1
|
Neves RL, Marem A, Carmona B, Arata JG, Cyrillo Ramos MP, Justo GZ, Machado de Melo FH, Oliveira V, Icimoto MY. Expression of thimet oligopeptidase (THOP) modulated by oxidative stress in human multidrug resistant (MDR) leukemia cells. Biochimie 2023; 212:21-30. [PMID: 36997147 DOI: 10.1016/j.biochi.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alyne Marem
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
2
|
Sun Q, Wang H, Liu H. Identification of long non-coding RNA MSTRG.5748.1 and MSTRG.7894.1 from Megalobrama amblycephala and their potential roles in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108949. [PMID: 37453493 DOI: 10.1016/j.fsi.2023.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Megalobrama amblycephala is one of the most economically important freshwater fish in China, and the bacterial septicemia caused by Aeromonas hydrophila is a serious threat to the breeding industry of M. amblycephala. Unfortunately, the characterization of long noncoding RNA (lncRNA) in response to A. hydrophila infection has not been performed in M. amblycephala. To better understand the biological significance of lncRNA in the immune system, we identified two lncRNA, named MSTRG.5748.1 and MSTRG.7894.1, as playing critical roles in the antibacterial response of M. amblycephala. After separating the nucleus and cytoplasm of the hepatocytes from M. amblycephala, cellular localization of MSTRG.5748.1 and MSTRG.7894.1 was performed to predict their functions. The results showed that MSTRG.5748.1 was mainly expressed in the nucleus, suggesting that its functions are mostly to regulate the expression of downstream genes through epistasis and transcription. MSTRG.7894.1 existed in both the nucleus and cytoplasm, which indicated that it has many regulatory modes. qPCR analysis showed that MSTRG.5748.1 and MSTRG.7894.1 were expressed in the immune-related organs of M. amblycephala, and significantly changed in the liver after A. hydrophila infection. RNA-seq analysis revealed that differentially expressed genes (DEGs) were mainly enriched in antigen processing and presentation via MHC class I, RIG-I-like receptor (RLR) signaling pathway, and IFN-related pathway, and a large number of pathway-related genes were significantly regulated after lncRNA overexpression in muscle cell of M. amblycephala. Overexpression of MSTRG.5748.1 and MSTRG.7894.1 significantly inhibited the expression of STING and IFN, significantly upregulated muscle cell viability, and promoted cell proliferation by targeting STING and IFN.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair / Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education / Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Tai W, Feng S, Chai B, Lu S, Zhao G, Chen D, Yu W, Ren L, Shi H, Lu J, Cai Z, Pang M, Tan X, Wang P, Lin J, Sun Q, Peng X, Cheng G. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat Commun 2023; 14:2962. [PMID: 37221158 DOI: 10.1038/s41467-023-38751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mujia Pang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China.
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Jiang J, Taylor DK, Kim EJ, Boyd LF, Ahmad J, Mage MG, Truong HV, Woodward CH, Sgourakis NG, Cresswell P, Margulies DH, Natarajan K. Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation. Nat Commun 2022; 13:5470. [PMID: 36115831 PMCID: PMC9482634 DOI: 10.1038/s41467-022-33153-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Loading of MHC-I molecules with peptide by the catalytic chaperone tapasin in the peptide loading complex plays a critical role in antigen presentation and immune recognition. Mechanistic insight has been hampered by the lack of detailed structural information concerning tapasin-MHC-I. We present here crystal structures of human tapasin complexed with the MHC-I molecule HLA-B*44:05, and with each of two anti-tapasin antibodies. The tapasin-stabilized peptide-receptive state of HLA-B*44:05 is characterized by distortion of the peptide binding groove and destabilization of the β2-microglobulin interaction, leading to release of peptide. Movements of the membrane proximal Ig-like domains of tapasin, HLA-B*44:05, and β2-microglobulin accompany the transition to a peptide-receptive state. Together this ensemble of crystal structures provides insights into a distinct mechanism of tapasin-mediated peptide exchange.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Daniel K Taylor
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Ellen J Kim
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Michael G Mage
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA
| | - Hau V Truong
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire H Woodward
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520-8011, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892-1892, USA.
| |
Collapse
|
5
|
Müller IK, Winter C, Thomas C, Spaapen RM, Trowitzsch S, Tampé R. Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity. Nat Commun 2022; 13:5383. [PMID: 36104323 PMCID: PMC9474470 DOI: 10.1038/s41467-022-32841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Adaptive immunity depends on cell surface presentation of antigenic peptides by major histocompatibility complex class I (MHC I) molecules and on stringent ER quality control in the secretory pathway. The chaperone tapasin in conjunction with the oxidoreductase ERp57 is crucial for MHC I assembly and for shaping the epitope repertoire for high immunogenicity. However, how the tapasin–ERp57 complex engages MHC I clients has not yet been determined at atomic detail. Here, we present the 2.7-Å crystal structure of a tapasin–ERp57 heterodimer in complex with peptide-receptive MHC I. Our study unveils molecular details of client recognition by the multichaperone complex and highlights elements indispensable for peptide proofreading. The structure of this transient ER quality control complex provides the mechanistic basis for the selector function of tapasin and showcases how the numerous MHC I allomorphs are chaperoned during peptide loading and editing. Adaptive immunity depends on cellular chaperone and quality control systems that are decisive for an effective presentation of foreign antigens via MHC I molecules. Here, the authors present the structure of a key chaperone-MHC I complex.
Collapse
|
6
|
Wang C, Wang Z, Yao T, Zhou J, Wang Z. The immune-related role of beta-2-microglobulin in melanoma. Front Oncol 2022; 12:944722. [PMID: 36046045 PMCID: PMC9421255 DOI: 10.3389/fonc.2022.944722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the remarkable success of immunotherapy in the treatment of melanoma, resistance to these agents still affects patient prognosis and response to therapies. Beta-2-microglobulin (β2M), an important subunit of major histocompatibility complex (MHC) class I, has important biological functions and roles in tumor immunity. In recent years, increasing studies have shown that B2M gene deficiency can inhibit MHC class I antigen presentation and lead to cancer immune evasion by affecting β2M expression. Based on this, B2M gene defect and T cell-based immunotherapy can interact to affect the efficacy of melanoma treatment. Taking into account the many recent advances in B2M-related melanoma immunity, here we discuss the immune function of the B2M gene in tumors, its common genetic alteration in melanoma, and its impact on and related improvements in melanoma immunotherapy. Our comprehensive review of β2M biology and its role in tumor immunotherapy contributes to understanding the potential of B2M gene as a promising melanoma therapeutic target.
Collapse
Affiliation(s)
- Chuqiao Wang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ophthalmic Tumor, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeqi Wang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ophthalmic Tumor, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jibo Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ophthalmic Tumor, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jibo Zhou, ; Zhaoyang Wang,
| | - Zhaoyang Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- *Correspondence: Jibo Zhou, ; Zhaoyang Wang,
| |
Collapse
|
7
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
8
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
9
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
10
|
Padariya M, Kalathiya U, Houston DR, Alfaro JA. Recognition Dynamics of Cancer Mutations on the ERp57-Tapasin Interface. Cancers (Basel) 2020; 12:cancers12030737. [PMID: 32244998 PMCID: PMC7140079 DOI: 10.3390/cancers12030737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/16/2023] Open
Abstract
Down regulation of the major histocompatibility class (MHC) I pathway plays an important role in tumour development, and can be achieved by suppression of HLA expression or mutations in the MHC peptide-binding pocket. The peptide-loading complex (PLC) loads peptides on the MHC-I molecule in a dynamic multi-step assembly process. The effects of cancer variants on ERp57 and tapasin components from the MHC-I pathway is less known, and they could have an impact on antigen presentation. Applying computational approaches, we analysed whether the ERp57-tapasin binding might be altered by missense mutations. The variants H408R(ERp57) and P96L, D100A, G183R(tapasin) at the protein–protein interface improved protein stability (ΔΔG) during the initial screen of 14 different variants. The H408R(ERp57) and P96L(tapasin) variants, located close to disulphide bonds, were further studied by molecular dynamics (MD). Identifying intramolecular a-a’ domain interactions, MD revealed open and closed conformations of ERp57 in the presence and absence of tapasin. In wild-type and mutant ERp57-tapasin complexes, residues Val97, Ser98, Tyr100, Trp405, Gly407(ERp57) and Asn94, Cys95, Arg97, Asp100(tapasin) formed common H-bond interactions. Moreover, comparing the H-bond networks for P96L and H408R with each other, suggests that P96L(tapasin) improved ERp57-tapasin binding more than the H408R(ERp57) mutant. During MD, the C-terminus domain (that binds MHC-I) in tapasin from the ERp57(H408R)-tapasin complex moved away from the PLC, whereas in the ERp57-tapasin(P96L) system was oppositely displaced. These findings can have implications for the function of PLC and, ultimately, for the presentation of MHC-I peptide complex on the tumour cell surface.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Correspondence: (M.P.); (J.A.A.)
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Douglas R. Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK;
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
- Correspondence: (M.P.); (J.A.A.)
| |
Collapse
|
11
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
12
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
13
|
Natarajan K, Jiang J, Margulies DH. Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway. Crit Rev Biochem Mol Biol 2019; 54:164-173. [PMID: 31084439 DOI: 10.1080/10409238.2019.1610352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recognition of foreign and dysregulated antigens by the cellular innate and adaptive immune systems is in large part dependent on the cell surface display of peptide/MHC (pMHC) complexes. The formation of such complexes requires the generation of antigenic peptides, proper folding of MHC molecules, loading of peptides onto MHC molecules, glycosylation, and transport to the plasma membrane. This complex series of biosynthetic, biochemical, and cell biological reactions is known as "antigen processing and presentation". Here, we summarize recent work, focused on the structural and functional characterization of the key MHC-I-dedicated chaperones, tapasin, and TAPBPR. The mechanisms reflect the ability of conformationally flexible molecules to adapt to their ligands, and are comparable to similar processes that are exploited in peptide antigen loading in the MHC-II pathway.
Collapse
Affiliation(s)
- Kannan Natarajan
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Jiansheng Jiang
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| | - David H Margulies
- a Molecular Biology Section, Laboratory of Immune System Biology , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
14
|
Molluscum contagiosum virus MC80 sabotages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLoS Pathog 2019; 15:e1007711. [PMID: 31034515 PMCID: PMC6508746 DOI: 10.1371/journal.ppat.1007711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/09/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
The human specific poxvirus molluscum contagiosum virus (MCV) produces skin lesions that can persist with minimal inflammation, suggesting that the virus has developed robust immune evasion strategies. However, investigations into the underlying mechanisms of MCV pathogenesis have been hindered by the lack of a model system to propagate the virus. Herein we demonstrate that MCV-encoded MC80 can disrupt MHC-I antigen presentation in human and mouse cells. MC80 shares moderate sequence-similarity with MHC-I and we find that it associates with components of the peptide-loading complex. Expression of MC80 results in ER-retention of host MHC-I and thereby reduced cell surface presentation. MC80 accomplishes this by engaging tapasin via its luminal domain, targeting it for ubiquitination and ER-associated degradation in a process dependent on the MC80 transmembrane region and cytoplasmic tail. Tapasin degradation is accompanied by a loss of TAP, which limits MHC-I access to cytosolic peptides. Our findings reveal a unique mechanism by which MCV undermines adaptive immune surveillance.
Collapse
|
15
|
Matsusaki M, Kanemura S, Kinoshita M, Lee YH, Inaba K, Okumura M. The Protein Disulfide Isomerase Family: from proteostasis to pathogenesis. Biochim Biophys Acta Gen Subj 2019; 1864:129338. [PMID: 30986509 DOI: 10.1016/j.bbagen.2019.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
In mammalian cells, nearly one-third of proteins are inserted into the endoplasmic reticulum (ER), where they undergo oxidative folding and chaperoning assisted by approximately 20 members of the protein disulfide isomerase family (PDIs). PDIs consist of multiple thioredoxin-like domains and recognize a wide variety of proteins via highly conserved interdomain flexibility. Although PDIs have been studied intensely for almost 50 years, exactly how they maintain protein homeostasis in the ER remains unknown, and is important not only for fundamental biological understanding but also for protein misfolding- and aggregation-related pathophysiology. Herein, we review recent advances in structural biology and biophysical approaches that explore the underlying mechanism by which PDIs fulfil their distinct functions to promote productive protein folding and scavenge misfolded proteins in the ER, the primary factory for efficient production of the secretome.
Collapse
Affiliation(s)
- Motonori Matsusaki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan; School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Young-Ho Lee
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28199, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
16
|
Graab P, Bock C, Weiss K, Hirth A, Koller N, Braner M, Jung J, Loehr F, Tampé R, Behrends C, Abele R. Lysosomal targeting of the ABC transporter TAPL is determined by membrane-localized charged residues. J Biol Chem 2019; 294:7308-7323. [PMID: 30877195 DOI: 10.1074/jbc.ra118.007071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/08/2019] [Indexed: 01/16/2023] Open
Abstract
The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jennifer Jung
- the Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, and
| | - Frank Loehr
- the Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- From the Institute of Biochemistry, Biocenter, and
| | - Christian Behrends
- the Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany, and.,the Munich Cluster for Systems Neurology, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Rupert Abele
- From the Institute of Biochemistry, Biocenter, and
| |
Collapse
|
17
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
18
|
A personal retrospective on the mechanisms of antigen processing. Immunogenetics 2019; 71:141-160. [PMID: 30694344 DOI: 10.1007/s00251-018-01098-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
My intention here is to describe the history of the molecular aspects of the antigen processing field from a personal perspective, beginning with the early identification of the species that we now know as MHC class I and MHC class II molecules, to the recognition that their stable surface expression and detection by T cells depends on peptide association, and to the unraveling of the biochemical and cell biological mechanisms that regulate peptide binding. One goal is to highlight the role that serendipity or, more colloquially, pure blind luck can play in advancing the research enterprise when it is combined with an appropriately receptive mind. This is not intended to be an overarching review, and because of my own work I focus primarily on studies of the human MHC. This means that I neglect the work of many other individuals who made advances in other species, particularly those who produced the many knockout mouse strains used to demonstrate the importance of the antigen processing machinery for initiating immune responses. I apologize in advance to colleagues around the globe whose contributions I deal with inadequately for these reasons, and to those whose foundational work is now firmly established in text books and therefore not cited. So many individuals have worked to advance the field that giving all of them the credit they deserve is almost impossible. I have attempted, while focusing on work from my own laboratory, to point out contemporaneous or sometimes earlier advances made by others. Much of the success of my own laboratory came because we simultaneously worked on both the MHC class I and class II systems and used the findings in one area to inform the other, but mainly it depended on the extraordinary group of students and fellows who have worked on these projects over the years. To those who worked in other areas who are not mentioned here, rest assured that I appreciate your efforts just as much.
Collapse
|
19
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
20
|
Natarajan K, Jiang J, May NA, Mage MG, Boyd LF, McShan AC, Sgourakis NG, Bax A, Margulies DH. The Role of Molecular Flexibility in Antigen Presentation and T Cell Receptor-Mediated Signaling. Front Immunol 2018; 9:1657. [PMID: 30065727 PMCID: PMC6056622 DOI: 10.3389/fimmu.2018.01657] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
Antigen presentation is a cellular process that involves a number of steps, beginning with the production of peptides by proteolysis or aberrant synthesis and the delivery of peptides to cellular compartments where they are loaded on MHC class I (MHC-I) or MHC class II (MHC-II) molecules. The selective loading and editing of high-affinity immunodominant antigens is orchestrated by molecular chaperones: tapasin/TAP-binding protein, related for MHC-I and HLA-DM for MHC-II. Once peptide/MHC (pMHC) complexes are assembled, following various steps of quality control, they are delivered to the cell surface, where they are available for identification by αβ receptors on CD8+ or CD4+ T lymphocytes. In addition, recognition of cell surface peptide/MHC-I complexes by natural killer cell receptors plays a regulatory role in some aspects of the innate immune response. Many of the components of the pathways of antigen processing and presentation and of T cell receptor (TCR)-mediated signaling have been studied extensively by biochemical, genetic, immunological, and structural approaches over the past several decades. Until recently, however, dynamic aspects of the interactions of peptide with MHC, MHC with molecular chaperones, or of pMHC with TCR have been difficult to address experimentally, although computational approaches such as molecular dynamics (MD) simulations have been illuminating. Studies exploiting X-ray crystallography, cryo-electron microscopy, and multidimensional nuclear magnetic resonance (NMR) spectroscopy are beginning to reveal the importance of molecular flexibility as it pertains to peptide loading onto MHC molecules, the interactions between pMHC and TCR, and subsequent TCR-mediated signals. In addition, recent structural and dynamic insights into how molecular chaperones define peptide selection and fine-tune the MHC displayed antigen repertoire are discussed. Here, we offer a review of current knowledge that highlights experimental data obtained by X-ray crystallography and multidimensional NMR methodologies. Collectively, these findings strongly support a multifaceted role for protein plasticity and conformational dynamics throughout the antigen processing and presentation pathway in dictating antigen selection and recognition.
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nathan A May
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael G Mage
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Structure of the human MHC-I peptide-loading complex. Nature 2017; 551:525-528. [PMID: 29107940 DOI: 10.1038/nature24627] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
The peptide-loading complex (PLC) is a transient, multisubunit membrane complex in the endoplasmic reticulum that is essential for establishing a hierarchical immune response. The PLC coordinates peptide translocation into the endoplasmic reticulum with loading and editing of major histocompatibility complex class I (MHC-I) molecules. After final proofreading in the PLC, stable peptide-MHC-I complexes are released to the cell surface to evoke a T-cell response against infected or malignant cells. Sampling of different MHC-I allomorphs requires the precise coordination of seven different subunits in a single macromolecular assembly, including the transporter associated with antigen processing (TAP1 and TAP2, jointly referred to as TAP), the oxidoreductase ERp57, the MHC-I heterodimer, and the chaperones tapasin and calreticulin. The molecular organization of and mechanistic events that take place in the PLC are unknown owing to the heterogeneous composition and intrinsically dynamic nature of the complex. Here, we isolate human PLC from Burkitt's lymphoma cells using an engineered viral inhibitor as bait and determine the structure of native PLC by electron cryo-microscopy. Two endoplasmic reticulum-resident editing modules composed of tapasin, calreticulin, ERp57, and MHC-I are centred around TAP in a pseudo-symmetric orientation. A multivalent chaperone network within and across the editing modules establishes the proofreading function at two lateral binding platforms for MHC-I molecules. The lectin-like domain of calreticulin senses the MHC-I glycan, whereas the P domain reaches over the MHC-I peptide-binding pocket towards ERp57. This arrangement allows tapasin to facilitate peptide editing by clamping MHC-I. The translocation pathway of TAP opens out into a large endoplasmic reticulum lumenal cavity, confined by the membrane entry points of tapasin and MHC-I. Two lateral windows channel the antigenic peptides to MHC-I. Structures of PLC captured at distinct assembly states provide mechanistic insight into the recruitment and release of MHC-I. Our work defines the molecular symbiosis of an ABC transporter and an endoplasmic reticulum chaperone network in MHC-I assembly and provides insight into the onset of the adaptive immune response.
Collapse
|
22
|
Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, Stevanović S, Elliott T, Deane JE, Boyle LH. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. eLife 2017; 6:e23049. [PMID: 28425917 PMCID: PMC5441866 DOI: 10.7554/elife.23049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/14/2017] [Indexed: 11/24/2022] Open
Abstract
Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.
Collapse
Affiliation(s)
- Andreas Neerincx
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens Hermann
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andy van Hateren
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, United Kingdom
| | - Huan Cao
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nico Trautwein
- Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tim Elliott
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, United Kingdom
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58:52-8. [PMID: 27264839 DOI: 10.1016/j.oraloncology.2016.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Experimental as well as clinical studies demonstrate that the immune system plays a major role in controlling generation and progression of tumors. The cancer immunoediting theory supports the notion that tumor cell immunogenicity is dynamically shaped by the immune system, as it eliminates immunogenic tumor cells in the early stage of the disease and then edits their antigenicity. The end result is the generation of a tumor cell population able to escape from immune recognition and elimination by tumor infiltrating lymphocytes. Two major mechanisms, which affect the target cells and the effector phase of the immune response, play a crucial role in the editing process. One is represented by the downregulation of tumor antigen (TA) processing and presentation because of abnormalities in the HLA class I antigen processing machinery (APM). The other one is represented by the anergy of effector immune infiltrates in the tumor microenvironment caused by aberrant inhibitory signals triggered by immune checkpoint receptor (ICR) ligands, such as programmed death ligand-1 (PD-L1). In this review, we will focus on tumor immune escape mechanisms caused by defects in HLA class I APM component expression and/or function in different types of cancer, with emphasis on head and neck cancer (HNC). We will also discuss the immunological implications and clinical relevance of these HLA class I APM abnormalities. Finally, we will describe strategies to counteract defective TA presentation with the expectation that they will enhance tumor recognition and elimination by tumor infiltrating effector T cells.
Collapse
Affiliation(s)
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Transport and quality control of MHC class I molecules in the early secretory pathway. Curr Opin Immunol 2015; 34:83-90. [PMID: 25771183 DOI: 10.1016/j.coi.2015.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.
Collapse
|
25
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
26
|
Ostermeir K, Springer S, Zacharias M. Coupling between side chain interactions and binding pocket flexibility in HLA-B*44:02 molecules investigated by molecular dynamics simulations. Mol Immunol 2015; 63:312-9. [DOI: 10.1016/j.molimm.2014.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
|
27
|
Stoll A, Bergmann S, Mummert C, Mueller-Schmucker SM, Spriewald BM, Harrer EG, Harrer T. Identification of HLA-C restricted, HIV-1-specific CTL epitopes by peptide induced upregulation of HLA-C expression. J Immunol Methods 2015; 418:9-18. [PMID: 25633660 DOI: 10.1016/j.jim.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/17/2022]
Abstract
HIV-1 negative regulatory factor (Nef) can inhibit CTL recognition by downregulation of HLA-A and HLA-B on the cell surface. In contrast, HLA-C is not affected by Nef and a growing number of studies demonstrate an important role of HLA-C for the control of HIV-1. So far, only a limited number of HLA-C restricted CTL epitopes are known. As the mapping of new CTL epitopes is time and labor intensive, we investigated a novel method for the identification of HLA-C restricted CTL epitopes. B-lymphoblastoid cell lines (B-LCLs) and T2-cells were incubated with HIV-1 specific peptides and subsequently stained for HLA-C surface expression using the HLA-C specific antibody DT9. Peptides that led to increased HLA-C surface expression were used for stimulation of PBMC from HIV-1-infected patients. Subsequently, outgrowing cells were tested for peptide recognition in IFN-γ ELISPOT assays and HLA restriction of the recognized peptides was analyzed in ELISPOT assays using HLA-matched B-LCL. We observed that known HLA-C binding peptides increase HLA-C surface expression on T2-cells and on HLA-C*0102 and HLA-C*0702 homozygous B-LCL. Moreover, screening of HIV-1 Nef with overlapping peptides for potential C*0702 restricted epitopes using this method revealed a total of 8 peptides which considerably increased cell surface expression of HLA-C. By epitope mapping and functional analysis of peptide-stimulated T-cell lines we were able to define the peptide YPLTFGWCY as a new C*0702-restricted CTL epitope. These results show that the analysis of peptide induced HLA-C upregulation on B-LCL and T2-cells enables the efficient identification of new HLA-C restricted CTL epitopes.
Collapse
Affiliation(s)
- Andrej Stoll
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Bergmann
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christiane Mummert
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra M Mueller-Schmucker
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd M Spriewald
- Department of Internal Medicine 5, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ellen G Harrer
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Infectious Diseases Unit, Department of Internal Medicine 3, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
28
|
Janßen L, Ramnarayan VR, Aboelmagd M, Iliopoulou M, Hein Z, Majoul I, Fritzsche S, Halenius A, Springer S. The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway. J Cell Sci 2015; 129:219-27. [DOI: 10.1242/jcs.175620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022] Open
Abstract
In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) protein, murine major histocompatibility complex (MHC) class I molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not impair folding or high-affinity peptide binding of class I molecules but binds to them to retain them in the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC), and the cis-Golgi, most likely by retrieval from the cis-Golgi to the ER. We identify a sequence in gp40 that is required for both its own retention in the early secretory pathway and for that of class I molecules.
Collapse
Affiliation(s)
- Linda Janßen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | | | - Mohamed Aboelmagd
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Maria Iliopoulou
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Irina Majoul
- Institute of Biology, University of Lübeck, Germany
| | - Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Anne Halenius
- Institute of Virology, University of Freiburg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
29
|
Leonhardt RM, Abrahimi P, Mitchell SM, Cresswell P. Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization. THE JOURNAL OF IMMUNOLOGY 2014; 192:2480-94. [PMID: 24501197 DOI: 10.4049/jimmunol.1302637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.
Collapse
|
30
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The stability of the MHC (major histocompatibility complex) class I peptide repertoire is optimized during assembly in the endoplasmic reticulum (ER) and depends on the collective function of components of the peptide-loading complex (PLC). The chaperone-like molecule tapasin is the cornerstone of this complex and acts directly on the MHC class I molecule to promote high-affinity peptide loading. Optimal tapasin activity, however, relies on the ability of ERp57 and calreticulin, two proteins involved in general ER glycoprotein folding, to bridge and thereby stabilize its otherwise weak interaction with the MHC class I heavy chain. Here, we describe methods for the recombinant expression of soluble components of the PLC specifically tailored to generate the post-translational modifications required to support subcomplex assembly in vitro. Using recombinant MHC class I molecules bearing monoglucosylated N-linked glycans, calreticulin, and disulfide-linked tapasin/ERp57 heterodimers, this soluble PLC subcomplex can be employed to study the mechanism of peptide loading or the principles governing peptide selection for particular MHC class I alleles.
Collapse
Affiliation(s)
- Pamela A Wearsch
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Cresswell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
32
|
Panter MS, Jain A, Leonhardt RM, Ha T, Cresswell P. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem 2012; 287:31172-84. [PMID: 22829594 PMCID: PMC3438949 DOI: 10.1074/jbc.m112.387704] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Collapse
Affiliation(s)
- Michaela S Panter
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
33
|
Simone LC, Tuli A, Simone PD, Wang X, Solheim JC. Analysis of major histocompatibility complex class I folding: novel insights into intermediate forms. ACTA ACUST UNITED AC 2012; 79:249-62. [PMID: 22329842 DOI: 10.1111/j.1399-0039.2012.01849.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule K(d) are found primarily in association with the 34-1-2(+) form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. To further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with L(d) . Recognition of the open and folded forms of L(d) by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2(+) L(d) molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we show that an L(d) -specific peptide induced folding of the 34-1-2(+) L(d) intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody.
Collapse
Affiliation(s)
- L C Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
34
|
Identification and characterization of equine herpesvirus type 1 pUL56 and its role in virus-induced downregulation of major histocompatibility complex class I. J Virol 2012; 86:3554-63. [PMID: 22278226 DOI: 10.1128/jvi.06994-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules play an important role in host immunity to infection by presenting antigenic peptides to cytotoxic T lymphocytes (CTLs), which recognize and destroy virus-infected cells. Members of the Herpesviridae have developed multiple mechanisms to avoid CTL recognition by virtue of downregulation of MHC-I on the cell surface. We report here on an immunomodulatory protein involved in this process, pUL56, which is encoded by ORF1 of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus. We show that EHV-1 pUL56 is a phosphorylated early protein which is expressed as different forms and predominantly localizes to Golgi membranes. In addition, the transmembrane (TM) domain of the type II membrane protein was shown to be indispensable for correct subcellular localization and a proper function. pUL56 by itself is not functional with respect to interference with MHC-I and likely needs another unidentified viral protein(s) to perform this action. Surprisingly, pUL49.5, an inhibitor of the transporter associated with antigen processing (TAP) and encoded by EHV-1 and related viruses, appeared not to be required for pUL56-induced early MHC-I downmodulation in infected cells. In conclusion, our data identify a new immunomodulatory protein, pUL56, involved in MHC-I downregulation which is unable to perform its function outside the context of viral infection.
Collapse
|
35
|
A DNA vaccine co-expressingTrichinella spiralisMIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice. J Helminthol 2012; 87:24-33. [DOI: 10.1017/s0022149x1100068x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCo-expression ofTrichinella spiralismacrophage migration inhibitory factor (TsMIF) withT. spiraliscystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection againstT. spiralisinfection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) withTsMIF andTsMCD-1 might improve the immune response againstT. spiralisinfection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either aTsMIF–TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub–TsMIF–TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ubor blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant proteinTsMIF–TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1were significantly lower than forTsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1vaccine (23.17%;P< 0.05).
Collapse
|
36
|
Garstka MA, Fritzsche S, Lenart I, Hein Z, Jankevicius G, Boyle LH, Elliott T, Trowsdale J, Antoniou AN, Zacharias M, Springer S. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility. FASEB J 2011; 25:3989-98. [PMID: 21836024 DOI: 10.1096/fj.11-190249] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules present cell internally derived peptides at the plasma membrane for surveillance by cytotoxic T lymphocytes. The surface expression of most class I molecules at least partially depends on the endoplasmic reticulum protein, tapasin, which helps them to bind peptides of the right length and sequence. To determine what makes a class I molecule dependent on support by tapasin, we have conducted in silico molecular dynamics (MD) studies and laboratory experiments to assess the conformational state of tapasin-dependent and -independent class I molecules. We find that in the absence of peptide, the region around the F pocket of the peptide binding groove of the tapasin-dependent molecule HLA-B*44:02 is in a disordered conformational state and that it is converted to a conformationally stable state by tapasin. This novel chaperone function of tapasin has not been described previously. We demonstrate that the disordered state of class I is caused by the presence of two adjacent acidic residues in the bottom of the F pocket of class I, and we suggest that conformational disorder is a common feature of tapasin-dependent class I molecules, making them essentially unable to bind peptides on their own. MD simulations are a useful tool to predict such conformational disorder of class I molecules.
Collapse
|
37
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T. The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. ACTA ACUST UNITED AC 2011; 76:259-75. [PMID: 21050182 DOI: 10.1111/j.1399-0039.2010.01550.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins protect the host from intracellular pathogens and cellular abnormalities through the binding of peptide fragments derived primarily from intracellular proteins. These peptide-MHC complexes are displayed at the cell surface for inspection by cytotoxic T lymphocytes. Here we reveal how MHC I molecules achieve this feat in the face of numerous levels of quality control. Among these is the chaperone tapasin, which governs peptide selection in the endoplasmic reticulum as part of the peptide-loading complex, and we propose key amino acid interactions central to the peptide selection mechanism. We discuss how the aminopeptidase ERAAP fine-tunes the peptide repertoire available to assembling MHC I molecules, before focusing on the journey of MHC I molecules through the secretory pathway, where calreticulin provides additional regulation of MHC I expression. Lastly we discuss how these processes culminate to influence immune responses.
Collapse
Affiliation(s)
- A Van Hateren
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
39
|
Rizvi SM, Del Cid N, Lybarger L, Raghavan M. Distinct functions for the glycans of tapasin and heavy chains in the assembly of MHC class I molecules. THE JOURNAL OF IMMUNOLOGY 2011; 186:2309-20. [PMID: 21263072 DOI: 10.4049/jimmunol.1002959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.
Collapse
Affiliation(s)
- Syed Monem Rizvi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
40
|
Ghanem E, Fritzsche S, Al-Balushi M, Hashem J, Ghuneim L, Thomer L, Kalbacher H, van Endert P, Wiertz E, Tampé R, Springer S. The transporter associated with antigen processing (TAP) is active in a post-ER compartment. J Cell Sci 2010; 123:4271-9. [DOI: 10.1242/jcs.060632] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The translocation of cytosolic peptides into the lumen of the endoplasmic reticulum (ER) is a crucial step in the presentation of intracellular antigen to T cells by major histocompatibility complex (MHC) class I molecules. It is mediated by the transporter associated with antigen processing (TAP) protein, which binds to peptide-receptive MHC class I molecules to form the MHC class I peptide-loading complex (PLC). We investigated whether TAP is present and active in compartments downstream of the ER. By fluorescence microscopy, we found that TAP is localized to the ERGIC (ER-Golgi intermediate compartment) and the Golgi of both fibroblasts and lymphocytes. Using an in vitro vesicle formation assay, we show that COPII vesicles, which carry secretory cargo out of the ER, contain functional TAP that is associated with MHC class I molecules. Together with our previous work on post-ER localization of peptide-receptive class I molecules, our results suggest that loading of peptides onto class I molecules in the context of the peptide-loading complex can occur outside the ER.
Collapse
Affiliation(s)
- Esther Ghanem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Susanne Fritzsche
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Mohammed Al-Balushi
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Jood Hashem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lana Ghuneim
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lena Thomer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hubert Kalbacher
- Medical and Natural Sciences Research Center, University of Tübingen, 72074 Tübingen, Germany
| | - Peter van Endert
- INSERM, U580, 75015 Paris, France, and Université Paris Descartes, Faculté de Médecine René Descartes, 75015 Paris, France
| | - Emmanuel Wiertz
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, and Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Tampé
- Cluster of Excellence ‘Macromolecular Complexes’, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt, Germany
| | - Sebastian Springer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
41
|
Hoppes R, Ekkebus R, Schumacher TN, Ovaa H. Technologies for MHC class I immunoproteomics. J Proteomics 2010; 73:1945-53. [DOI: 10.1016/j.jprot.2010.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/06/2010] [Accepted: 05/16/2010] [Indexed: 11/29/2022]
|
42
|
What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules? Immunol Res 2010; 46:32-44. [PMID: 19830395 DOI: 10.1007/s12026-009-8123-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I-viral peptide complexes or cells displaying MHC class I-mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.
Collapse
|
43
|
Belicha-Villanueva A, Golding M, McEvoy S, Sarvaiya N, Cresswell P, Gollnick SO, Bangia N. Identification of an alternate splice form of tapasin in human melanoma. Hum Immunol 2010; 71:1018-26. [PMID: 20600451 DOI: 10.1016/j.humimm.2010.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Assembly of major histocompatibility complex (MHC) class I molecules with peptide in the endoplasmic reticulum requires the assistance of tapasin. Alternative splicing, which is known to regulate many genes, has been reported for tapasin only in the context of mutations. Here, we report on an alternate splice form of tapasin (tpsnΔEx3) derived from a human melanoma cell line that does not appear to be caused by mutations. Excision of exon 3 results in deletion of amino acids 70 to 156 within the beta barrel region, but the membrane proximal Ig domain, the transmembrane domain, and cytoplasmic tail of tapasin are intact. Introduction of tpsnΔEx3 into a tapasin-deficient cell line does not restore MHC class I expression at the cell surface. Similar to a previously described tapasin mutant (tpsnΔN50), tpsnΔEx3 interacts with TAP. Therefore, we used these altered forms of tapasin to test the importance of MHC class I interaction with TAP. In the presence of wild-type tapasin, transfection of tpsnΔN50, but not tpsnΔEx3, reduced MHC class I expression at the cell surface likely due its ability to compete MHC class I molecules from TAP. Together these findings suggest that tumor cells may contain alternate splice forms of tapasin which may regulate MHC class I antigen presentation.
Collapse
|
44
|
Praveen PVK, Yaneva R, Kalbacher H, Springer S. Tapasin edits peptides on MHC class I molecules by accelerating peptide exchange. Eur J Immunol 2010; 40:214-24. [PMID: 20017190 DOI: 10.1002/eji.200939342] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) protein tapasin is essential for the loading of high-affinity peptides onto MHC class I molecules. It mediates peptide editing, i.e. the binding of peptides of successively higher affinity until class I molecules pass ER quality control and exit to the cell surface. The molecular mechanism of action of tapasin is unknown. We describe here the reconstitution of tapasin-mediated peptide editing on class I molecules in the lumen of microsomal membranes. We find that in a competitive situation between high- and low-affinity peptides, tapasin mediates the binding of the high-affinity peptide to class I by accelerating the dissociation of the peptide from an unstable intermediate of the binding reaction.
Collapse
Affiliation(s)
- P V K Praveen
- Biochemistry and Cell Biology, Jacobs University Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
45
|
Schneeweiss C, Garstka M, Smith J, Hütt MT, Springer S. The mechanism of action of tapasin in the peptide exchange on MHC class I molecules determined from kinetics simulation studies. Mol Immunol 2009; 46:2054-63. [DOI: 10.1016/j.molimm.2009.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/08/2023]
|
46
|
Dugan GE, Hewitt EW. Dependence of the localization and function of the human cytomegalovirus protein US6 on the transporter associated with antigen processing. J Gen Virol 2009; 90:2234-8. [DOI: 10.1099/vir.0.012757-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Procko E, Gaudet R. Antigen processing and presentation: TAPping into ABC transporters. Curr Opin Immunol 2009; 21:84-91. [PMID: 19261456 DOI: 10.1016/j.coi.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/11/2009] [Indexed: 01/08/2023]
Abstract
Adaptive, cell-mediated immunity involves the presentation of antigenic peptides on class I MHC molecules at the cell surface. This requires an ABC transporter associated with antigen processing (TAP) to transport antigenic peptides generated in the cytosol into the endoplasmic reticulum (ER) for loading onto class I MHC. Recent crystal structures of bacterial ABC transporters suggest how the transmembrane domains of TAP form a peptide-binding cavity that acquires peptides from the cytosol, and following ATP-induced conformational changes, the peptide-binding cavity closes to the cytosol and instead opens to the ER lumen for peptide release. Extensive biochemical studies show how transport is driven by ATP binding and hydrolysis on an asymmetric pair of cytosolic nucleotide-binding domains, which are physically coupled to the peptide-binding site to propagate conformational changes through the protein.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
48
|
|
49
|
Biochemical Features of HLA-B27 and Antigen Processing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:210-6. [DOI: 10.1007/978-1-4419-0298-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Merino E, Galocha B, Vázquez MN, López De Castro JA. Disparate folding and stability of the ankylosing spondylitis-associated HLA-B*1403 and B*2705 proteins. ACTA ACUST UNITED AC 2008; 58:3693-704. [DOI: 10.1002/art.24045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|