1
|
Riquelme A, Valdés-Tovar M, Ugalde O, Maya-Ampudia V, Fernández M, Mendoza-Durán L, Rodríguez-Cárdenas L, Benítez-King G. Potential Use of Exfoliated and Cultured Olfactory Neuronal Precursors for In Vivo Alzheimer's Disease Diagnosis: A Pilot Study. Cell Mol Neurobiol 2020; 40:87-98. [PMID: 31414299 DOI: 10.1007/s10571-019-00718-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 11/26/2022]
Abstract
Histopathological hallmarks of dementia have been described postmortem in the brain of patients with Alzheimer's disease (AD). Tau, a microtubule associated protein, is abnormally arranged in neurofibrillary tangles. In living AD patients, total tau (t-tau) and hyperphosphorylated tau (p-tau) levels are increased in the cerebrospinal fluid obtained by lumbar puncture. Herein, we studied the t-tau and p-tau levels as well as the subcellular distribution of t-tau in olfactory neuronal precursors obtained by exfoliation of the nasal cavity of AD patients and control participants. Data showed that t-tau and p-tau levels were increased in cell homogenates from AD patients. Also, t-tau immunoreactivity was arranged in a punctate pattern in olfactory neuronal precursors derived from an AD participant with 5 years of evolution and in the oldest participants, either control subjects or those with Alzheimer's disease. Results support that exfoliated neuronal precursors have tau alterations demonstrated in postmortem brain and in the cerebrospinal fluid. This evidence and because the obtainment of olfactory neuronal precursors is a noninvasive procedure, detection of tau alterations shown here might be useful for an early diagnosis of AD-type dementia.
Collapse
Affiliation(s)
- Agustín Riquelme
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
- Cellular Neuroanatomy Laboratory, Program in Neurobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Oscar Ugalde
- Clínica de Psicogeriatría, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Vanessa Maya-Ampudia
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Monserrat Fernández
- Clínica de Psicogeriatría, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Leticia Mendoza-Durán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Leslye Rodríguez-Cárdenas
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
2
|
The olfactory system in Alzheimer’s disease: Pathology, pathophysiology and pathway for therapy. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0108-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractOlfaction is frequently mentioned as a “neglected sense”, although the olfactory system has several interesting and unique anatomical and physiological features. Olfactory involvement is present in several degenerative disorders, especially in Alzheimer’s disease (AD). The peripheral and central parts of the olfactory system are damaged even in the early stages of AD, manifesting in profound olfactory deficits. Besides the early pathology, the olfactory system may be involved in the pathogenesis of AD by providing a route of entry for pathological agents still unknown. In contrast to this olfactory vector hypothesis, the olfactory system can be used to deliver therapeutic agents in AD, such as nerve growth factor and insulin, by decreasing the side-effects of the therapy or providing a non-invasive method of delivery.
Collapse
|
3
|
Cai Y, Xue ZQ, Zhang XM, Li MB, Wang H, Luo XG, Cai H, Yan XX. An age-related axon terminal pathology around the first olfactory relay that involves amyloidogenic protein overexpression without plaque formation. Neuroscience 2012; 215:160-73. [DOI: 10.1016/j.neuroscience.2012.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 01/08/2023]
|
4
|
Cardozo-Pelaez F, Bridges RJ. Coupling biomarkers and drug action for neurodegenerative disease therapies: does the nose know?: Commentary on Sattler et al.: human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol 2012; 235:508-12. [PMID: 22465461 DOI: 10.1016/j.expneurol.2012.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Fernando Cardozo-Pelaez
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
5
|
Hock C, Golombowski S, Müller-Spahn F, Peschel O, Riederer A, Probst A, Mandelkow E, Unger J. Histological markers in nasal mucosa of patients with Alzheimer's disease. Eur Neurol 1998; 40:31-6. [PMID: 9693230 DOI: 10.1159/000007953] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropathological changes such as dystrophic neurites and the presence of abnormal tau protein in the olfactory system, including primary sensory cells and nerve fibres have previously been demonstrated in nasal mucosa tissue of patients with Alzheimer's disease (AD). These changes were detected in autopsy-derived material from histopathologically confirmed AD cases as well as in biopsy tissue from clinical severely ill AD patients. To investigate the potential usefulness for the early diagnosis of AD, we obtained biopsy tissue from olfactory mucosa from 5 clinically mild to moderate AD patients and stained for the presence of tau or beta-amyloid by immunocytochemistry using a panel of specific antibodies. No positive staining was found in any of the cases. For comparison, post-mortem olfactory tissue from AD patients with severe neuropathological changes (widespread neurofibrillary tangles and amyloid in the brain) was investigated. In these severe cases, tau immunoreactivity was found in fine nerve fibres in the lamina propria and in a few olfactory epithelial cells. These results are consistent with other reports showing that cytoskeletal changes and tau pathology in the olfactory epithelium are not primary (or specific) features of AD and may occur predominantly in late stages of the disease.
Collapse
Affiliation(s)
- C Hock
- Department of Psychiatry, University of Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|