating the various stages of cell division in the cell cycle. R492L was one of the common types of CDC25B mutants. Researches showed that compared to CDC25BWT, CDC25BR492L mutant had a ∼100-fold reduction in the rate constant for forming phosphatase intermediate (k2). However, the molecular basis of how the CDC25BR492L mutant influenced the process of binding between CDC25B and CDK2/CyclinA was not yet known. Therefore, the optimizations of three-dimensional structure of the CDC25BWT-CDK2/CyclinA system and the CDC25BR492L-CDK2/CyclinA system were constructed by ZDOCK and RDOCK, and five methods were employed to verify the reasonability of the docking structure. Then the molecular dynamics simulations on the two systems were performed to explore the reason why CDC25BR492L mutant caused the weak interactions between CDC25BR492L and CDK2/CyclinA, respectively. The remote docking site (Arg488-Tyr497) and the second active site (Lys538-Arg544) of CDC25B were observed to have high fluctuations in the CDC25BR492L-CDK2/CyclinA system with post-analysis, where the high fluctuation of these two regions resulted in weak interactions between CD25B and CDK2. In addition, Asp38-Glu42 and Asp206-Asp210 of CDK2 showed the slightly descending fluctuation, and CDK2 revealed an enhanced the self-interaction, which made CDK2 keep a relatively stable state in the CDC25BR492L-CDK2/CyclinA system. Finally, Leu492 of CDC25B was speculated to be the key residue, which had great effects on the binding between CDC25BR492L and CDK2 in the CDC25BR492L-CDK2/CyclinA system. Consequently, overall analyses appeared in this study ultimately offered a helpful understanding of the weak interactions between CDC25BR492L and CDK2.
Collapse
Affiliation(s)
- Hao-Xin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wen-Yu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Li-Peng Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hui Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wei-Ya Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
33
|
Novel N-bridged pyrazole-1-carbothioamides with potential antiproliferative activity: design, synthesis, in vitro and in silico studies. Future Med Chem 2021; 13:1743-1766. [PMID: 34427113 DOI: 10.4155/fmc-2021-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.
Collapse
|
34
|
Abstract
Protein kinases are common elements in multiple signaling networks, influencing numerous downstream processes by directly phosphorylating specific target proteins. During the cell cycle, multiple complexes, each comprising one cyclin and one cyclin-dependent kinase (Cdk), function to regulate the orderly progression of cell cycle events. The mechanisms of cyclin-Cdk mediated control have, in part, been established through biochemical experiments involving the purification of cyclin and Cdk proteins to evaluate the activity of a given complex toward its target substrate proteins.Here I present a detailed procedure to simplify the preparation of cyclin-Cdk complexes by purifying them as a single fusion molecule with a 1:1 molar ratio and a detailed protocol for performing reconstituted kinases assays with the purified complexes.This methodology has allowed us to measure the activity and specificity of all budding yeast cyclin-Cdk1 complexes toward the model substrate histone H1. In addition, it has allowed us to perform kinase assays with a panel of purified human cyclin-Cdk complexes to analyze their specificity toward the retinoblastoma protein (Rb) and map the substrate cyclin-Cdk kinase docking interactions between Rb and human G1-Cdk complex.This chapter is focused on purification of cell cycle cyclin-Cdk complexes, but also affords a generalizable framework that can be adapted to other cyclin-dependent kinases like transcriptional cyclin-Cdks or any other multisubunit enzyme complexes. Taken together, the described workflow is a powerful and flexible biochemical platform for solving long-standing biological questions and has potential value in synthetic biology and in therapeutic discovery.
Collapse
|
35
|
Mirzaei M, Eshghi H, Sabbaghzadeh R. LaCl 3⋅7H 2O as an Effective Catalyst for the Synthesis of α-Aminophosphonates under Solvent-Free Conditions and Docking Simulation of Ligand Bond Complexes of Cyclin-Dependent Kinase 2. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1962926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahdi Mirzaei
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reihaneh Sabbaghzadeh
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
36
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
37
|
Ahmed B, Khan S, Nouroz F, Farooq U, Khalid S. Exploring multi-target inhibitors using in silico approach targeting cell cycle dysregulator-CDK proteins. J Biomol Struct Dyn 2021; 40:8825-8839. [PMID: 33931002 DOI: 10.1080/07391102.2021.1918253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to a family of multifunctional enzymes that control cell cycle modifications, transcription, and cell proliferation. Their dysfunctions result in different diseases like cancer making them an important drug target in oncology and beyond. The present study aims at identifying the selective inhibitors for ATP binding site in CDK proteins (CDK1, CDK2, CDK4, and CDK5) following a multi-target drug designing approach. Significant challenges lie in identifying the selective inhibitor for the ATP binding site as this region is highly conserved in all protein kinases. Molecular docking coupled with molecular dynamics simulation and free energy of binding calculations (MMPBSA/MMGBSA) were used to identify the potent competitive ATP binding site inhibitors. All the four proteins were docked against the library of drug-like compounds and the outcomes of the docking study were further analyzed by Molecular dynamics (total of 6μs) and MMPB/GBSA techniques. Five different inhibitors for structurally distant protein kinases, i.e. CDK1, CDK2, CDK4, and CDK5 are identified with the binding energy (ΔGbind-PB) in the range -18.24 to -28.43Kcal/mol. Mechanistic complexities associated with the binding of the inhibitor are unraveled by carefully analyzing the MD trajectories. It is observed that certain residues (Lys33, Asp127, Asp145, Tyr15, Gly16, Asn144) and regions are critical for the retention of inhibitors in active pocket, and significant conformational changes take place in the active site region as well as its neighbor following the entry of the ligand inside active pocket as inferred by RMSD and RMSF. It is observed that LIG3 and LIG4 are the best possible inhibitors as reflected from their high binding energy, interaction pattern, and their retention inside the active pocket. This study will facilitate the process of multi-target drug designing against CDK proteins and can be used in the development of potential therapeutics against different diseases.
Collapse
Affiliation(s)
- Basharat Ahmed
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Sara Khan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University, Abbottabad, Pakistan
| | - Saba Khalid
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| |
Collapse
|
38
|
Allostery governs Cdk2 activation and differential recognition of CDK inhibitors. Nat Chem Biol 2021; 17:456-464. [PMID: 33526892 PMCID: PMC7990704 DOI: 10.1038/s41589-020-00725-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Cyclin-dependent kinases (CDKs) are the master regulators of the eukaryotic cell cycle. To become activated, CDKs require both regulatory phosphorylation and binding of a cognate cyclin subunit. We studied the activation process of the G1/S kinase Cdk2 in solution and developed a thermodynamic model that describes the allosteric coupling between regulatory phosphorylation, cyclin binding and inhibitor binding. The results explain why monomeric Cdk2 lacks activity despite sampling an active-like state, reveal that regulatory phosphorylation enhances allosteric coupling with the cyclin subunit and show that this coupling underlies differential recognition of Cdk2 and Cdk4 inhibitors. We identify an allosteric hub that has diverged between Cdk2 and Cdk4 and show that this hub controls the strength of allosteric coupling. The altered allosteric wiring of Cdk4 leads to compromised activity toward generic peptide substrates and comparative specialization toward its primary substrate retinoblastoma (RB).
Collapse
|
39
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
40
|
Ruan H, Kiselar J, Zhang W, Li S, Xiong R, Liu Y, Yang S, Lai L. Integrative structural modeling of a multidomain polo-like kinase. Phys Chem Chem Phys 2020; 22:27581-27589. [PMID: 33236741 DOI: 10.1039/d0cp05030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator and coordinator for mitotic signaling that contains two major functional units of a kinase domain (KD) and a polo-box domain (PBD). While individual domain structures of the KD and the PBD are known, how they interact and assemble into a functional complex remains an open question. The structural model from the KD-PBD-Map205PBM heterotrimeric crystal structure of zebrafish PLK1 represents a major step in understanding the KD and the PBD interactions. However, how these two domains interact when connected by a linker in the full length PLK1 needs further investigation. By integrating different sources of structural data from small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational sampling, here we report an overall architecture for PLK1 multidomain assembly between the KD and the PBD. Our model revealed that the KD uses its C-lobe to interact with the PBD via the site near the phosphopeptide binding site in its auto-inhibitory state in solution. Disruption of this auto-inhibition via site-directed mutagenesis at the KD-PBD interface increases its kinase activity, supporting the functional role of KD-PBD interactions predicted for regulating the PLK1 kinase function. Our results indicate that the full length human PLK1 takes dynamic structures with a variety of domain-domain interfaces in solution.
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
42
|
Kasemsuk T, Saehlim N, Arsakhant P, Sittithumcharee G, Okada S, Saeeng R. A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells. Bioorg Med Chem 2020; 29:115886. [PMID: 33290909 DOI: 10.1016/j.bmc.2020.115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/01/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022]
Abstract
A novel series of acanthoic acid analogues containing triazole moiety were synthesized through esterification and CuAAC reaction. Evaluation of their biological activities against four cell lines of cholangiocarcinoma cells showed that 3d exhibited the strongest activity with an IC50 value of 18 µM against KKU-213 cell line, which was 8 fold more potent than acanthoic acid. Interestingly, the triazole ring and nitro group on benzyl ring play very significant role in cytotoxic activity. The computational studies revealed that 3d occupies the binding energy of -12.7 and -10.8 kcal/mol with CDK-2 and EGFR protein kinases, respectively. This result might provide a beginning for the development of acanthoic acid analogues as an anticancer agent.
Collapse
Affiliation(s)
- Teerapich Kasemsuk
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi 22000, Thailand
| | - Natthiya Saehlim
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Patcharee Arsakhant
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Gunya Sittithumcharee
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection & Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand; The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
43
|
Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Rep 2020. [PMID: 32172728 PMCID: PMC7118354 DOI: 10.5483/bmbrep.2020.53.3.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.
Collapse
Affiliation(s)
- Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
44
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
45
|
Iwaloye O, Elekofehinti OO, Oluwarotimi EA, Kikiowo BI, Fadipe TM. Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. In Silico Pharmacol 2020; 8:2. [PMID: 32968615 PMCID: PMC7487069 DOI: 10.1007/s40203-020-00054-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Over activity of Glycogen synthase kinase-3β (GSK-3β), a serine/threonine-protein kinase has been implicated in a number of diseases including stroke, type II diabetes and Alzheimer disease (AD). This study aimed to find novel inhibitors of GSK-3β from phyto-constituents of Melissa officinalis with the aid of computational analysis. Molecular docking, induced-fit docking (IFD), calculation of binding free energy via the MM-GBSA approach and Lipinski's rule of five (RO5) were employed to filter the compounds and determine their druggability. Most importantly, the compounds pIC50 were predicted by machine learning-based model generated by AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best model obtained was Model kpls_desc_38 (R2 = 0.8467 and Q2 = 0.8069), and this external validated model was utilized to predict the bioactivities of the lead compounds. While a number of characterized compounds from Melissa officinalis showed better docking score, binding free energy alongside adherence to RO5 than co-cystallized ligand, only three compounds (salvianolic acid C, ellagic acid and naringenin) showed more satisfactory pIC50. The results obtained in this study can be useful to design potent inhibitors of GSK-3β.
Collapse
Affiliation(s)
- Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria
| | - Emmanuel Ayo Oluwarotimi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria
| | - Babatom iwa Kikiowo
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria
| | - Toyin Mary Fadipe
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State Nigeria
| |
Collapse
|
46
|
Sarkar B, Ullah MA, Islam SS, Rahman MH, Araf Y. Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. J Recept Signal Transduct Res 2020; 41:217-233. [PMID: 32787531 DOI: 10.1080/10799893.2020.1805628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is caused by a variety of pathways, involving numerous types of enzymes. Among them three enzymes i.e. Cyclin-dependent kinase-2 (CDK-2), Human topoisomerase IIα, and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) are three of the most common enzymes that are involved in the cancer development. Although many chemical drugs are already available in the market for cancer treatment, plant sources are known to contain a wide variety of agents that are proved to possess potential anticancer activity. In this experiment, total thirty phytochemicals were analyzed against the mentioned three enzymes using different tools of bioinformatics and in silico biology like molecular docking study, drug likeness property experiment, ADME/T test, PASS prediction, and P450 site of metabolism prediction as well as DFT calculation to determine the three best ligands among them that have the capability to inhibit the mentioned enzymes. From the experiment, Epigallocatechin gallate was found to be the best ligand to inhibit CDK-2, Daidzein showed the best inhibitory activities towards the Human topoisomerase IIα, and Quercetin was predicted to be the best agent against VEGFR-2. They were also predicted to be quite safe and effective agents to treat cancer. However, more in vivo and in vitro analyses are required to finally confirm their safety and efficacy in this regard.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Syed Sajidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
47
|
Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3'-oxime derivatives. Sci Rep 2020; 10:11429. [PMID: 32651416 PMCID: PMC7351726 DOI: 10.1038/s41598-020-68134-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The addition of chalcone and amine components into indirubin-3′-oxime resulted in 15 new derivatives with high yields. Structures of new derivatives were also elucidated through 1D, 2D-NMR and HR-MS(ESI) spectra and X-ray crystallography. All designed compounds were screened for cytotoxic activity against four human cancer cell lines (HepG2, LU-1, SW480 and HL-60) and one human normal kidney cell line (HEK-293). Compound 6f exhibited the most marked cytotoxicity meanwhile cytotoxicity of compounds 6e, 6h and 6l was more profound toward cancer cell lines than toward normal cell. These new derivatives were further analyzed via molecular docking studies on GSK-3β enzyme. Docking analysis shows that most of the derivatives exhibited potential inhibition activity against GSK-3β with characteristic interacting residues in the binding site. The fast pulling of ligand scheme was then employed to refine the binding affinity and mechanism between ligands and GSK-3β enzyme. The computational results are expected to contribute to predicting enzyme target of the trial inhibitors and their possible interaction, from which the design of new cytotoxic agents could be created in the future.
Collapse
|
48
|
Méndez AAE, Mangialavori IC, Cabrera AV, Benavides MP, Vázquez-Ramos JM, Gallego SM. Tyr-nitration in maize CDKA;1 results in lower affinity for ATP binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140479. [PMID: 32599297 DOI: 10.1016/j.bbapap.2020.140479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinase A (CDKA) is a key component for cell cycle progression. The catalytic kinase activity depends on the protein's ability to form an active complex with cyclins and on phosphoregulatory mechanisms. Cell cycle arrest and plant growth impairment under abiotic stress have been linked to different molecular processes triggered by increased levels of reactive oxygen and nitrogen species (ROS and RNS). Among these, posttranslational modifications (PTMs) of key proteins such as CDKA;1 may be of significance. Herein, isolated maize embryo axes were subjected to sodium nitroprusside (SNP) as an inductor of nitrosative conditions to evaluate if CDKA;1 protein was a target for RNS. A high degree of protein nitration was detected; this included the specific Tyr-nitration of CDKA;1. Tyr15 and Tyr19, located at the ATP-binding site, were the selective targets for nitration according to both in silico analysis using the predictive software GPS-YNO2, and in vitro mass spectrometry studies of recombinant nitrated ZmCDKA;1. Spectrofluorometric measurements demonstrated a reduction of ZmCDKA;1-NO2 affinity for ATP. From these results, we conclude that Tyr nitration in CDKA;1 could act as an active modulator of cell cycle progression during redox stress.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Irene C Mangialavori
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Andrea V Cabrera
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María P Benavides
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jorge M Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Susana M Gallego
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Bitencourt-Ferreira G, de Azevedo WF. Molecular Dynamics Simulations with NAMD2. Methods Mol Biol 2020; 2053:109-124. [PMID: 31452102 DOI: 10.1007/978-1-4939-9752-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
X-ray diffraction crystallography is the primary technique to determine the three-dimensional structures of biomolecules. Although a robust method, X-ray crystallography is not able to access the dynamical behavior of macromolecules. To do so, we have to carry out molecular dynamics simulations taking as an initial system the three-dimensional structure obtained from experimental techniques or generated using homology modeling. In this chapter, we describe in detail a tutorial to carry out molecular dynamics simulations using the program NAMD2. We chose as a molecular system to simulate the structure of human cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Abstract
AutoDock is one of the most popular receptor-ligand docking simulation programs. It was first released in the early 1990s and is in continuous development and adapted to specific protein targets. AutoDock has been applied to a wide range of biological systems. It has been used not only for protein-ligand docking simulation but also for the prediction of binding affinity with good correlation with experimental binding affinity for several protein systems. The latest version makes use of a semi-empirical force field to evaluate protein-ligand binding affinity and for selecting the lowest energy pose in docking simulation. AutoDock4.2.6 has an arsenal of four search algorithms to carry out docking simulation including simulated annealing, genetic algorithm, and Lamarckian algorithm. In this chapter, we describe a tutorial about how to perform docking with AutoDock4. We focus our simulations on the protein target cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Val Oliveira Pintro
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|