1
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Vado Y, Pereda A, Manero-Azua A, Perez de Nanclares G. Frequency of de novo variants and parental mosaicism in families with inactivating PTH/PTHrP signaling disorder type 2. Front Endocrinol (Lausanne) 2023; 13:1055431. [PMID: 36686455 PMCID: PMC9846528 DOI: 10.3389/fendo.2022.1055431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Objective iPPSD2 (which includes PHP1A and PPHP/POH) is a rare inherited autosomal dominant endocrine disorder caused by inactivating GNAS pathogenic variants. A high percentage of de novo cases has been suggested. In rare cases, parental mosaicism has been described, but its real frequency is unknown. Design A retrospective study including a series of 95 genetically confirmed iPPSD2 probands. Methods The frequency of de novo cases was evaluated and the distribution of the type of variants was compared according to the type of inheritance. The putative involved allele was determined by reverse transcriptase PCR (RT-PCR) or allele specific oligonucleotide RT-PCR (ASO-RT-PCR). The possibility of GNAS mosaicism was studied by next-generation sequencing (NGS) on the corresponding parental DNA. Results In 41 patients the variant was of de novo origin and in 24 the origin could not be established. In both cases 66.67% of variants generated a truncated or absent protein whereas the rest of the variants were missense or in-frame deletion/duplication. Parental origin was studied in 45 of those patients and determined in 35. Curiously, the percentage of de novo variants at the paternal allele was higher than when paternally inherited (31.1% vs 6.67%). NGS detected mosaicism in three independent families: one from paternal DNA (allelic ratio 10%) and two from maternal DNA (allelic ratio 10% and 2%). Conclusion De novo pathogenic variants are frequent in iPPSD2 (around 45%). Parental mosaicism is infrequent (8.11%) but should be analyzed with NGS, taking into account its importance in genetic counselling.
Collapse
Affiliation(s)
| | | | | | | | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|
3
|
A Naturally Occurring Membrane-Anchored Gα s Variant, XLαs, Activates Phospholipase Cβ4. J Biol Chem 2022; 298:102134. [PMID: 35709985 PMCID: PMC9294334 DOI: 10.1016/j.jbc.2022.102134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Extra-large stimulatory Gα (XLαs) is a large variant of G protein αs subunit (Gαs) that uses an alternative promoter and thus differs from Gαs at the first exon. XLαs activation by G protein–coupled receptors mediates cAMP generation, similarly to Gαs; however, Gαs and XLαs have been shown to have distinct cellular and physiological functions. For example, previous work suggests that XLαs can stimulate inositol phosphate production in renal proximal tubules and thereby regulate serum phosphate levels. In this study, we show that XLαs directly and specifically stimulates a specific isoform of phospholipase Cβ (PLCβ), PLCβ4, both in transfected cells and with purified protein components. We demonstrate that neither the ability of XLαs to activate cAMP generation nor the canonical G protein switch II regions are required for PLCβ stimulation. Furthermore, this activation is nucleotide independent but is inhibited by Gβγ, suggesting a mechanism of activation that relies on Gβγ subunit dissociation. Surprisingly, our results indicate that enhanced membrane targeting of XLαs relative to Gαs confers the ability to activate PLCβ4. We also show that PLCβ4 is required for isoproterenol-induced inositol phosphate accumulation in osteocyte-like Ocy454 cells. Taken together, we demonstrate a novel mechanism for activation of phosphoinositide turnover downstream of Gs-coupled receptors that may have a critical role in endocrine physiology.
Collapse
|
4
|
Cui Q, Aksu C, Ay B, Remillard CE, Plagge A, Gardezi M, Dunlap M, Gerstenfeld LC, He Q, Bastepe M. Maternal GNAS Contributes to the Extra-Large G Protein α-Subunit (XLαs) Expression in a Cell Type-Specific Manner. Front Genet 2021; 12:680537. [PMID: 34220953 PMCID: PMC8247768 DOI: 10.3389/fgene.2021.680537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
GNAS encodes the stimulatory G protein alpha-subunit (Gsα) and its large variant XLαs. Studies have suggested that XLαs is expressed exclusively paternally. Thus, XLαs deficiency is considered to be responsible for certain findings in patients with paternal GNAS mutations, such as pseudo-pseudohypoparathyroidism, and the phenotypes associated with maternal uniparental disomy of chromosome 20, which comprises GNAS. However, a study of bone marrow stromal cells (BMSC) suggested that XLαs could be biallelically expressed. Aberrant BMSC differentiation due to constitutively activating GNAS mutations affecting both Gsα and XLαs is the underlying pathology in fibrous dysplasia of bone. To investigate allelic XLαs expression, we employed next-generation sequencing and a polymorphism common to XLαs and Gsα, as well as A/B, another paternally expressed GNAS transcript. In mouse BMSCs, Gsα transcripts were 48.4 ± 0.3% paternal, while A/B was 99.8 ± 0.2% paternal. In contrast, XLαs expression varied among different samples, paternal contribution ranging from 43.0 to 99.9%. Sample-to-sample variation in paternal XLαs expression was also detected in bone (83.7-99.6%) and cerebellum (83.8 to 100%) but not in cultured calvarial osteoblasts (99.1 ± 0.1%). Osteoblastic differentiation of BMSCs shifted the paternal XLαs expression from 83.9 ± 1.5% at baseline to 97.2 ± 1.1%. In two human BMSC samples grown under osteoinductive conditions, XLαs expression was also predominantly monoallelic (91.3 or 99.6%). Thus, the maternal GNAS contributes significantly to XLαs expression in BMSCs but not osteoblasts. Altered XLαs activity may thus occur in certain cell types irrespective of the parental origin of a GNAS defect.
Collapse
Affiliation(s)
- Qiuxia Cui
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cagri Aksu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Birol Ay
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Claire E. Remillard
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Antonius Plagge
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mina Gardezi
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Margaret Dunlap
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- School of Stomatology, Wuhan University, Wuhan, China
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Wang Y, Tian H, Chen X. The Distinct Role of the Extra-Large G Protein ɑ-Subunit XLɑs. Calcif Tissue Int 2020; 107:212-219. [PMID: 32596800 DOI: 10.1007/s00223-020-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
GNAS is one of the most complex gene loci in the human genome and encodes multiple gene products including Gsα, XLαs, NESP55, A/B, and AS transcripts. XLαs, the extra-large G protein ɑ-subunit, is paternally expressed. XLɑs and Gsɑ share the common 2-13 exons with different promoters and first exons. Therefore, XLɑs contains most of the functional domains of Gsα including receptor and effector binding sites. In vitro studies suggest a "Gsɑ"-like function of XLɑs regarding the stimulation of cAMP generation in response to receptor activation with different cellular actions. However, it is unclear whether XLαs has an important physiological function in humans. Pseudopseudohypoparathyroidism (PPHP) and progressive osseous heteroplasia (POH) are caused by paternally inherited mutations of GNAS. Maternal uniparental disomy of chromosome 20 [UPD(20)mat] lacks paternal chromosome 20. Therefore, the phenotypes of these diseases may be secondary to the abnormal functions of XLɑs, at least partly. From the phenotypes of human diseases like PPHP, POH, and UPD(20)mat, as well as some animal models with deficient XLɑs functions, it could be seen that XLɑs is involved in the growth and development of the mammalian fetus, plays a different role in glucose, lipid, and energy metabolism when compared with Gsɑ, and could prevent heterotopic ossification in humans and mice. More in vivo and in vitro studies, especially the development of conditional XLɑs knockout mice, are needed to clarify the physiopathologic roles and related signal pathways of XLɑs.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Haoming Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, China.
| |
Collapse
|
6
|
Chen X, Meng Y, Tang M, Wang Y, Xie Y, Wan S, Tian H, Yu X. A paternally inherited non-sense variant c.424G>T (p.G142*) in the first exon of XLαs in an adult patient with hypophosphatemia and osteopetrosis. Clin Genet 2020; 97:712-722. [PMID: 32157680 DOI: 10.1111/cge.13734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/05/2023]
Abstract
XLαs, the extra-large isoform of alpha-subunit of the stimulatory guanine nucleotide-binding protein (Gsα), is paternally expressed. The significance of XLαs in humans remains largely unknown. Here, we report a patient who presented with increased bone mass, hypophosphatemia, and elevated parathyroid hormone (PTH) levels. His serum calcium was in the lower limit of the normal range. Whole exome sequencing of this subject found a novel non-sense variant c.424G>T (p. G142*) in the first exon of XLαs, which was inherited from his father and transmitted to his daughter. This variant was predicted to exclusively influence the expression of XLαs, while possibly having no significant effects on other gene products of this locus. Ellsworth-Howard test revealed normal renal response to PTH in proband. Human SaOS2 cells transfected with mutant XLαs failed to generate cyclic adenosine monophosphate under PTH stimulation, indicating skeletal resistance to this hormone. This subject showed higher circulating sclerostin, dickkopf1, and osteoprotegerin (OPG) levels, while lower receptor activator of nuclear factor kappa-B ligand/OPG ratio, leading to reduced bone resorption. Our findings indicate that XLαs plays a critical role in bone metabolism and GNAS locus should be considered as a candidate gene for high bone mass.
Collapse
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoming Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Matthias J, Cui Q, Shumate LT, Plagge A, He Q, Bastepe M. Extra-Large Gα Protein (XLαs) Deficiency Causes Severe Adenine-Induced Renal Injury with Massive FGF23 Elevation. Endocrinology 2020; 161:5638044. [PMID: 31758181 PMCID: PMC6986553 DOI: 10.1210/endocr/bqz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor-23 (FGF23) is critical for phosphate and vitamin D homeostasis. Cellular and molecular mechanisms underlying FGF23 production remain poorly defined. The extra-large Gα subunit (XLαs) is a variant of the stimulatory G protein alpha-subunit (Gsα), which mediates the stimulatory action of parathyroid hormone in skeletal FGF23 production. XLαs ablation causes diminished FGF23 levels in early postnatal mice. Herein we found that plasma FGF23 levels were comparable in adult XLαs knockout (XLKO) and wild-type littermates. Upon adenine-rich diet-induced renal injury, a model of chronic kidney disease, both mice showed increased levels of plasma FGF23. Unexpectedly, XLKO mice had markedly higher FGF23 levels than WT mice, with higher blood urea nitrogen and more severe tubulopathy. FGF23 mRNA levels increased substantially in bone and bone marrow in both genotypes; however, the levels in bone were markedly higher than in bone marrow. In XLKO mice, a positive linear correlation was observed between plasma FGF23 and bone, but not bone marrow, FGF23 mRNA levels, suggesting that bone, rather than bone marrow, is an important contributor to severely elevated FGF23 levels in this model. Upon folic acid injection, a model of acute kidney injury, XLKO and WT mice exhibited similar degrees of tubulopathy; however, plasma phosphate and FGF23 elevations were modestly blunted in XLKO males, but not in females, compared to WT counterparts. Our findings suggest that XLαs ablation does not substantially alter FGF23 production in adult mice but increases susceptibility to adenine-induced kidney injury, causing severe FGF23 elevations in plasma and bone.
Collapse
Affiliation(s)
- Julia Matthias
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qiuxia Cui
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lauren T Shumate
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: Murat Bastepe, MD, PhD, 50 Blossom St. Thier 10 Boston, MA 02114, USA. E-mail: and Qing He, PhD 50 Blossom St. Thier 10 Boston, Massachusetts 02114, USA. E-mail:
| |
Collapse
|
8
|
He Q, Shumate LT, Matthias J, Aydin C, Wein MN, Spatz JM, Goetz R, Mohammadi M, Plagge A, Divieti Pajevic P, Bastepe M. A G protein-coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone FGF23. JCI Insight 2019; 4:125007. [PMID: 31484825 PMCID: PMC6777913 DOI: 10.1172/jci.insight.125007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Dysregulated actions of bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) result in several inherited diseases, such as X-linked hypophosphatemia (XLH), and contribute substantially to the mortality in kidney failure. Mechanisms governing FGF23 production are poorly defined. We herein found that ablation of the Gq/11α-like, extralarge Gα subunit (XLαs), a product of GNAS, exhibits FGF23 deficiency and hyperphosphatemia in early postnatal mice (XLKO). FGF23 elevation in response to parathyroid hormone, a stimulator of FGF23 production via cAMP, was intact in XLKO mice, while skeletal levels of protein kinase C isoforms α and δ (PKCα and PKCδ) were diminished. XLαs ablation in osteocyte-like Ocy454 cells suppressed the levels of FGF23 mRNA, inositol 1,4,5-trisphosphate (IP3), and PKCα/PKCδ proteins. PKC activation in vivo via injecting phorbol myristate acetate (PMA) or by constitutively active Gqα-Q209L in osteocytes and osteoblasts promoted FGF23 production. Molecular studies showed that the PKC activation-induced FGF23 elevation was dependent on MAPK signaling. The baseline PKC activity was elevated in bones of Hyp mice, a model of XLH. XLαs ablation significantly, but modestly, reduced serum FGF23 and elevated serum phosphate in Hyp mice. These findings reveal a potentially hitherto-unknown mechanism of FGF23 synthesis involving a G protein-coupled IP3/PKC pathway, which may be targeted to fine-tune FGF23 levels.
Collapse
Affiliation(s)
- Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren T. Shumate
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Matthias
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cumhur Aydin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Endodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan M. Spatz
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Regina Goetz
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paola Divieti Pajevic
- Department of Molecular & Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF. Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evol Biol 2018; 18:51. [PMID: 29642851 PMCID: PMC5896119 DOI: 10.1186/s12862-018-1147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete. RESULTS We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events. CONCLUSIONS Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
Collapse
Affiliation(s)
- A. D. Lokits
- 0000 0001 2264 7217grid.152326.1Neuroscience Program, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Indrischek
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 2230 9752grid.9647.cComputational EvoDevo Group, Bioinformatics Department, Leipzig University, Leipzig, Germany
| | - J. Meiler
- 0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Chemistry Department, Vanderbilt University, Nashville, TN USA
| | - H. E. Hamm
- 0000 0004 1936 9916grid.412807.8Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN USA
| | - P. F. Stadler
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 0674 042Xgrid.5254.6Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark ,0000 0001 2286 1424grid.10420.37Institute for Theoretical Chemistry, University of Vienna, Wien, Austria ,0000 0001 2230 9752grid.9647.cIZBI-Interdisciplinary Center for Bioinformatics and LIFE-Leipzig Research Center for Civilization Diseases and Competence Center for Scalable Data Services and Solutions, University Leipzig, Leipzig, Germany ,grid.419532.8Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany ,0000 0001 1941 1940grid.209665.eSanta Fe Institute, Santa Fe, NM USA
| |
Collapse
|
10
|
Xu R, Hu J, Zhou X, Yang Y. Heterotopic ossification: Mechanistic insights and clinical challenges. Bone 2018; 109:134-142. [PMID: 28855144 DOI: 10.1016/j.bone.2017.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Bone formation is exquisitely controlled both spatially and temporally. Heterotopic ossification (HO) is pathological bone formation in soft tissues that often leads to deleterious outcomes. Inherited genetic forms of HO can be life-threatening and can happen as early as in infancy. However, there is currently no effective treatment for HO as the underlying cellular and molecular mechanisms have not been completely elucidated. Trauma-induced non-genetic forms of HO often occur as a common complication after surgeries or accidents, and the location of HO occurrence largely determines the symptom and outcome. While it has been difficult to determine the complicated factors causing HO, recent advancement in identifying cellular and molecular mechanism causing the genetic forms of HO may provide important insights in all HO. Here in this review, we summarize recent studies on HO to provide a current status of both clinical options of HO treatments and mechanical understanding of HO.
Collapse
Affiliation(s)
- Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China
| | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China.
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.
| |
Collapse
|
11
|
Abstract
GNAS is a complex imprinted gene encoding the alpha-subunit of the stimulatory heterotrimeric G protein (Gsα). GNAS gives rise to additional gene products that exhibit exclusively maternal or paternal expression, such as XLαs, a large variant of Gsα that shows exclusively paternal expression and is partly identical to the latter. Gsα itself is expressed biallelically in most tissues, although the expression occurs predominantly from the maternal allele in a small set of tissues, such as renal proximal tubules. Inactivating mutations in Gsα-coding GNAS exons are responsible for Albright's hereditary osteodystrophy (AHO), which refers to a constellation of physical and developmental disorders including obesity, short stature, brachydactyly, cognitive impairment, and heterotopic ossification. Patients with Gsα mutations can present with AHO in the presence or absence of end-organ resistance to multiple hormones including parathyroid hormone. Maternal Gsα mutations lead to AHO with hormone resistance (i.e. pseudohypoparathyroidism type-Ia), whereas paternal mutations cause AHO alone (i.e. pseudo-pseudohypoparathyroidism). Heterotopic ossification associated with AHO develops through intramembranous bone formation and is limited to dermis and subcutis. In rare cases carrying Gsα mutations, however, ossifications progress into deep connective tissue and skeletal muscle, a disorder termed progressive osseous heteroplasia (POH). Here I briefly review the genetic, clinical, and molecular aspects of these disorders caused by inactivating GNAS mutations, with particular emphasis on heterotopic ossification.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
12
|
Turan S. Current Nomenclature of Pseudohypoparathyroidism: Inactivating Parathyroid Hormone/Parathyroid Hormone-Related Protein Signaling Disorder. J Clin Res Pediatr Endocrinol 2017; 9:58-68. [PMID: 29280743 PMCID: PMC5790322 DOI: 10.4274/jcrpe.2017.s006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification according to molecular pathology. The iPPSD group is designed to be expandable and new classifications will readily fit into it as necessary.
Collapse
Affiliation(s)
- Serap Turan
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
,* Address for Correspondence: Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey Phone: +90 216 625 45 45 E-mail:
| |
Collapse
|
13
|
Large G protein α-subunit XLαs limits clathrin-mediated endocytosis and regulates tissue iron levels in vivo. Proc Natl Acad Sci U S A 2017; 114:E9559-E9568. [PMID: 29078380 DOI: 10.1073/pnas.1712670114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.
Collapse
|
14
|
Tafaj O, Hann S, Ayturk U, Warman ML, Jüppner H. Mice maintain predominantly maternal Gαs expression throughout life in brown fat tissue (BAT), but not other tissues. Bone 2017; 103:177-187. [PMID: 28694163 PMCID: PMC5943706 DOI: 10.1016/j.bone.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 11/20/2022]
Abstract
The murine Gnas (human GNAS) locus gives rise to Gαs and different splice variants thereof. The Gαs promoter is not methylated thus allowing biallelic expression in most tissues. In contrast, the alternative first Gnas/GNAS exons and their promoters undergo parent specific methylation, which limits transcription to the non-methylated allele. Pseudohypoparathyroidism type Ia (PHP1A) or type Ib (PHP1B) are caused by heterozygous maternal GNAS mutations suggesting that little or no Gαs is derived in some tissues from the non-mutated paternal GNAS thereby causing hormonal resistance. Previous data had indicated that Gαs is mainly derived from the maternal Gnas allele in brown adipose tissue (BAT) of newborn mice, yet it is biallelically expressed in adult BAT. This suggested that paternal Gαs expression is regulated by an unknown factor(s) that varies considerably with age. To extend these findings, we now used a strain-specific SNP in Gnas exon 11 (rs13460569) for evaluation of parent-specific Gαs expression through the densitometric quantification of BanII-digested RT-PCR products and digital droplet PCR (ddPCR). At all investigated ages, Gαs transcripts were derived in BAT predominantly from the maternal Gnas allele, while kidney and liver showed largely biallelic Gαs expression. Only low or undetectable levels of other paternally Gnas-derived transcripts were observed, making it unlikely that these are involved in regulating paternal Gαs expression. Our findings suggest that a cis-acting factor could be implicated in reducing paternal Gαs expression in BAT and presumably in proximal renal tubules, thereby causing PTH-resistance if the maternal GNAS/Gnas allele is mutated.
Collapse
Affiliation(s)
- Olta Tafaj
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Hann
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ugur Ayturk
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew L Warman
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Bastepe M, Turan S, He Q. Heterotrimeric G proteins in the control of parathyroid hormone actions. J Mol Endocrinol 2017; 58:R203-R224. [PMID: 28363951 PMCID: PMC5650080 DOI: 10.1530/jme-16-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH) is a key regulator of skeletal physiology and calcium and phosphate homeostasis. It acts on bone and kidney to stimulate bone turnover, increase the circulating levels of 1,25 dihydroxyvitamin D and calcium and inhibit the reabsorption of phosphate from the glomerular filtrate. Dysregulated PTH actions contribute to or are the cause of several endocrine disorders. This calciotropic hormone exerts its actions via binding to the PTH/PTH-related peptide receptor (PTH1R), which couples to multiple heterotrimeric G proteins, including Gs and Gq/11 Genetic mutations affecting the activity or expression of the alpha-subunit of Gs, encoded by the GNAS complex locus, are responsible for several human diseases for which the clinical findings result, at least partly, from aberrant PTH signaling. Here, we review the bone and renal actions of PTH with respect to the different signaling pathways downstream of these G proteins, as well as the disorders caused by GNAS mutations.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Serap Turan
- Department of Pediatric EndocrinologyMarmara University School of Medicine, Istanbul, Turkey
| | - Qing He
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Elli FM, Boldrin V, Pirelli A, Spada A, Mantovani G. The Complex GNAS Imprinted Locus and Mesenchymal Stem Cells Differentiation. Horm Metab Res 2017; 49:250-258. [PMID: 27756094 DOI: 10.1055/s-0042-115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All tissues and organs derive from stem cells, which are undifferentiated cells able to differentiate into specialized cells and self-renewal. In mammals, there are embryonic stem cells that generate germ layers, and adult stem cells, which act as a repair system for the body and maintain the normal turnover of regenerative organs. Mesenchymal stem cells (MSCs) are nonhematopoietic adult multipotent cells, which reside in virtually all postnatal organs and tissues, and, under appropriate in vitro conditions, are capable to differentiate into osteogenic, adipogenic, chondrogenic, myogenic, and neurogenic lineages. Their commitment and differentiation depend on several interacting signaling pathways and transcription factors. Most GNAS-based disorders have the common feature of episodic de novo formation of islands of extraskeletal, qualitatively normal, bone in skin and subcutaneous fat. The tissue distribution of these lesions suggests that pathogenesis involves abnormal differentiation of MSCs and/or more committed precursor cells that are present in subcutaneous tissues. Data coming from transgenic mice support the concept that GNAS is a key factor in the regulation of lineage switching between osteoblast and adipocyte fates, and that its role may be to prevent bone formation in tissues where bone should not form. Despite the growing knowledge about the process of heterotopic ossification in rare genetic disorders, the pathophysiological mechanisms by which alterations of cAMP signaling lead to ectopic bone formation in the context of mesenchymal tissues is not fully understood.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Boldrin
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
He Q, Zhu Y, Corbin BA, Plagge A, Bastepe M. The G protein α subunit variant XLαs promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo. Sci Signal 2015; 8:ra84. [PMID: 26307011 DOI: 10.1126/scisignal.aaa9953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
GNAS, which encodes the stimulatory G protein (heterotrimeric guanine nucleotide-binding protein) α subunit (Gαs), also encodes a large variant of Gαs termed extra-large α subunit (XLαs), and alterations in XLαs abundance or activity are implicated in various human disorders. Although XLαs, like Gαs, stimulates generation of the second messenger cyclic adenosine monophosphate (cAMP), evidence suggests that XLαs and Gαs have opposing effects in vivo. We investigated the role of XLαs in mediating signaling by parathyroid hormone (PTH), which activates a G protein-coupled receptor (GPCR) that stimulates both Gαs and Gαq/11 in renal proximal tubules to maintain phosphate and vitamin D homeostasis. At postnatal day 2 (P2), XLαs knockout (XLKO) mice exhibited hyperphosphatemia, hypocalcemia, and increased serum concentrations of PTH and 1,25-dihydroxyvitamin D. The ability of PTH to reduce serum phosphate concentrations was impaired, and the abundance of the sodium phosphate cotransporter Npt2a in renal brush border membranes was reduced in XLKO mice, whereas PTH-induced cAMP excretion in the urine was modestly increased. Basal and PTH-stimulated production of inositol 1,4,5-trisphosphate (IP3), which is the second messenger produced by Gαq/11 signaling, was repressed in renal proximal tubules from XLKO mice. Crossing of XLKO mice with mice overexpressing XLαs specifically in renal proximal tubules rescued the phenotype of the XLKO mice. Overexpression of XLαs in HEK 293 cells enhanced IP3 generation in unstimulated cells and in cells stimulated with PTH or thrombin, which acts through a Gq/11-coupled receptor. Together, our findings suggest that XLαs enhances Gq/11 signaling to mediate the renal actions of PTH during early postnatal development.
Collapse
Affiliation(s)
- Qing He
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Zhu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Braden A Corbin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine University of Liverpool, Liverpool L69 3BX, UK
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Abstract
The GNAS complex locus encodes the alpha-subunit of the stimulatory G protein (Gsα), a ubiquitous signaling protein mediating the actions of many hormones, neurotransmitters, and paracrine/autocrine factors via generation of the second messenger cAMP. GNAS gives rise to other gene products, most of which exhibit exclusively monoallelic expression. In contrast, Gsα is expressed biallelically in most tissues; however, paternal Gsα expression is silenced in a small number of tissues through as-yet-poorly understood mechanisms that involve differential methylation within GNAS. Gsα-coding GNAS mutations that lead to diminished Gsα expression and/or function result in Albright's hereditary osteodystrophy (AHO) with or without hormone resistance, i.e., pseudohypoparathyroidism type-Ia/Ic and pseudo-pseudohypoparathyroidism, respectively. Microdeletions that alter GNAS methylation and, thereby, diminish Gsα expression in tissues in which the paternal Gsα allele is normally silenced also cause hormone resistance, which occurs typically in the absence of AHO, a disorder termed pseudohypoparathyroidism type-Ib. Mutations of GNAS that cause constitutive Gsα signaling are found in patients with McCune-Albright syndrome, fibrous dysplasia of bone, and different endocrine and non-endocrine tumors. Clinical features of these diseases depend significantly on the parental allelic origin of the GNAS mutation, reflecting the tissue-specific paternal Gsα silencing. In this article, we review the pathogenesis and the phenotypes of these human diseases.
Collapse
Affiliation(s)
- Serap Turan
- Pediatric Endocrinology, Marmara University School of Medicine Hospital, Istanbul, Turkey;
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
19
|
Inta IM, Choukair D, Bender S, Kneppo C, Knauer-Fischer S, Meyenburg K, Ivandic B, Pfister SM, Bettendorf M. Guanine nucleotide-binding protein α subunit hypofunction in children with short stature and disproportionate shortening of the 4th and 5th metacarpals. Horm Res Paediatr 2014; 81:196-203. [PMID: 24481334 DOI: 10.1159/000356928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND GNAS encodes the α subunit of the stimulatory G protein (Gsα). Maternal inherited Gsα mutations cause pseudohypoparathyroidism type Ia (PHP-Ia), associated with shortening of the 4th and 5th metacarpals. AIMS Here we investigated the Gsα pathway in short patients with distinct shortening of the 4th and 5th metacarpals. METHODS In 571 children with short stature and 4 patients with PHP-Ia metacarpal bone lengths were measured. In identified patients we analysed the Gsα protein function in platelets, performed GNAS sequencing, and epigenetic analysis of four significant differentially methylated regions. RESULTS In 51 patients (8.9%) shortening of the 4th and 5th metacarpals was more pronounced than their height deficit. No GNAS coding mutations were identified in 20 analysed patients, except in 2 PHP-Ia patients. Gsα activity was reduced in all PHP-Ia patients and in 25% of the analysed patients. No significant methylation changes were identified. CONCLUSIONS Our findings suggest that patients with short stature and distinct metacarpal bone shortening could be part of the wide variety of PHP/PPHP, therefore it was worthwhile analysing the Gsα protein function and GNAS gene in these patients in order to further elucidate the phenotype and genotype of Gsα dysfunction.
Collapse
Affiliation(s)
- Ioana Monica Inta
- Division of Paediatric Endocrinology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genomics Hum Genet 2014; 15:93-126. [DOI: 10.1146/annurev-genom-091212-153441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
| | | |
Collapse
|
21
|
Wertheimer E, Krapf D, de la Vega-Beltran JL, Sánchez-Cárdenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, Mager J, Darszon A, Visconti PE. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 2013; 288:35307-20. [PMID: 24129574 DOI: 10.1074/jbc.m113.489476] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3(-)-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca(2+) and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.
Collapse
Affiliation(s)
- Eva Wertheimer
- From the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr 2013; 80:229-41. [PMID: 24107509 PMCID: PMC3874326 DOI: 10.1159/000355384] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
GNAS is a complex imprinted locus leading to several different gene products that show exclusive monoallelic expression. GNAS also encodes the α-subunit of the stimulatory G protein (Gsα), a ubiquitously expressed signaling protein that is essential for the actions of many hormones and other endogenous molecules. Gsα is expressed biallelically in most tissues but its expression is silenced from the paternal allele in a small number of tissues. The tissue-specific paternal silencing of Gsα results in different parent-of-origin-specific phenotypes in patients who carry inactivating GNAS mutations. In this paper, we review the GNAS complex locus and discuss how disruption of Gsα expression and the expression of other GNAS products shape the phenotypes of human disorders caused by mutations in this gene.
Collapse
Affiliation(s)
- Serap Turan
- Pediatric Endocrinology, Marmara University School of Medicine Hospital, Istanbul, Turkey
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Fernández-Rebollo E, Maeda A, Reyes M, Turan S, Fröhlich LF, Plagge A, Kelsey G, Jüppner H, Bastepe M. Loss of XLαs (extra-large αs) imprinting results in early postnatal hypoglycemia and lethality in a mouse model of pseudohypoparathyroidism Ib. Proc Natl Acad Sci U S A 2012; 109:6638-43. [PMID: 22496590 PMCID: PMC3340037 DOI: 10.1073/pnas.1117608109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maternal deletion of the NESP55 differentially methylated region (DMR) (delNESP55/ASdel3-4(m), delNAS(m)) from the GNAS locus in humans causes autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib(delNASm)), a disorder of proximal tubular parathyroid hormone (PTH) resistance associated with loss of maternal GNAS methylation imprints. Mice carrying a similar, maternally inherited deletion of the Nesp55 DMR (ΔNesp55(m)) replicate these Gnas epigenetic abnormalities and show evidence for PTH resistance, yet these mice demonstrate 100% mortality during the early postnatal period. We investigated whether the loss of extralarge αs (XLαs) imprinting and the resultant biallelic expression of XLαs are responsible for the early postnatal lethality in ΔNesp55(m) mice. First, we found that ΔNesp55(m) mice are hypoglycemic and have reduced stomach-to-body weight ratio. We then generated mice having the same epigenetic abnormalities as the ΔNesp55(m) mice but with normalized XLαs expression due to the paternal disruption of the exon giving rise to this Gnas product. These mice (ΔNesp55(m)/Gnasxl(m+/p-)) showed nearly 100% survival up to postnatal day 10, and a substantial number of them lived to adulthood. The hypoglycemia and reduced stomach-to-body weight ratio observed in 2-d-old ΔNesp55(m) mice were rescued in the ΔNesp55(m)/Gnasxl(m+/p-) mice. Surviving double-mutant animals had significantly reduced Gαs mRNA levels and showed hypocalcemia, hyperphosphatemia, and elevated PTH levels, thus providing a viable model of human AD-PHP-Ib. Our findings show that the hypoglycemia and early postnatal lethality caused by the maternal deletion of the Nesp55 DMR result from biallelic XLαs expression. The double-mutant mice will help elucidate the pathophysiological mechanisms underlying AD-PHP-Ib.
Collapse
Affiliation(s)
| | | | | | - Serap Turan
- Endocrine Unit, Department of Medicine, and
- Pediatric Endocrinology, Marmara University School of Medicine, Istanbul 34899, Turkey
| | - Leopold F. Fröhlich
- Endocrine Unit, Department of Medicine, and
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Antonius Plagge
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, and
- Pediatric Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | |
Collapse
|
24
|
Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatković N, Plagge A. Postnatal changes in the expression pattern of the imprinted signalling protein XLαs underlie the changing phenotype of deficient mice. PLoS One 2012; 7:e29753. [PMID: 22253771 PMCID: PMC3256176 DOI: 10.1371/journal.pone.0029753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
The alternatively spliced trimeric G-protein subunit XLαs, which is involved in cAMP signalling, is encoded by the Gnasxl transcript of the imprinted Gnas locus. XLαs deficient mice show neonatal feeding problems, leanness, inertia and a high mortality rate. Mutants that survive to weaning age develop into healthy and fertile adults, which remain lean despite elevated food intake. The adult metabolic phenotype can be attributed to increased energy expenditure, which appears to be caused by elevated sympathetic nervous system activity. To better understand the changing phenotype of Gnasxl deficient mice, we compared XLαs expression in neonatal versus adult tissues, analysed its co-localisation with neural markers and characterised changes in the nutrient-sensing mTOR1-S6K pathway in the hypothalamus. Using a newly generated conditional Gnasxl lacZ gene trap line and immunohistochemistry we identified various types of muscle, including smooth muscle cells of blood vessels, as the major peripheral sites of expression in neonates. Expression in all muscle tissues was silenced in adults. While Gnasxl expression in the central nervous system was also developmentally silenced in some midbrain nuclei, it was upregulated in the preoptic area, the medial amygdala, several hypothalamic nuclei (e.g. arcuate, dorsomedial, lateral and paraventricular nuclei) and the nucleus of the solitary tract. Furthermore, expression was detected in the ventral medulla as well as in motoneurons and a subset of sympathetic preganglionic neurons of the spinal cord. In the arcuate nucleus of Gnasxl-deficient mice we found reduced activity of the nutrient sensing mTOR1-S6K signalling pathway, which concurs with their metabolic status. The expression in these brain regions and the hypermetabolic phenotype of adult Gnasxl-deficient mice imply an inhibitory function of XLαs in energy expenditure and sympathetic outflow. By contrast, the neonatal phenotype of mutant mice appears to be due to a transient role of XLαs in muscle tissues.
Collapse
Affiliation(s)
- Stefan O. Krechowec
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Katie L. Burton
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Anna U. Newlaczyl
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Nunn
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nikolina Vlatković
- Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism but not in suckling. Mol Cell Biol 2012; 32:1017-29. [PMID: 22215617 DOI: 10.1128/mcb.06174-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism.
Collapse
|
26
|
Akita K, Takahashi Y, Takata N, Hashimoto M, Kataoka M, Tomigahara Y, Saito K. XLGαolf regulates expression of p27Kip1 in a CSN5 and CDK2 dependent manner. Biochem Biophys Res Commun 2011; 416:385-90. [PMID: 22120635 DOI: 10.1016/j.bbrc.2011.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
XLGα(olf) is an extra large transcriptional variant of the heterotrimeric G protein, Gα(olf), which we previously reported to be localized in the Golgi apparatus and interacted with Rab3A and Rab8A through its N-terminal region. However, many physiological functions of XLGα(olf) remain to be elucidated. In this study, performance of yeast two-hybrid screening with XLGα(olf) allowed isolation of COP9 signalosome subunit 5 (CSN5), known to regulate the p27(Kip1) protein level through a proteasome dependent pathway. Co-immunoprecipitation experiments followed by Western blotting also showed association of CSN5 with XLGα(olf) linked to down-regulation of p27(Kip1). Gene silencing of endogenous CSN5 by siRNA attenuated the XLGα(olf)-mediated down-regulation, which was also demonstrated to require CDK2. Both knock down of CDK2 and the treatment with a CDK2 inhibitor reversed the reduction of p27(Kip1) due to XLGα(olf). Our findings provide important clues to understanding physiological functions of XLGα(olf).
Collapse
Affiliation(s)
- Kazumasa Akita
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka 554-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Puzhko S, Goodyer CG, Kerachian MA, Canaff L, Misra M, Jüppner H, Bastepe M, Hendy GN. Parathyroid hormone signaling via Gαs is selectively inhibited by an NH(2)-terminally truncated Gαs: implications for pseudohypoparathyroidism. J Bone Miner Res 2011; 26:2473-85. [PMID: 21713996 PMCID: PMC3916968 DOI: 10.1002/jbmr.461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pseudohypoparathyroid patients have resistance predominantly to parathyroid hormone (PTH), and here we have examined the ability of an alternative Gαs-related protein to inhibit Gαs activity in a hormone-selective manner. We tested whether the GNAS exon A/B-derived NH(2)-terminally truncated (Tr) αs protein alters stimulation of adenylate cyclase by the PTH receptor (PTHR1), the thyroid-stimulating hormone (TSH) receptor (TSHR), the β(2)-adrenergic receptor (β(2)AR), or the AVP receptor (V2R). HEK293 cells cotransfected with receptor and full-length (FL) Gαs ± Tr αs protein expression vectors were stimulated with agonists (PTH [10(-7) to 10(-9) M], TSH [1 to 100 mU], isoproterenol [10(-6) to 10(-8) M], or AVP [10(-6) to 10(-8) M]). Following PTH stimulation, HEK293 cells cotransfected with PTHR1 + FL Gαs + Tr αs had a significantly lower cAMP response than those transfected with only PTHR1 + FL Gαs. Tr αs also exerted an inhibitory effect on the cAMP levels stimulated by TSH via the TSHR but had little or no effect on isoproterenol or AVP acting via β(2)AR or V2R, respectively. These differences mimic the spectrum of hormone resistance in pseudohypoparathyroidism type 1a (PHP-1a) and type 1b (PHP-1b) patients. In opossum kidney (OK) cells, endogenously expressing the PTHR1 and β(2)AR, the exogenous expression of Tr αs at a level similar to endogenous FL Gαs resulted in blunting of the cAMP response to PTH, whereas that to isoproterenol was unaltered. A pseudopseudohypoparathyroid patient with Albright hereditary osteodystrophy harbored a de novo paternally inherited M1I Gαs mutation. Similar maternally inherited mutations at the initiation codon have been identified previously in PHP-1a patients. The M1I αs mutant (lacking the first 59 amino acids of Gαs) blunted the increase in cAMP levels stimulated via the PTHR1 in both HEK293 and OK cells similar to the Tr αs protein. Thus NH(2)-terminally truncated forms of Gαs may contribute to the pathogenesis of pseudohypoparathyroidism by inhibiting the activity of Gαs itself in a GPCR selective manner.
Collapse
Affiliation(s)
- Svetlana Puzhko
- Endocrine Research Laboratory, McGill University, Montreal, Quebec, Canada
| | - Cynthia Gates Goodyer
- Endocrine Research Laboratory, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mohammad Amin Kerachian
- Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Lucie Canaff
- Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Endocrine Unit, MassGeneral for Children and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Pediatric Nephrology Unit, MassGeneral for Children and Harvard Medical School, Boston, MA, USA
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Geoffrey N Hendy
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Abstract
Genomic imprinting is an important and enigmatic form of gene regulation in mammals in which one copy of a gene is silenced in a manner determined by its parental history. Imprinted genes range from those with constitutive monoallelic silencing to those, typically more remote from imprinting control regions, that display developmentally regulated, tissue-specific or partial monoallelic expression. This diversity may make these genes, and the processes they control, more or less sensitive to factors that modify or disrupt epigenetic marks. Imprinted genes have important functions in development and physiology, including major endocrine/neuroendocrine axes. Owing to is central role in coordinating growth, metabolism and reproduction, as well as evidence from genetic and knockout studies, the hypothalamus may be a focus for imprinted gene action. Are there unifying principles that explain why a gene should be imprinted? Conflict between parental genomes over limiting maternal resources, but also co-adaptation between mothers and offspring, have been invoked to explain the evolution of imprinting. Recent reports suggest there may be many more genes imprinted in the hypothalamus than hitherto expected, and it will be important for these new candidates to be validated and to determine whether they conform to current notions of how imprinting is regulated. In fully evaluating the role of imprinted genes in the hypothalamus, much work needs to be done to identify the specific neuronal populations in which particular genes are expressed, establish whether there are pathways in common and whether imprinted genes are involved in long-term programming of hypothalamic functions.
Collapse
Affiliation(s)
- Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | | |
Collapse
|
29
|
Liu Z, Turan S, Wehbi VL, Vilardaga JP, Bastepe M. Extra-long Gαs variant XLαs protein escapes activation-induced subcellular redistribution and is able to provide sustained signaling. J Biol Chem 2011; 286:38558-38569. [PMID: 21890629 DOI: 10.1074/jbc.m111.240150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Murine models indicate that Gαs and its extra-long variant XLαs, both of which are derived from GNAS, markedly differ regarding their cellular actions, but these differences are unknown. Here we investigated activation-induced trafficking of Gαs and XLαs, using immunofluorescence microscopy, cell fractionation, and total internal reflection fluorescence microscopy. In transfected cells, XLαs remained localized to the plasma membrane, whereas Gαs redistributed to the cytosol after activation by GTPase-inhibiting mutations, cholera toxin treatment, or G protein-coupled receptor agonists (isoproterenol or parathyroid hormone (PTH)(1-34)). Cholera toxin treatment or agonist (isoproterenol or pituitary adenylate cyclase activating peptide-27) stimulation of PC12 cells expressing Gαs and XLαs endogenously led to an increased abundance of Gαs, but not XLαs, in the soluble fraction. Mutational analyses revealed two conserved cysteines and the highly charged domain as being critically involved in the plasma membrane anchoring of XLαs. The cAMP response induced by M-PTH(1-14), a parathyroid hormone analog, terminated quickly in HEK293 cells stably expressing the type 1 PTH/PTH-related peptide receptor, whereas the response remained maximal for at least 6 min in cells that co-expressed the PTH receptor and XLαs. Although isoproterenol-induced cAMP response was not prolonged by XLαs expression, a GTPase-deficient XLαs mutant found in certain tumors and patients with fibrous dysplasia of bone and McCune-Albright syndrome generated more basal cAMP accumulation in HEK293 cells and caused more severe impairment of osteoblastic differentiation of MC3T3-E1 cells than the cognate Gαs mutant (gsp oncogene). Thus, activated XLαs and Gαs traffic differently, and this may form the basis for the differences in their cellular actions.
Collapse
Affiliation(s)
- Zun Liu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Serap Turan
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Pediatric Endocrinology, Marmara University School of Medicine Hospital, 34662 Istanbul, Turkey
| | - Vanessa L Wehbi
- Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jean-Pierre Vilardaga
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114.
| |
Collapse
|
30
|
Bastepe M. The GNAS Locus: Quintessential Complex Gene Encoding Gsalpha, XLalphas, and other Imprinted Transcripts. Curr Genomics 2011; 8:398-414. [PMID: 19412439 PMCID: PMC2671723 DOI: 10.2174/138920207783406488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 09/22/2007] [Accepted: 09/28/2007] [Indexed: 12/14/2022] Open
Abstract
The currently estimated number of genes in the human genome is much smaller than previously predicted. As an explanation for this disparity, most individual genes have multiple transcriptional units that represent a variety of biologically important gene products. GNAS exemplifies a gene of such complexity. One of its products is the alpha-subunit of the stimulatory heterotrimeric G protein (Gsalpha), a ubiquitous signaling protein essential for numerous different cellular responses. Loss-of-function and gain-of-function mutations within Gsalpha-coding GNAS exons are found in various human disorders, including Albright's hereditary osteodystrophy, pseudohypoparathyroidism, fibrous dysplasia of bone, and some tumors of different origin. While Gsalpha expression in most tissues is biallelic, paternal Gsalpha expression is silenced in a small number of tissues, playing an important role in the development of phenotypes associated with GNAS mutations. Additional products derived exclusively from the paternal GNAS allele include XLalphas, a protein partially identical to Gsalpha, and two non-coding RNA molecules, the A/B transcript and the antisense transcript. The maternal GNAS allele leads to NESP55, a chromogranin-like neuroendocrine secretory protein. In vivo animal models have demonstrated the importance of each of the exclusively imprinted GNAS products in normal mammalian physiology. However, although one or more of these products are also disrupted by most naturally occurring GNAS mutations, their roles in disease pathogenesis remain unknown. To further our understanding of the significance of this gene in physiology and pathophysiology, it will be important to elucidate the cellular roles and the mechanisms regulating the expression of each GNAS product.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Liu Z, Segawa H, Aydin C, Reyes M, Erben RG, Weinstein LS, Chen M, Marshansky V, Fröhlich LF, Bastepe M. Transgenic overexpression of the extra-large Gsα variant XLαs enhances Gsα-mediated responses in the mouse renal proximal tubule in vivo. Endocrinology 2011; 152:1222-33. [PMID: 21303955 PMCID: PMC3060637 DOI: 10.1210/en.2010-1034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
XLαs, a variant of the stimulatory G protein α-subunit (Gsα), can mediate receptor-activated cAMP generation and, thus, mimic the actions of Gsα in transfected cells. However, it remains unknown whether XLαs can act in a similar manner in vivo. We have now generated mice with ectopic transgenic expression of rat XLαs in the renal proximal tubule (rptXLαs mice), where Gsα mediates most actions of PTH. Western blots and quantitative RT-PCR showed that, while Gsα and type-1 PTH receptor levels were unaltered, protein kinase A activity and 25-hydroxyvitamin D 1-α-hydroxylase (Cyp27b1) mRNA levels were significantly higher in renal proximal tubules of rptXLαs mice than wild-type littermates. Immunohistochemical analysis of kidney sections showed that the sodium-phosphate cotransporter type 2a was modestly reduced in brush border membranes of male rptXLαs mice compared to gender-matched controls. Serum calcium, phosphorus, and 1,25 dihydroxyvitamin D were within the normal range, but serum PTH was ∼30% lower in rptXLαs mice than in controls (152 ± 16 vs. 222 ± 41 pg/ml; P < 0.05). After crossing the rptXLαs mice to mice with ablation of maternal Gnas exon 1 (E1(m-/+)), male offspring carrying both the XLαs transgene and maternal Gnas exon 1 ablation (rptXLαs/E1(m-/+)) were significantly less hypocalcemic than gender-matched E1(m-/+) littermates. Both E1(m-/+) and rptXLαs/E1(m-/+) offspring had higher serum PTH than wild-type littermates, but the degree of secondary hyperparathyroidism tended to be lower in rptXLαs/E1(m-/+) mice. Hence, transgenic XLαs expression in the proximal tubule enhanced Gsα-mediated responses, indicating that XLαs can mimic Gsα in vivo.
Collapse
Affiliation(s)
- Zun Liu
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 50 Blossom Street, Thier 10, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mariot V, Wu JY, Aydin C, Mantovani G, Mahon MJ, Linglart A, Bastepe M. Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune-Albright syndrome and fibrous dysplasia of bone. Bone 2011; 48:312-20. [PMID: 20887824 PMCID: PMC3021591 DOI: 10.1016/j.bone.2010.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 11/22/2022]
Abstract
Patients with McCune-Albright syndrome (MAS), characterized primarily by hyperpigmented skin lesions, precocious puberty, and fibrous dyslasia of bone, carry postzygotic heterozygous mutations of GNAS causing constitutive cAMP signaling. GNAS encodes the α-subunit of the stimulatory G protein (Gsα), as well as a large variant (XLαs) derived from the paternal allele. The mutations causing MAS affect both GNAS products, but whether XLαs, like Gsα, can be involved in the pathogenesis remains unknown. Here, we investigated biopsy samples from four previously reported and eight new patients with MAS. Activating mutations of GNAS (Arg201 with respect to the amino acid sequence of Gsα) were present in all the previously reported and five of the new cases. The mutation was detected within the paternally expressed XLαs transcript in five and the maternally expressed NESP55 transcript in four cases. Tissues carrying paternal mutations appeared to have higher XLαs mRNA levels than maternal mutations. The human XLαs mutant analogous to Gsα-R201H (XLαs-R543H) showed markedly higher basal cAMP accumulation than wild-type XLαs in transfected cells. Wild-type XLαs demonstrated higher basal and isoproterenol-induced cAMP signaling than Gsα and co-purified with Gβ1γ2 in transduced cells. XLαs mRNA was measurable in mouse calvarial cells, with its level being significantly higher in undifferentiated cells than those expressing preosteoblastic markers osterix and alkaline phosphatase. XLαs mRNA was also expressed in murine bone marrow stromal cells and preosteoblastic MC3T3-E1 cells. Our findings are consistent with the possibility that constitutive XLαs activity adds to the molecular pathogenesis of MAS and fibrous dysplasia of bone.
Collapse
Affiliation(s)
- Virginie Mariot
- INSERM; Université Paris Descartes. U561, Hôpital Saint Vincent de Paul, 75014 Paris, France
| | - Joy Y. Wu
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cumhur Aydin
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Endodontics and Conservative Treatment, Gülhane Military Medical Academy, Ankara, TURKEY
| | - Giovanna Mantovani
- Department of Medical Sciences, Endocrinology and Diabetology Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, ITALY
| | - Matthew J. Mahon
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnès Linglart
- INSERM; Université Paris Descartes. U561, Hôpital Saint Vincent de Paul, 75014 Paris, France
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Assistance Publique-Hôpitaux de Paris. Endocrinologie-diabétologie pédiatrique et Centre de référence des maladies rares du métabolisme du calcium et du phosphore, Hôpital St-Vincent de Paul, 75014 Paris, France
| | - Murat Bastepe
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Effects of deficiency of the G protein Gsα on energy and glucose homeostasis. Eur J Pharmacol 2011; 660:119-24. [PMID: 21208600 DOI: 10.1016/j.ejphar.2010.10.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/24/2010] [Accepted: 10/12/2010] [Indexed: 02/07/2023]
Abstract
G(s)α is a ubiquitously expressed G protein α-subunit that couples receptors to the generation of intracellular cyclic AMP. The G(s)α gene GNAS is a complex gene that undergoes genomic imprinting, an epigenetic phenomenon that leads to differential expression from the two parental alleles. G(s)α is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in a small number of tissues. Albright hereditary osteodystrophy is a monogenic obesity disorder caused by heterozygous G(s)α mutations but only when the mutations are maternally inherited. Studies in mice indicate a similar parent-of-origin effect on energy and glucose metabolism, with maternal but not paternal mutations leading to obesity, reduced sympathetic nerve activity and energy expenditure, glucose intolerance and insulin resistance, with no primary effect on food intake. These effects result from G(s)α imprinting leading to severe G(s)α deficiency in one or more regions of the central nervous system, and are associated with a specific defect in melanocortins to stimulate sympathetic nerve activity and energy expenditure.
Collapse
|
34
|
Riminucci M, Robey PG, Saggio I, Bianco P. Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. J Mol Endocrinol 2010; 45:355-64. [PMID: 20841428 PMCID: PMC3384548 DOI: 10.1677/jme-10-0097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activating mutations of the GNAS gene, which causes fibrous dysplasia of bone (FD), lead to remarkable changes in the properties of skeletal progenitors, and it is these changes that mediate the pathological effect of this gene on bone. Mutated skeletal stem cells lose the ability to differentiate into adipocytes, and to maintain in situ, and transfer heterotopically, the hematopoietic microenvironment, leading to abnormal bone marrow histology in FD. They overexpress molecular effectors of osteoclastogenesis, thus promoting inappropriate bone resorption leading to fragility of FD bone. They express the phosphate-regulating hormone FGF-23 at normal levels, whose excess in the serum of FD patients correlates with the mass of osteogenic cells within FD lesions, leading to osteomalacia and deformity of the FD bone, and revealing that bone is an endocrine organ regulating renal handling of phosphate. Mechanisms of allelic selection and stem cell selection occur in mutated skeletal stem cells and contribute to the inherent diversity and evolution over time in FD. The definition of the etiological role of GNAS mutations marks the watershed between many decades of descriptive observation and the definition of cellular and molecular mechanisms that would explain and hopefully allow for a cure for the disease. Placing stem cells at center stage has permitted substantial advances in one decade, and promises more for the one to come.
Collapse
Affiliation(s)
- Mara Riminucci
- Department of Molecular Medicine, La Sapienza University, 00161 Rome, Italy
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
| | - Pamela Gehron Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Isabella Saggio
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
- Department of Genetics and Molecular Biology, Sapienza University of Rome, and Institute for Molecular Biology and Pathology, National Research Council (CNR) Rome, Italy
| | - Paolo Bianco
- Department of Molecular Medicine, La Sapienza University, 00161 Rome, Italy
- Biomedical Science Park San Raffaele, 00128 Rome, Italy
| |
Collapse
|
35
|
Nam JS, Yang H, Kim NH, Sun Y, Choi BS, Huh SO. A winged-helix transcription factor foxg1 induces expression of mss4 gene in rat hippocampal progenitor cells. Exp Neurobiol 2010; 19:75-82. [PMID: 22110345 PMCID: PMC3214778 DOI: 10.5607/en.2010.19.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/25/2010] [Indexed: 11/19/2022] Open
Abstract
Foxg1 (previously named BF1) is a winged-helix transcription factor with restricted expression pattern in the telencephalic neuroepithelium of the neural tube and in the anterior half of the developing optic vesicle. Previous studies have shown that the targeted disruption of the Foxg1 gene leads to hypoplasia of the cerebral hemispheres with severe defect in the structures of the ventral telencephalon. To further investigate the molecular mechanisms by which Foxg1 plays essential roles during brain development, we have adopted a strategy to isolate genes whose expression changes immediately after introduction of Foxg1 in cultured neural precursor cell line, HiB5. Here, we report that seventeen genes were isolated by ordered differential displays that are up-regulated by over-expression of Foxg1, in cultured neuronal precursor cells. By nucleotide sequence comparison to known genes in the GeneBank database, we find that nine of these clones represent novel genes whose DNA sequences have not been reported. The results suggest that these genes are closely related to developmental regulation of Foxg1.
Collapse
Affiliation(s)
- Ju-Suk Nam
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H, Bastepe M. Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab 2010; 95:3993-4002. [PMID: 20444925 PMCID: PMC2913043 DOI: 10.1210/jc.2009-2205] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT GNAS encodes the alpha-subunit of the stimulatory G protein as well as additional imprinted transcripts including the maternally expressed NESP55 and the paternally expressed XLalphas, antisense, and A/B transcripts. Most patients with pseudohypoparathyroidism type Ib (PHP-Ib) exhibit imprinting defects affecting the maternal GNAS allele, which are thought to reduce/abolish Gsalpha expression in renal proximal tubules and thereby cause resistance to PTH. OBJECTIVE Our objective was to define the genetic defect in a previously unreported family with autosomal dominant PHP-Ib. DESIGN AND SETTING Analyses of serum and urine chemistries and of genomic DNA and lymphoblastoid-derived RNA were conducted at a tertiary hospital and research laboratory. PATIENTS Affected individuals presented with muscle weakness and/or paresthesia and showed hypocalcemia, hyperphosphatemia, and elevated serum PTH. Obligate carriers were healthy and revealed no obvious abnormality in mineral ion homeostasis. RESULTS A novel 4.2-kb microdeletion was discovered in the affected individuals and the obligate carriers, ablating two noncoding GNAS antisense exons while preserving the NESP55 exon. On maternal transmission, the deletion causes loss of all maternal GNAS imprints, partial gain of NESP55 methylation, and PTH resistance. Paternal transmission of the mutation leads to epigenetic alterations in cis, including a partial loss of NESP55 methylation and a partial gain of A/B methylation. CONCLUSIONS The identified deletion points to a unique cis-acting element located telomeric of the NESP55 exon that is critical for imprinting both GNAS alleles. These findings provide novel insights into the molecular mechanisms underlying PHP and GNAS imprinting.
Collapse
Affiliation(s)
- Smitha Chillambhi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street Thier 10, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Human imprinting disorders can provide critical insights into the role of imprinted genes in human development and health, and the molecular mechanisms that regulate genomic imprinting. To illustrate these concepts we review the clinical and molecular features of several human imprinting syndromes including Beckwith–Wiedemann syndrome, Silver–Russell syndrome, Angelman syndrome, Prader–Willi syndrome, pseudohypoparathyroidism, transient neonatal diabetes, familial complete hydatidiform moles and chromosome 14q32 imprinting domain disorders.
Collapse
Affiliation(s)
- Derek HK Lim
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Eamonn R Maher
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
38
|
Weinstein LS, Xie T, Qasem A, Wang J, Chen M. The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 2009; 34:6-17. [PMID: 19844212 DOI: 10.1038/ijo.2009.222] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon affecting a small number of genes, which leads to differential expression from the two parental alleles. Imprinted genes are known to regulate fetal growth and a 'kinship' or 'parental conflict' model predicts that paternally and maternally expressed imprinted genes promote and inhibit fetal growth, respectively. In this review we examine the role of imprinted genes in postnatal growth and metabolism, with an emphasis on the GNAS/Gnas locus. GNAS is a complex imprinted locus with multiple oppositely imprinted gene products, including the G-protein alpha-subunit G(s)alpha that is expressed primarily from the maternal allele in some tissues and the G(s)alpha isoform XLalphas that is expressed only from the paternal allele. Maternal, but not paternal, G(s)alpha mutations lead to obesity in Albright hereditary osteodystrophy. Mouse studies show that this phenomenon is due to G(s)alpha imprinting in the central nervous system leading to a specific defect in the ability of central melanocortins to stimulate sympathetic nervous system activity and energy expenditure. In contrast mutation of paternally expressed XLalphas leads to opposite metabolic effects in mice. Although these findings conform to the 'kinship' model, the effects of other imprinted genes on body weight regulation do not conform to this model.
Collapse
Affiliation(s)
- L S Weinstein
- Signal Transduction Section, National Institute of Diabetes, Digestive, and Kidney Disease, National Institutes of Health, Building 10 Rm 8C101, Bethesda, MD 20892-1752, USA.
| | | | | | | | | |
Collapse
|
39
|
Aydin C, Aytan N, Mahon MJ, Tawfeek HAW, Kowall NW, Dedeoglu A, Bastepe M. Extralarge XL(alpha)s (XXL(alpha)s), a variant of stimulatory G protein alpha-subunit (Gs(alpha)), is a distinct, membrane-anchored GNAS product that can mimic Gs(alpha). Endocrinology 2009; 150:3567-75. [PMID: 19423757 PMCID: PMC2717877 DOI: 10.1210/en.2009-0318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GNAS gives rise to multiple imprinted gene products, including the alpha-subunit of the stimulatory G protein (Gs(alpha)) and its variant XL(alpha)s. Based on genomic sequence, the translation of XL(alpha)s begins from the middle of a long open reading frame, suggesting the existence of an N-terminally extended variant termed extralarge XLalphas (XXL(alpha)s). Although XXL(alpha), like Gs(alpha) and XL(alpha)s, would be affected by most disease-causing GNAS mutations, its authenticity and biological significance remained unknown. Here we identified a mouse cDNA clone that comprises the entire open reading frame encoding XXL(alpha)s. Whereas XXL(alpha)s mRNA was readily detected in mouse heart by RT-PCR, it appeared virtually absent in insulinoma-derived INS-1 cells. By Northern blots and RT-PCR, XXL(alpha)s mRNA was detected primarily in the mouse brain, cerebellum, and spleen. Immunohistochemistry using a specific anti-XXL(alpha)s antibody demonstrated XXL(alpha)s protein in multiple brain areas, including dorsal hippocampus and cortex. In transfected cells, full-length human XXL(alpha)s was localized to the plasma membrane and mediated isoproterenol- and cholera toxin-stimulated cAMP accumulation. XXL(alpha)s-R844H, which bears a mutation analogous to that in the constitutively active Gs(alpha) mutant Gs(alpha)-R201H (gsp oncogene), displayed elevated basal signaling. However, unlike Gs(alpha)-R201H, which mostly remains in the cytoplasm, both XXL(alpha)s-R844H and a constitutively active XL(alpha)s mutant localized to the plasma membrane. Hence, XXL(alpha)s is a distinct GNAS product and can mimic Gs(alpha), but the constitutively active XXL(alpha)s and Gs(alpha) mutants differ from each other regarding subcellular targeting. Our findings suggest that XXL(alpha)s deficiency or hyperactivity may contribute to the pathogenesis of diseases caused by GNAS mutations.
Collapse
Affiliation(s)
- Cumhur Aydin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kaya AI, Ugur O, Oner SS, Bastepe M, Onaran HO. Coupling of beta2-adrenoceptors to XLalphas and Galphas: a new insight into ligand-induced G protein activation. J Pharmacol Exp Ther 2009; 329:350-9. [PMID: 19144685 PMCID: PMC2670595 DOI: 10.1124/jpet.108.149989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022] Open
Abstract
Galpha(s) and extra-large Galpha(s) (XLalpha(s)) can both transduce receptor activation into intracellular cAMP generation. It is unknown, however, whether these two GNAS-locus products display distinct properties with respect to receptor coupling. Here, we show that XLalpha(s) couples to the beta2-adrenoceptor more efficiently than Galpha(s). In transfected human embryonic kidney 293 cells and mouse embryonic fibroblasts null for both Galpha(s) and XLalpha(s) (2B2 cells), basal cAMP accumulation mediated by XLalpha(s) was higher than that mediated by Galpha(s). Inverse agonist treatment reduced Galpha(s)-mediated basal activity, whereas its effect was markedly blunted on XLalpha(s)-mediated basal activity. Rank order of ligand efficacies regarding cAMP accumulation was the same when the receptor was coupled to XLalpha(s) or Galpha(s). However, ligand-induced and XLalpha(s)-mediated cAMP generation was higher than that mediated by Galpha(s). The relatively high efficiency of XLalpha(s)-mediated cAMP generation was conditional, disappearing with increased level of receptor expression or increased efficacy of ligand. Full-agonist responses in XLalpha(s)- and Galpha(s)-expressing cells were comparable even at low receptor levels, whereas partial agonist responses became comparable only when the receptor expression was increased (>3 pmol/mg). Radioligand binding studies showed that the high-affinity component in agonist binding to beta2-adrenoceptor was more pronounced in cells expressing XLalpha(s) than those expressing Galpha(s). We discuss these findings in the framework of current receptor-G protein activation models and offer an extended ternary complex model that can fully explain our observations.
Collapse
Affiliation(s)
- A I Kaya
- Ankara University Biotechnology Institute, Tandogan, Ankara, Turkey
| | | | | | | | | |
Collapse
|
41
|
Akita K, Takahashi Y, Kataoka M, Saito K, Kaneko H. Subcellular localization of a novel G protein XLGalpha(olf). Biochem Biophys Res Commun 2009; 381:582-6. [PMID: 19245791 DOI: 10.1016/j.bbrc.2009.02.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
XLGalpha(olf) was identified as a transcriptional variant of the heterotrimeric G protein, Galpha(olf). Previous work showed that XLGalpha(olf) couples with adenosine A2a receptor and dopamine D1 receptor in vitro. However, physiological functions of XLGalpha(olf) remain to be elucidated. In this study, we performed indirect immunofluorescence confocal analyses to examine the subcellular localization of XLGalpha(olf). With overexpression, surprisingly, many large endosomes resulted. We also observed that XLGalpha(olf) localizes at the Golgi apparatus. The N-terminal region of XLGalpha(olf) appears necessary for both endosome formation and the Golgi localization. The results indicate that XLGalpha(olf) and Galpha(olf) play distinctly separate roles. Moreover, XLGalpha(olf) colocalized with Rab3A and Rab8A, as well as partially with Rab11A, but not with other endocytotic endosomes. We could confirm the interaction between XLGalpha(olf) and Rab3A/Rab8A by co-immunoprecipitation experiments. Our study provides important clues toward understanding physiological functions of XLGalpha(olf).
Collapse
Affiliation(s)
- Kazumasa Akita
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan.
| | | | | | | | | |
Collapse
|
42
|
Yu JZ, Dave RH, Allen JA, Sarma T, Rasenick MM. Cytosolic G{alpha}s acts as an intracellular messenger to increase microtubule dynamics and promote neurite outgrowth. J Biol Chem 2009; 284:10462-72. [PMID: 19237344 DOI: 10.1074/jbc.m809166200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is now evident that Galpha(s) traffics into cytosol following G protein-coupled receptor activation, and alpha subunits of some heterotrimeric G-proteins, including Galpha(s) bind to tubulin in vitro. Nevertheless, many features of G-protein-microtubule interaction and possible intracellular effects of G protein alpha subunits remain unclear. In this study, several biochemical approaches demonstrated that activated Galpha(s) directly bound to tubulin and cellular microtubules, and fluorescence microscopy showed that cholera toxin-activated Galpha(s) colocalized with microtubules. The activated, GTP-bound, Galpha(s) mimicked tubulin in serving as a GTPase activator for beta-tubulin. As a result, activated Galpha(s) made microtubules more dynamic, both in vitro and in cells, decreasing the pool of insoluble microtubules without changing total cellular tubulin content. The amount of acetylated tubulin (an indicator of microtubule stability) was reduced in the presence of Galpha(s) activated by mutation. Previous studies showed that cholera toxin and cAMP analogs may stimulate neurite outgrowth in PC12 cells. However, in this study, overexpression of a constitutively activated Galpha(s) or activation of Galpha(s) with cholera toxin in protein kinase A-deficient PC12 cells promoted neurite outgrowth in a cAMP-independent manner. Thus, it is suggested that activated Galpha(s) acts as an intracellular messenger to regulate directly microtubule dynamics and promote neurite outgrowth. These data serve to link G-protein signaling with modulation of the cytoskeleton and cell morphology.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Departments of Physiology and Biophysics and Psychiatry, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
43
|
de Nanclares GP, Fernández-Rebollo E, Gaztambide S, Castaño L. Genetics of pseudohypoparathyroidism: bases for proper genetic counselling. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2008; 55:476-483. [PMID: 22980463 DOI: 10.1016/s1575-0922(08)75844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/10/2008] [Indexed: 06/01/2023]
Abstract
Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often show additional hormone resistance and characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients with this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, predominantly show renal PTH resistance and lack features of AHO. From the genetic point of view, PHP-I is caused by defects in the GNAS gene or in the 5' region of this gene locus. PHP-Ia is caused by heterozygous inactivating mutations in any of the 13 exons codifying the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsα), while PHP-Ib is due to alterations in the methylation pattern of the 5' regions of the locus, usually associated with upstream microdeletions that are maternally transmitted. The imprinting pattern that affects the GNAS locus has important implications for the inheritance pattern and consequently for appropriate genetic counselling.
Collapse
Affiliation(s)
- Guiomar Pérez de Nanclares
- Grupo de Investigación en Endocrinología y Diabetes. Hospital de Cruces. Baracaldo. Vizcaya. España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII. Baracaldo. Vizcaya. España
| | | | | | | |
Collapse
|
44
|
Freson K, Izzi B, Labarque V, Van Helvoirt M, Thys C, Wittevrongel C, Bex M, Bouillon R, Godefroid N, Proesmans W, de Zegher F, Jaeken J, Van Geet C. GNAS defects identified by stimulatory G protein alpha-subunit signalling studies in platelets. J Clin Endocrinol Metab 2008; 93:4851-9. [PMID: 18812479 DOI: 10.1210/jc.2008-0883] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT GNAS is an imprinted region that gives rise to several transcripts, antisense transcripts, and noncoding RNAs, including transcription of RNA encoding the alpha-subunit of the stimulatory G protein (Gsalpha). The complexity of the GNAS cluster results in ubiquitous genomic imprints, tissue-specific Gsalpha expression, and multiple genotype-phenotype relationships. Phenotypes resulting from genetic and epigenetic abnormalities of the GNAS region include Albright's hereditary osteodystrophy, pseudohypoparathyroidism types Ia (PHPIa) and Ib (PHPIb), and pseudopseudohypoparathyroidism (PPHP). OBJECTIVE The aim was to study the complex GNAS pathology by a functional test as an alternative to the generally used but labor-intensive erythrocyte complementation assay. DESIGN AND PATIENTS We report the first platelet-based diagnostic test for Gsalpha hypofunction, supported by clinical, biochemical, and molecular data for six patients with PHPIa or PPHP and nine patients with PHPIb. The platelet test is based on the inhibition of platelet aggregation by cAMP, produced after Gsalpha stimulation. RESULTS Platelets are easily accessible, and platelet aggregation responses were found to reflect Gsalpha signaling defects in patients, in concordance with the patient's phenotype and genotype. Gsalpha hypofunction in PHPIa and PPHP patients with GNAS mutations was clearly detected by this method. Mildly decreased or normal Gsalpha function was detected in patients with PHPIb with either an overall or exon 1A-only epigenetic defect, respectively. Platelet Gsalpha expression was reduced in both PHPIb patient groups, whereas XLalphas was up-regulated only in PHPIb patients with the broad epigenetic defect. CONCLUSION The platelet-based test is a novel tool for establishing the diagnosis of Gsalpha defects, which may otherwise be quite challenging.
Collapse
Affiliation(s)
- Kathleen Freson
- Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fernandez-Rebollo E, Barrio R, Pérez-Nanclares G, Carcavilla A, Garin I, Castaño L, de Nanclares GP. New mutation type in pseudohypoparathyroidism type Ia. Clin Endocrinol (Oxf) 2008; 69:705-12. [PMID: 18394017 DOI: 10.1111/j.1365-2265.2008.03255.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CONTEXT The GNAS gene encodes the alpha-subunit of the stimulatory G proteins, which play a crucial role in intracellular signal transduction of peptide and neurotransmitter receptors. Heterozygous inactivating maternally inherited mutations of GNAS (including translation initiation mutations, amino acid substitutions, nonsense mutations, splice site mutations and small insertions or deletions) lead to a phenotype in which Albright hereditary osteodystrophy is associated with pseudohypoparathyroidism type Ia. OBJECTIVE We sought to identify the molecular defect in a patient who was thought to have PHP-Ia. METHODS AND RESULTS The GNAS gene of a 5-year-old boy with brachydactily, mental retardation, pseudohypoparathyroidism and congenital hypothyroidism was investigated. We found a heterozygous inversion of exon 2 and part of intron 1 of de novo origin. Molecular studies of cDNA from blood RNA demonstrated that both the normal and the mutant variants were stable and that new splice-sites were generated. CONCLUSION This report demonstrates the first evidence for an inversion at the GNAS gene responsible of pseudohypoparathyroidism type Ia.
Collapse
|
46
|
Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 2008; 17:5-22. [PMID: 18948702 DOI: 10.1159/000166277] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023] Open
Abstract
Cyclic AMP is a universal second messenger, produced by a family of adenylyl cyclase (AC) enzymes. The last three decades have brought a wealth of new information about the regulation of cyclic AMP production by ACs. Nine hormone-sensitive, membrane-bound AC isoforms have been identified in addition to a tenth isoform that lacks membrane spans and more closely resembles the cyanobacterial AC enzymes. New model systems for purifying and characterizing the catalytic domains of AC have led to the crystal structure of these domains and the mapping of numerous interaction sites. However, big hurdles remain in unraveling the roles of individual AC isoforms and their regulation in physiological systems. In this review we explore the latest on AC knockout and overexpression studies to better understand the roles of G protein regulation of ACs in the brain, olfactory bulb, and heart.
Collapse
Affiliation(s)
- Rachna Sadana
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
47
|
Wadhawan S, Dickins B, Nekrutenko A. Wheels within Wheels: Clues to the Evolution of the Gnas and Gnal Loci. Mol Biol Evol 2008; 25:2745-57. [DOI: 10.1093/molbev/msn229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
48
|
Krechowec S, Plagge A. Physiological Dysfunctions Associated with Mutations of the Imprinted Gnas Locus. Physiology (Bethesda) 2008; 23:221-9. [DOI: 10.1152/physiol.00010.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ubiquitous Gαs-subunit of the trimeric, stimulatory G-protein plays a central role in receptor-mediated signal transduction, coupling receptor activation with the production of cAMP. The Gαs-encoding locus Gnas is now known to consist of a complex arrangement of several protein-coding and noncoding transcripts. We provide an overview of its genomic organization, its regulation by genomic imprinting, and a summary of the physiological roles of the alternative protein variants Gαs and XLαs as determined from deficient mouse models.
Collapse
Affiliation(s)
- Stefan Krechowec
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antonius Plagge
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
49
|
Weinhaeusel A, Thiele S, Hofner M, Hiort O, Noehammer C. PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib. Clin Chem 2008; 54:1537-45. [PMID: 18617581 DOI: 10.1373/clinchem.2008.104216] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pseudohypoparathyroidism type Ib (PHPIb) is characterized by parathyroid hormone (PTH) resistance, which can lead to hypocalcemia, hyperphosphatemia, and increased serum PTH. The disorder is caused by mutations in regulatory regions of the GNAS gene (GNAS complex locus) that lead to interferences in the methylation status of alternative GNAS promoters, such as exon A/B, NESP55, and XL alpha-s. PHPIb comprises disorders that show distinctive changes in methylation status but share the same clinical phenotype: (a) loss of methylation only at exon A/B of the GNAS gene and involving no other obvious epigenetic abnormalities [e.g., those caused by heterozygous microdeletions in the STX16 (syntaxin 16) region and found in many patients with autosomal dominant (AD) PHPIb]; (b) methylation abnormalities at several differentially methylated regions (DMRs), which are observed in most patients with sporadic PHPIb and some families with AD PHPIb. METHODS To permit early and reliable diagnosis of suspected PHPIb, we designed methylation-sensitive restriction enzyme-based and bisulfite deamination-based PCR tests for exon A/B and NESP55 DMRs. RESULTS Both PCR strategies permit proper methylation testing of GNAS and NESP55 DMRs and elucidate different disease subtypes. We have identified a novel microsatellite repeat polymorphism within GNAS exon A/B, and pedigree analyses have shown its presence to be conclusive evidence for familial disease. CONCLUSIONS We provide a simple diagnostic test for PHPIb, an imprinting disorder caused by different molecular changes within the GNAS complex locus. PHPIb, a complex and diagnostically challenging clinical phenotype, can be treated successfully by taking steps before the manifestation of symptoms to avoid clinical complications in affected patients or asymptomatic members of affected families who show positive results in genetic tests.
Collapse
Affiliation(s)
- Andreas Weinhaeusel
- Austrian Research Centers GmbH-ARC, Molecular Diagnostics, Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
50
|
Hart EA, Caccamo M, Harrow JL, Humphray SJ, Gilbert JGR, Trevanion S, Hubbard T, Rogers J, Rothschild MF. Lessons learned from the initial sequencing of the pig genome: comparative analysis of an 8 Mb region of pig chromosome 17. Genome Biol 2008; 8:R168. [PMID: 17705864 PMCID: PMC2374978 DOI: 10.1186/gb-2007-8-8-r168] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/06/2007] [Accepted: 08/17/2007] [Indexed: 12/21/2022] Open
Abstract
The sequencing, annotation and comparative analysis of an 8Mb region of pig chromosome 17 allows the coverage and quality of the pig genome sequencing project to be assessed Background We describe here the sequencing, annotation and comparative analysis of an 8 Mb region of pig chromosome 17, which provides a useful test region to assess coverage and quality for the pig genome sequencing project. We report our findings comparing the annotation of draft sequence assembled at different depths of coverage. Results Within this region we annotated 71 loci, of which 53 are orthologous to human known coding genes. When compared to the syntenic regions in human (20q13.13-q13.33) and mouse (chromosome 2, 167.5 Mb-178.3 Mb), this region was found to be highly conserved with respect to gene order. The most notable difference between the three species is the presence of a large expansion of zinc finger coding genes and pseudogenes on mouse chromosome 2 between Edn3 and Phactr3 that is absent from pig and human. All of our annotation has been made publicly available in the Vertebrate Genome Annotation browser, VEGA. We assessed the impact of coverage on sequence assembly across this region and found, as expected, that increased sequence depth resulted in fewer, longer contigs. One-third of our annotated loci could not be fully re-aligned back to the low coverage version of the sequence, principally because the transcripts are fragmented over several contigs. Conclusion We have demonstrated the considerable advantages of sequencing at increased read depths and discuss the implications that lower coverage sequence may have on subsequent comparative and functional studies, particularly those involving complex loci such as GNAS.
Collapse
Affiliation(s)
- Elizabeth A Hart
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mario Caccamo
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer L Harrow
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sean J Humphray
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - James GR Gilbert
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Steve Trevanion
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tim Hubbard
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jane Rogers
- Wellcome Trust Sanger Institute, Wellcome Tust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Max F Rothschild
- Centre for Integrated Animal Genomics, Kildee Hall, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|