1
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Bellah SF, Yang F, Xiong F, Dou Z, Yao X, Liu X. ZW10: an emerging orchestrator of organelle dynamics during the cell division cycle. J Mol Cell Biol 2024; 16:mjae026. [PMID: 38830800 PMCID: PMC11757092 DOI: 10.1093/jmcb/mjae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 06/02/2024] [Indexed: 06/05/2024] Open
Abstract
Zeste white 10 (ZW10) was first identified as a centromere/kinetochore protein encoded by the ZW10 gene in Drosophila. ZW10 guides the spindle assembly checkpoint signaling during mitotic chromosome segregation in metazoans. Recent studies have shown that ZW10 is also involved in membrane-bound organelle interactions during interphase and plays a vital role in membrane transport between the endoplasmic reticulum and Golgi apparatus. Despite these findings, the precise molecular mechanisms by which ZW10 regulates interactions between membrane-bound organelles in interphase and the assembly of membraneless organelle kinetochore in mitosis remain elusive. Here, we highlight how ZW10 forms context-dependent protein complexes during the cell cycle. These complexes are essential for mediating membrane trafficking in interphase and ensuring the accurate segregation of chromosomes in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Hefei 230027, China
| |
Collapse
|
3
|
Borseth AB, Kianersi HD, Galloway P, Gercken G, Stowe EL, Pizzorno M, Paliulis LV. Alignment of a Trivalent Chromosome on the Metaphase Plate Is Associated with Differences in Microtubule Density at Each Kinetochore. Int J Mol Sci 2024; 25:10719. [PMID: 39409048 PMCID: PMC11477388 DOI: 10.3390/ijms251910719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Chromosome alignment on the metaphase plate is a conserved phenomenon and is an essential function for correct chromosome segregation for many organisms. Organisms with naturally-occurring trivalent chromosomes provide a useful system for understanding how chromosome alignment is evolutionarily regulated, as they align on the spindle with one kinetochore facing one pole and two facing the opposite pole. We studied chromosome alignment in a praying mantid that has not been previously studied chromosomally, the giant shield mantis Rhombodera megaera. R. megaera has a chromosome number of 2n = 27 in males. Males have X1, X2, and Y chromosomes that combine to form a trivalent in meiosis I. Using live-cell imaging of spermatocytes in meiosis I, we document that sex trivalent Y chromosomes associate with one spindle pole and the two X chromosomes associate with the opposing spindle pole. Sex trivalents congress alongside autosomes, align with them on the metaphase I plate, and then the component chromosomes segregate alongside autosomes in anaphase I. Immunofluorescence imaging and quantification of brightness of kinetochore-microtubule bundles suggest that the X1 and X2 kinetochores are associated with fewer microtubules than the Y kinetochore, likely explaining the alignment of the sex trivalent at the spindle equator with autosomes. These observations in R. megaera support the evolutionary significance of the metaphase alignment of chromosomes and provide part of the explanation for how this alignment is achieved.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leocadia V. Paliulis
- Biology Department, Bucknell University, 1 Dent Dr., Lewisburg, PA 17837, USA (P.G.); (E.L.S.)
| |
Collapse
|
4
|
Lee HJ, Im H, Lee HJ, Kim H, Yi JY. Comparison of cellular responses to ionizing radiation in keratinocytes isolated from healthy donors and type II diabetes patients. Int J Radiat Biol 2024; 100:220-235. [PMID: 37812149 DOI: 10.1080/09553002.2023.2263549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.
Collapse
Affiliation(s)
- Hae Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
5
|
Parmar S, Gonzalez SJ, Heckel JM, Mukherjee S, McClellan M, Clarke DJ, Johansson M, Tank D, Geisness A, Wood DK, Gardner MK. Robust microtubule dynamics facilitate low-tension kinetochore detachment in metaphase. J Cell Biol 2023; 222:e202202085. [PMID: 37166419 PMCID: PMC10182774 DOI: 10.1083/jcb.202202085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
During mitosis, sister chromatids are stretched apart at their centromeres via their attachment to oppositely oriented kinetochore microtubules. This stretching generates inwardly directed tension across the separated sister centromeres. The cell leverages this tension signal to detect and then correct potential errors in chromosome segregation, via a mechanical tension signaling pathway that detaches improperly attached kinetochores from their microtubules. However, the sequence of events leading up to these detachment events remains unknown. In this study, we used microfluidics to sustain and observe low-tension budding yeast metaphase spindles over multiple hours, allowing us to elucidate the tension history prior to a detachment event. We found that, under conditions in which kinetochore phosphorylation weakens low-tension kinetochore-microtubule connections, the mechanical forces produced via the dynamic growth and shortening of microtubules is required to efficiently facilitate detachment events. Our findings underscore the critical role of robust kinetochore microtubule dynamics in ensuring the fidelity of chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samuel J. Gonzalez
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Julia M. Heckel
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Duncan J. Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Marnie Johansson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Damien Tank
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Athena Geisness
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Melissa K. Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Köckert M, Okafornta CW, Hill C, Ryndyk A, Striese C, Müller-Reichert T, Paliulis L, Fabig G. Ultrastructure of the nebenkern during spermatogenesis in the praying mantid Hierodula membranacea. PLoS One 2023; 18:e0285073. [PMID: 37498864 PMCID: PMC10374135 DOI: 10.1371/journal.pone.0285073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Spermatogenesis leads to the formation of functional sperm cells. Here we have applied high-pressure freezing in combination with transmission electron microscopy (TEM) to study the ultrastructure of sperm development in subadult males of the praying mantid Hierodula membranacea, a species in which spermatogenesis had not previously been studied. We show the ultrastructure of different stages of sperm development in this species. Thorough examination of TEM data and electron tomographic reconstructions revealed interesting structural features of the nebenkern, an organelle composed of fused mitochondria that has been studied in spermatids of other insect species. We have applied serial-section electron tomography of the nebenkern to demonstrate in three dimensions (3D) that this organelle in H. membranacea is composed of two interwoven mitochondrial derivatives, and that the mitochondrial derivatives are connected by a zipper-like structure at opposing positions. Our approach will enable further ultrastructural analyses of the nebenkern in other organisms.
Collapse
Affiliation(s)
- Maria Köckert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Charlice Hill
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Ryndyk
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cynthia Striese
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leocadia Paliulis
- Biology Department, Bucknell University, Lewisburg, PA, United States of America
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Xi Y, Zhang Y, Zheng K, Zou J, Gui L, Zou X, Chen L, Hao J, Zhang Y. A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC. Front Oncol 2023; 13:1171582. [PMID: 37519793 PMCID: PMC10382026 DOI: 10.3389/fonc.2023.1171582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. Methods Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1+ B cells, invasive metastasis-related ACTB+ Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). Results By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. Conclusions The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients.
Collapse
Affiliation(s)
- Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kun Zheng
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
9
|
Tang J, Fu M, Chen X, Zhao Y, Gao L, Cao H, Li X, Zheng SJ, Wang Y. Arrest of Cell Cycle by Avian Reovirus p17 through Its Interaction with Bub3. Viruses 2022; 14:v14112385. [PMID: 36366482 PMCID: PMC9693402 DOI: 10.3390/v14112385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Avian reoviruses (ARV) are a group of poultry pathogens that cause runting and stunting syndrome (RSS), a condition otherwise known as "frozen chicken", which are characterized by dramatically delayed growth in broilers. It has been known that p17, a nonstructural protein encoded by ARV, prohibits cellular proliferation by halting the cell cycle at the G2/M phase, the result of which is directly associated with the typical clinical sign of RSS. Nevertheless, the mechanism by which p17 modulates cell-cycle progression remains largely unknown. Here, we screened the interactome of ectopically expressed p17 through a yeast two-hybrid assay and identified Bub3, a cellular mitotic checkpoint protein, as a binding partner of p17. The infection of the Vero cells by ARV downregulated the Bub3 expression, while the knockdown of Bub3 alleviated the p17-modulated cell-cycle arrest during ARV infection. Remarkably, the suppression of Bub3 by RNAi in the Vero cells significantly reduced the viral mRNA and protein abundance, which eventually led to diminished virus replication. Altogether, our findings reveal that ARV p17 impedes host cell proliferation through a Bub3-dependent cell-cycle arrest, which eventually contributes to efficient virus replication. These results also unveil a hitherto unknown therapeutic target for RSS.
Collapse
Affiliation(s)
- Junyu Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yimeng Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-(10)-6273-3026
| |
Collapse
|
10
|
Lawrimore J, de Larminat SC, Cook D, Friedman B, Doshi A, Yeh E, Bloom K. Polymer models reveal how chromatin modification can modulate force at the kinetochore. Mol Biol Cell 2022; 33:ar97. [PMID: 35704466 DOI: 10.1091/mbc.e22-02-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A key feature of chromosome segregation is the ability to sense tension between sister kinetochores. DNA between sister kinetochores must be packaged in a way that sustains tension propagation from one kinetochore to its sister, approximately 1 micron away. A molecular bottlebrush consisting of a primary axis populated with a crowded array of side chains provides a means to build tension over length scales considerably larger than the stiffness of the individual elements, that is, DNA polymer. Evidence for the bottlebrush organization of chromatin between sister kinetochores comes from genetic, cell biological, and polymer modeling of the budding yeast centromere. In this study, we have used polymer dynamic simulations of the bottlebrush to recapitulate experimental observations of kinetochore structure. Several aspects of the spatial distribution of kinetochore proteins and their response to perturbation lack a mechanistic understanding. Changes in physical parameters of bottlebrush, DNA stiffness, and DNA loops directly impact the architecture of the inner kinetochore. This study reveals that the bottlebrush is an active participant in building tension between sister kinetochores and proposes a mechanism for chromatin feedback to the kinetochore.
Collapse
Affiliation(s)
- Josh Lawrimore
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Solenn C de Larminat
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana Cook
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ayush Doshi
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Elaine Yeh
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Paliulis LV, Stowe EL, Hashemi L, Pedraza-Aguado N, Striese C, Tulok S, Müller-Reichert T, Fabig G. Chromosome number, sex determination, and meiotic chromosome behavior in the praying mantid Hierodula membranacea. PLoS One 2022; 17:e0272978. [PMID: 35960713 PMCID: PMC9374246 DOI: 10.1371/journal.pone.0272978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Praying mantids are important models for studying a wide range of chromosome behaviors, yet few species of mantids have been characterized chromosomally. Here we show that the praying mantid Hierodula membranacea has a chromosome number of 2n = 27, and X1X1X2X2 (female): X1X2Y (male) sex determination. In male meiosis I, the X1, X2, and Y chromosomes of H. membranacea form a sex trivalent, with the Y chromosome associating with one spindle pole and the X1 and X2 chromosomes facing the opposite spindle pole. While it is possible that such a sex trivalent could experience different spindle forces on each side of the trivalent, in H. membranacea the sex trivalent aligns at the spindle equator with all of the autosomes, and then the sex chromosomes separate in anaphase I simultaneously with the autosomes. With this observation, H. membranacea can be used as a model system to study the balance of forces acting on a trivalent during meiosis I and analyze the functional importance of chromosome alignment in metaphase as a preparatory step for subsequent correct chromosome segregation.
Collapse
Affiliation(s)
- Leocadia V. Paliulis
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Emily L. Stowe
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Leila Hashemi
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Noemi Pedraza-Aguado
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Cynthia Striese
- Core Facility Cellular Imaging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silke Tulok
- Core Facility Cellular Imaging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Core Facility Cellular Imaging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Wang Y, Yu T, Han Y, He Y, Song Y, Guo L, An L, Yang C, Wang F. Phosphorylation of MAD2 at Ser195 Promotes Spindle Checkpoint Defects and Sensitizes Cancer Cells to Radiotherapy in ATM Deficient Cells. Front Cell Dev Biol 2022; 10:817831. [PMID: 35309941 PMCID: PMC8924061 DOI: 10.3389/fcell.2022.817831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a critical monitoring device in mitosis for the maintenance of genomic stability. Specifically, the SAC complex comprises several factors, including Mad1, Mad2, and Bub1. Ataxia-telangiectasia mutated (ATM) kinase, the crucial regulator in DNA damage response (DDR), also plays a critical role in mitosis by regulating Mad1 dimerization and SAC. Here, we further demonstrated that ATM negatively regulates the phosphorylation of Mad2, another critical component of the SAC, which is also involved in DDR. Mechanistically, we found that phosphorylation of Mad2 is aberrantly increased in ATM-deficient cells. Point-mutation analysis further revealed that Serine 195 mainly mediated Mad2 phosphorylation upon ATM ablation. Functionally, the phosphorylation of Mad2 causes decreased DNA damage repair capacity and is related to the resistance to cancer cell radiotherapy. Altogether, this study unveils the key regulatory role of Mad2 phosphorylation in checkpoint defects and DNA damage repair in ATM-deficient cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Yu
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Naval Military Medical University, Shanghai, China
| | - Yi Han
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yazhi He
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiran Song
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leiming Guo
- Department of R&D, Shanghai Creative Immune Therapeutics Co., Ltd, Shanghai, China
| | - Liwei An
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunying Yang
- Central Laboratory, Shanghai Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Abstract
The centromere serves as the binding site for the kinetochore and is essential for the faithful segregation of chromosomes throughout cell division. The point centromere in yeast is encoded by a ∼115 bp specific DNA sequence, whereas regional centromeres range from 6-10 kbp in fission yeast to 5-10 Mbp in humans. Understanding the physical structure of centromere chromatin (pericentromere in yeast), defined as the chromatin between sister kinetochores, will provide fundamental insights into how centromere DNA is woven into a stiff spring that is able to resist microtubule pulling forces during mitosis. One hallmark of the pericentromere is the enrichment of the structural maintenance of chromosome (SMC) proteins cohesin and condensin. Based on studies from population approaches (ChIP-seq and Hi-C) and experimentally obtained images of fluorescent probes of pericentromeric structure, as well as quantitative comparisons between simulations and experimental results, we suggest a mechanism for building tension between sister kinetochores. We propose that the centromere is a chromatin bottlebrush that is organized by the loop-extruding proteins condensin and cohesin. The bottlebrush arrangement provides a biophysical means to transform pericentromeric chromatin into a spring due to the steric repulsion between radial loops. We argue that the bottlebrush is an organizing principle for chromosome organization that has emerged from multiple approaches in the field.
Collapse
|
15
|
Oz T, Mengoli V, Rojas J, Jonak K, Braun M, Zagoriy I, Zachariae W. The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO J 2022; 41:e109446. [PMID: 35023198 PMCID: PMC8844990 DOI: 10.15252/embj.2021109446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022] Open
Abstract
Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the γ-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphase-promoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only single-copy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.
Collapse
Affiliation(s)
- Tugce Oz
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Valentina Mengoli
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julie Rojas
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katarzyna Jonak
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marianne Braun
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ievgeniia Zagoriy
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Zachariae
- Laboratory of Chromosome Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
16
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
17
|
Trainor BM, Ciccaglione K, Czymek M, Law MJ. Distinct requirements for the COMPASS core subunits Set1, Swd1, and Swd3 during meiosis in the budding yeast Saccharomyces cerevisiae. G3 GENES|GENOMES|GENETICS 2021; 11:6342418. [PMID: 34849786 PMCID: PMC8527496 DOI: 10.1093/g3journal/jkab283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Meiosis-specific chromatin structures, guided by histone modifications, are critical mediators of a meiotic transient transcription program and progression through prophase I. Histone H3K4 can be methylated up to three times by the Set1-containing COMPASS complex and each methylation mark corresponds to a different chromatin conformation. The level of H3K4 modification is directed by the activity of additional COMPASS components. In this study, we characterized the role of the COMPASS subunits during meiosis in Saccharomyces cerevisiae. In vegetative cells, previous studies revealed a role for subunits Swd2, Sdc1, and Bre2 for H3K4me2 while Spp1 supported trimethylation. However, we found that Bre2 and Sdc1 are required for H3K4me3 as yeast prepare to enter meiosis while Spp1 is not. Interestingly, we identified distinct meiotic functions for the core COMPASS complex members that required for all H3K4me, Set1, Swd1, and Swd3. While Set1 and Swd1 are required for progression through early meiosis, Swd3 is critical for late meiosis and spore morphogenesis. Furthermore, the meiotic requirement for Set1 is independent of H3K4 methylation, suggesting the presence of nonhistone substrates. Finally, checkpoint suppression analyses indicate that Set1 and Swd1 are required for both homologous recombination and chromosome segregation. These data suggest that COMPASS has important new roles for meiosis that are independent of its well-characterized functions during mitotic divisions.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kerri Ciccaglione
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Miranda Czymek
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| | - Michael J Law
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| |
Collapse
|
18
|
Barisic M, Rajendraprasad G. Mitotic poleward flux: Finding balance between microtubule dynamics and sliding. Bioessays 2021; 43:e2100079. [PMID: 34085708 DOI: 10.1002/bies.202100079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022]
Abstract
Continuous poleward motion of microtubules in metazoan mitotic spindles has been fascinating generations of cell biologists over the last several decades. In human cells, this so-called poleward flux was recently shown to be driven by the coordinated action of four mitotic kinesins. The sliding activities of kinesin-5/EG5 and kinesin-12/KIF15 are sequentially supported by kinesin-7/CENP-E at kinetochores and kinesin-4/KIF4A on chromosome arms, with the individual contributions peaking during prometaphase and metaphase, respectively. Although recent data elucidate the molecular mechanism underlying this cellular phenomenon, the functional roles of microtubule poleward flux during cell division remain largely elusive. Here, we discuss potential contribution of microtubule flux engine to various essential processes at different stages of mitosis.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| |
Collapse
|
19
|
Abstract
Microtubule attachments to kinetochores cause their deformation - a murky phenomenon known as intra-kinetochore stretching. A new study proposes that intra-kinetochore stretching is independent of microtubule-pulling forces and mediates efficient spindle assembly checkpoint silencing to prevent chromosomal instability.
Collapse
|
20
|
Jiang Z, Zhang S, Lee YM, Teng X, Yang Q, Toyama Y, Liou YC. Hyaluronan-Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Adv Biol (Weinh) 2021; 5:e2000493. [PMID: 33788418 DOI: 10.1002/adbi.202000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Indexed: 11/06/2022]
Abstract
Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown. In this study, the non-motor microtubule-associated protein, hyaluronan-mediated motility receptor (HMMR), is identified as a novel regulator of the bridging fiber. It then identifies that HMMR regulates MTs sliding within the bridging fiber by cooperating with its binding partner HSET. By utilizing a laser-based cell ablation system and photoactivation approach, the study's results reveal that depletion of HMMR causes an inhibitory effect on MTs sliding within the bridging fiber and disrupts the forced uniformity on the kinetochore-attached microtubules-formed fibers (k-fibers). These are created by suppressing the dynamics of HSET, which functions in transiting the force from sliding of bridging MTs to the k-fiber. This study sheds new light on the novel regulatory mechanism of MTs sliding within the bridging fiber by HMMR and HSET and uncovers the role of HMMR in chromosome segregation during anaphase.
Collapse
Affiliation(s)
- Zemin Jiang
- Laboratory of Precision Cancer Medicine, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yusuke Toyama
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
21
|
Long AF, Suresh P, Dumont S. Individual kinetochore-fibers locally dissipate force to maintain robust mammalian spindle structure. J Cell Biol 2020; 219:e201911090. [PMID: 32435797 PMCID: PMC7401803 DOI: 10.1083/jcb.201911090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
At cell division, the mammalian kinetochore binds many spindle microtubules that make up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be dynamic and generate and respond to force. Yet, how it remodels under force remains poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting controlled forces in vivo remains challenging. Here, we use microneedles to pull on mammalian kinetochore-fibers and probe how sustained force regulates their dynamics and structure. We show that force lengthens kinetochore-fibers by persistently favoring plus-end polymerization, not by increasing polymerization rate. We demonstrate that force suppresses depolymerization at both plus and minus ends, rather than sliding microtubules within the kinetochore-fiber. Finally, we observe that kinetochore-fibers break but do not detach from kinetochores or poles. Together, this work suggests an engineering principle for spindle structural homeostasis: different physical mechanisms of local force dissipation by the k-fiber limit force transmission to preserve robust spindle structure. These findings may inform how other dynamic, force-generating cellular machines achieve mechanical robustness.
Collapse
Affiliation(s)
- Alexandra F. Long
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Pooja Suresh
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
22
|
Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Sinha Roy P, Bera A, Gupta ML. Checkpoint Proteins Bub1 and Bub3 Delay Anaphase Onset in Response to Low Tension Independent of Microtubule-Kinetochore Detachment. Cell Rep 2020; 27:416-428.e4. [PMID: 30970246 PMCID: PMC6485967 DOI: 10.1016/j.celrep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/18/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores. Kinetochore attachment and tension are critical for proper chromosome segregation, but isolating the contribution of either stimulus has been challenging. Using a Taxol-sensitive yeast model, Proudfoot et al. show that reducing tension specifically produces a delay in mitotic progression that is temporally and mechanistically distinct from that produced by unattached kinetochores.
Collapse
Affiliation(s)
- Kathleen G Proudfoot
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Samuel J Anderson
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sandeep Dave
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Angela R Bunning
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pallavi Sinha Roy
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Smith GR, Nambiar M. New Solutions to Old Problems: Molecular Mechanisms of Meiotic Crossover Control. Trends Genet 2020; 36:337-346. [PMID: 32294414 PMCID: PMC7162993 DOI: 10.1016/j.tig.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023]
Abstract
During scientific investigations, the explanation of remarkably interesting phenomena must often await development of new methods or accrual of new observations that in retrospect can lead to lucid answers to the initial problem. A case in point is the control of genetic recombination during meiosis, which leads to crossovers between chromosomes critical for production of healthy offspring. Crossovers must be properly placed along meiotic chromosomes for their accurate segregation. Here, we review observations on two aspects of meiotic crossover control - crossover interference and repression of crossovers near centromeres, both observed more than 85 years ago. Only recently have relatively simple molecular mechanisms for these phenomena become clear through advances in both methods and understanding the molecular basis of meiotic recombination.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
24
|
Suresh P, Long AF, Dumont S. Microneedle manipulation of the mammalian spindle reveals specialized, short-lived reinforcement near chromosomes. eLife 2020; 9:e53807. [PMID: 32191206 PMCID: PMC7117910 DOI: 10.7554/elife.53807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
The spindle generates force to segregate chromosomes at cell division. In mammalian cells, kinetochore-fibers connect chromosomes to the spindle. The dynamic spindle anchors kinetochore-fibers in space and time to move chromosomes. Yet, how it does so remains poorly understood as we lack tools to directly challenge this anchorage. Here, we adapt microneedle manipulation to exert local forces on the spindle with spatiotemporal control. Pulling on kinetochore-fibers reveals the preservation of local architecture in the spindle-center over seconds. Sister, but not neighbor, kinetochore-fibers remain tightly coupled, restricting chromosome stretching. Further, pulled kinetochore-fibers pivot around poles but not chromosomes, retaining their orientation within 3 μm of chromosomes. This local reinforcement has a 20 s lifetime, and requires the microtubule crosslinker PRC1. Together, these observations indicate short-lived, specialized reinforcement in the spindle center. This could help protect chromosome attachments from transient forces while allowing spindle remodeling, and chromosome movements, over longer timescales.
Collapse
Affiliation(s)
- Pooja Suresh
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra F Long
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Sophie Dumont
- Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
25
|
Liu C, Nie J, Wang R, Mao W. The Cell Cycle G2/M Block Is an Indicator of Cellular Radiosensitivity. Dose Response 2019; 17:1559325819891008. [PMID: 31839758 PMCID: PMC6902394 DOI: 10.1177/1559325819891008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Determination of the radiosensitivity of a specific tumor is essential to its precision tumor radiotherapy, but the measurement of cellular radiosensitivity with a routine colony forming assay is both labor- and time-consuming. An alternative option allowing rapid and precise prediction of radiosensitivity is necessary. Methods: In this study, we exposed 4 in vitro cultured cell lines to various doses of X-rays or carbon ions and then measured their radiosensitivities with a routine colony-forming assay, and monitored the kinetics of cell cycle distribution with routine propidium iodine staining and flow cytometry. Results: Based on the results, we correlated cellular radiosensitivity with a dynamic assay of cell cycle distribution, specifically, the negative correlation of cellular radiosensitivity with the accumulated G2/M arrested cells at 48 hours after exposure. The higher the proportion of accumulated G2/M arrested cells at 48 hours after exposure, the lower the radiosensitivity of the cell line, that is, the higher radioresistance of the cell line. Conclusion: These findings provide an optional application of regular cell cycle analysis for the prediction of tumor radiosensitivity.
Collapse
Affiliation(s)
- Chang Liu
- Department of Radiotherapy, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Rensheng Wang
- Department of Radiotherapy, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Ravi M, Ramanathan S, Krishna K. Factors, mechanisms and implications of chromatin condensation and chromosomal structural maintenance through the cell cycle. J Cell Physiol 2019; 235:758-775. [PMID: 31264212 DOI: 10.1002/jcp.29038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a "cohesin cycle." Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Srishti Ramanathan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Krupa Krishna
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
27
|
Li J, Dang N, Martinez-Lopez N, Jowsey PA, Huang D, Lightowlers RN, Gao F, Huang JY. M2I-1 disrupts the in vivo interaction between CDC20 and MAD2 and increases the sensitivities of cancer cell lines to anti-mitotic drugs via MCL-1s. Cell Div 2019; 14:5. [PMID: 31249607 PMCID: PMC6570884 DOI: 10.1186/s13008-019-0049-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023] Open
Abstract
Background Drugs such as taxanes, epothilones, and vinca alkaloids are widely used in the treatment of breast, ovarian, and lung cancers but come with major side effects such as neuropathy and loss of neutrophils and as single agents have a lack of efficacy. M2I-1 (MAD2 inhibitor-1) has been shown to disrupt the CDC20-MAD2 interaction, and consequently, the assembly of the mitotic checkpoint complex (MCC). Results We report here that M2I-1 can significantly increase the sensitivity of several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged mitotic arrest. In the presence of nocodazole or taxol combined with M2I-1 cell death is triggered by the premature degradation of Cyclin B1, the perturbation of the microtubule network, and an increase in the level of the pro-apoptotic protein MCL-1s combined with a marginal increase in the level of NOXA. The elevated level of MCL-1s and the marginally increased NOXA antagonized the increased level of MCL-1, a pro-survival protein of the Bcl-2 family. Conclusion Our results provide some important molecular mechanisms for understanding the relationship between the mitotic checkpoint and programmed cell death and demonstrate that M2I-1 exhibits antitumor activity in the presence of current anti-mitotic drugs such as taxol and nocodazole and has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Jianquan Li
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK.,3Present Address: Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Nanmao Dang
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Nuria Martinez-Lopez
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Paul A Jowsey
- 2Medical Toxicology Centre, Institute of Cellular Medicine, NIHR Health Protection Research Unit, Newcastle University, Claremont Place, Newcastle upon Tyne, NE1 4AA UK
| | - Dong Huang
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK.,4Present Address: Department of Pediatric Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Robert N Lightowlers
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Fei Gao
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Jun-Yong Huang
- 1Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
28
|
Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol 2019; 29:865-873.e3. [PMID: 30773364 DOI: 10.1016/j.cub.2018.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
Collapse
|
29
|
Naaz A, Ahad S, Rai A, Surolia A, Panda D. BubR1 depletion delays apoptosis in the microtubule-depolymerized cells. Biochem Pharmacol 2018; 162:177-190. [PMID: 30468712 DOI: 10.1016/j.bcp.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
We investigated the role of a spindle assembly checkpoint protein, BubR1, in determining the mechanism of cell killing of an anti-microtubule agent CXI-benzo-84. CXI-benzo-84 dampened microtubule dynamics in live MCF-7 cells. The compound arrested MCF-7 cells in mitosis and induced apoptosis in these cells. Though CXI-benzo-84 efficiently depolymerized microtubules in the BubR1-depleted MCF-7 cells, it did not arrest the BubR1-depleted cells at mitosis. Interestingly, apoptosis occurred in the BubR1-depleted MCF-7 cells in the absence of a mitotic block suggesting that the mitotic block is not a prerequisite for the induction of apoptosis by anti-microtubule agents. In the presence of CXI-Benzo-84, the level of apoptosis was initially found to be lesser in the BubR1-depleted MCF-7 cells than the control cells; however, the BubR1-depleted cells displayed a similar level of apoptosis as the control cells at 72 h of drug treatment. The depletion of BubR1 enhanced DNA damage in MCF-7 cells upon microtubule depolymerization. In addition, CXI-benzo-84 in combination with cisplatin induced more cell death in BubR1-depleted cells than the BubR1-expressing MCF-7 cells. The results indicated a possibility that the BubR1-compromised cancer patients can be treated with combination therapy.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shazia Ahad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
30
|
Lin NKH, Nance R, Szybist J, Cheville A, Paliulis LV. Micromanipulation of Chromosomes in Insect Spermatocytes. J Vis Exp 2018. [PMID: 30394368 DOI: 10.3791/57359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The micromanipulation of chromosomes has been an essential method for illuminating the mechanism for chromosome congression, the spindle checkpoint, and anaphase chromosome movements, and has been key to understanding what controls chromosome movements during a cell division. A skilled biologist can use a micromanipulator to detach chromosomes from the spindle, to reposition chromosomes within the cell, and to apply forces to chromosomes using a small glass needle with a very fine tip. While perturbations can be made to chromosomes using other methods such as optical trapping and other uses of a laser, to date, no other method allows the repositioning of cellular components on the scale of tens to hundreds of microns with little to no damage to the cell. The selection and preparation of appropriate cells for the micromanipulation of chromosomes, specifically describing the preparation of grasshopper and cricket spermatocyte primary cultures for the use in live-cell imaging and micromanipulation, are described here. In addition, we show the construction of a needle to be used for moving chromosomes within the cell, and the use of a joystick-controlled piezoelectric micromanipulator with a glass needle attached to it to reposition chromosomes within dividing cells. A sample result shows the use of a micromanipulator to detach a chromosome from a spindle in a primary spermatocyte and to reposition that chromosome within the cell.
Collapse
Affiliation(s)
| | - Ryder Nance
- Department of Electrical and Computer Engineering, Bucknell University
| | - Jane Szybist
- Department of Electrical and Computer Engineering, Bucknell University
| | - Alan Cheville
- Department of Electrical and Computer Engineering, Bucknell University
| | | |
Collapse
|
31
|
Abstract
The spindle assembly checkpoint (SAC) is crucial to maintain genomic stability since it prevents premature separation of sister chromatids in mitosis and ensures the fidelity of chromosome segregation. The SAC arrests cells in mitosis and is not satisfied until all kinetochores are stably attached to the mitotic spindle. Improperly attached kinetochores activate the SAC and catalyze the formation of the mitotic checkpoint complex (MCC), containing Mad2, Cdc20, BubR1, and Bub3 proteins. The MCC binds and thereby inhibits the APC/C E3 ubiquitin ligase until the last kinetochore has attached to microtubules. Once the SAC is satisfied, the APC/C promptly activates and targets cyclin B1 and securin for degradation, thus allowing sister chromatids to separate and the cell to exit mitosis. Our understanding of SAC signaling has increased thanks to the development of new genetic, biochemical, molecular, and structural biology techniques. Here, we describe how live-cell imaging microscopy in combination with gene-targeting strategies and biochemical assays can be exploited to investigate the intrinsic properties of the SAC in mammalian cultured cells.
Collapse
|
32
|
Abstract
Chromosome segregation relies on forces generated by spindle microtubules that are translated into chromosome movement through interactions with kinetochores, highly conserved macromolecular machines that assemble on a specialized centromeric chromatin structure. Kinetochores not only have to stably attach to growing and shrinking microtubules, but they also need to recruit spindle assembly checkpoint proteins to halt cell cycle progression when there are attachment defects. Even the simplest kinetochore in budding yeast contains more than 50 unique components that are present in multiple copies, totaling more than 250 proteins in a single kinetochore. The complex nature of kinetochores makes it challenging to elucidate the contributions of individual components to its various functions. In addition, it is difficult to manipulate forces in vivo to understand how they regulate kinetochore-microtubule attachments and the checkpoint. To address these issues, we developed a technique to purify kinetochores from budding yeast that can be used to analyze kinetochore functions and composition as well as to reconstitute kinetochore-microtubule attachments in vitro.
Collapse
|
33
|
Abstract
Cell division involves mechanical processes, such as chromosome transport and centrosome separation. Quantitative micromanipulation-based approaches have been central to dissecting the forces driving these processes. We highlight two biophysical assays that can be employed for such analyses. First, an in vitro "mini-spindle" assay is described that can be used to examine the collective mechanics of mitotic motor proteins cross-linking two microtubules. In the spindle, motor proteins (e.g., kinesin-5, kinesin-14, and dynein) can localize to overlapping microtubules that slide relative to each other, work as an ensemble, and equilibrate between cytoplasm and the microtubules. The "mini-spindle" assay can recapitulate these features and allows measurements of forces generated between adjacent microtubules and their dependence on filament orientation, sliding speed, overlap length, and motor protein density. Second, we describe a force-calibrated microneedle-based "whole-spindle" micromechanics assay. Microneedle-based micromanipulation can be a useful technique to examine cellular scale mechanics, but its use has been restricted by the difficulty in getting probes to penetrate the plasma membrane without disrupting cell physiology. As detailed here, the use of cell-free extracts prepared from metaphase-arrested Xenopus eggs can address this limitation. These micromanipulation studies also benefit from the use of frozen stocks of Xenopus egg extract. Together, these approaches can be used to decipher how micromechanics and biochemical activities ensure successful cell division.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
34
|
Klemm AH, Bosilj A, Gluncˇic M, Pavin N, Tolic IM. Metaphase kinetochore movements are regulated by kinesin-8 motors and microtubule dynamic instability. Mol Biol Cell 2018; 29:1332-1345. [PMID: 29851559 PMCID: PMC5994901 DOI: 10.1091/mbc.e17-11-0667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.
Collapse
Affiliation(s)
- Anna H Klemm
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Agneza Bosilj
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Matko Gluncˇic
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva M Tolic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Division of Molecular Biology, Rud¯er Boškovic´ Institute, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Alignment of Mitotic Chromosomes in Human Cells Involves SR-Like Splicing Factors Btf and TRAP150. Int J Mol Sci 2017; 18:ijms18091956. [PMID: 28895891 PMCID: PMC5618605 DOI: 10.3390/ijms18091956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/25/2022] Open
Abstract
Serine-arginine-rich (SR) or SR-like splicing factors interact with exon junction complex proteins during pre-mRNA processing to promote mRNA packaging into mature messenger ribonucleoproteins (mRNPs) and to dictate mRNA stability, nuclear export, and translation. The SR protein family is complex, and while many classical SR proteins have well-defined mRNA processing functions, those of other SR-like proteins is unclear. Here, we show that depletion of the homologous non-classical serine-arginine-rich (SR) splicing factors Bcl2-associated transcription factor (Btf or BCLAF) and thyroid hormone receptor-associated protein of 150 kDa (TRAP150) causes mitotic defects. We hypothesized that the depletion of these SR-like factors affects mitosis indirectly through an altered expression of mitotic checkpoint regulator transcripts. We observed an altered abundance of transcripts that encode mitotic regulators and mitotic chromosome misalignment defects following Btf and/or TRAP150 depletion. We propose that, in addition to their previously reported roles in maintaining mRNA distribution, Btf and TRAP150 control the abundance of transcripts encoding mitotic regulators, thereby affecting mitotic progression in human cells.
Collapse
|
36
|
Tubman ES, Biggins S, Odde DJ. Stochastic Modeling Yields a Mechanistic Framework for Spindle Attachment Error Correction in Budding Yeast Mitosis. Cell Syst 2017; 4:645-650.e5. [PMID: 28601560 DOI: 10.1016/j.cels.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 03/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Proper segregation of the replicated genome requires that kinetochores form and maintain bioriented, amphitelic attachments to microtubules from opposite spindle poles and eliminate erroneous, syntelic attachments to microtubules from the same spindle pole. Phosphorylation of kinetochore proteins destabilizes low-tension kinetochore-microtubule attachments, yet tension stabilizes bioriented attachments. This conundrum for forming high-tension amphitelic attachments is recognized as the "initiation problem of biorientation (IPBO)." A delay before kinetochore-microtubule detachment solves the IPBO, but it lacks a mechanistic framework. We developed a stochastic mathematical model for kinetochore-microtubule error correction in yeast that reveals: (1) under low chromatin tension, requiring a large number of phosphorylation events at multiple sites to achieve detachment provides the necessary delay; and (2) kinetochore-induced microtubule depolymerization generates tension in amphitelic, but not syntelic, attachments. With these requirements, the model provides a mechanistic framework for the delay before detachment to solve the IPBO and demonstrates the high degree of amphitely observed experimentally for wild-type spindles under optimal conditions.
Collapse
Affiliation(s)
- Emily S Tubman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
37
|
Moura M, Osswald M, Leça N, Barbosa J, Pereira AJ, Maiato H, Sunkel CE, Conde C. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing. eLife 2017; 6. [PMID: 28463114 PMCID: PMC5433843 DOI: 10.7554/elife.25366] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit. DOI:http://dx.doi.org/10.7554/eLife.25366.001
Collapse
Affiliation(s)
- Margarida Moura
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mariana Osswald
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nelson Leça
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - António J Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Unidade de Biologia Experimental, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
38
|
Tao J, Li Y, Vig DK, Sun SX. Cell mechanics: a dialogue. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:036601. [PMID: 28129208 PMCID: PMC5518794 DOI: 10.1088/1361-6633/aa5282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.
Collapse
Affiliation(s)
- Jiaxiang Tao
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore MD, United States of America
| | - Yizeng Li
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| | - Dhruv K Vig
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| | - Sean X Sun
- Departments of Mechanical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
- Physical Sciences in Oncology Center, Johns Hopkins University, Baltimore MD, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore MD, United States of America
| |
Collapse
|
39
|
Li J, Dang N, Wood DJ, Huang JY. The kinetochore-dependent and -independent formation of the CDC20-MAD2 complex and its functions in HeLa cells. Sci Rep 2017; 7:41072. [PMID: 28112196 PMCID: PMC5253641 DOI: 10.1038/srep41072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint complex (MCC) is formed from two sub-complexes of CDC20-MAD2 and BUBR1-BUB3, and current models suggest that it is generated exclusively by the kinetochores after nuclear envelope breakdown (NEBD). However, neither sub-complex has been visualised in vivo, and when and where they are formed during the cell cycle and their response to different SAC conditions remains elusive. Using single cell analysis in HeLa cells, we show that the CDC20-MAD2 complex is cell cycle regulated with a “Bell” shaped profile and peaks at prometaphase. Its formation begins in early prophase before NEBD when the SAC has not been activated. The complex prevents the premature degradation of cyclin B1. Tpr, a component of the NPCs (nuclear pore complexes), facilitates the formation of this prophase form of the CDC20-MAD2 complex but is inactive later in mitosis. Thus, we demonstrate that the CDC20-MAD2 complex could also be formed independently of the SAC. Moreover, in prolonged arrest caused by nocodazole treatment, the overall levels of the CDC20-MAD2 complex are gradually, but significantly, reduced and this is associated with lower levels of cyclin B1, which brings a new insight into the mechanism of mitotic “slippage” of the arrested cells.
Collapse
Affiliation(s)
- Jianquan Li
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Nanmao Dang
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel James Wood
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jun-Yong Huang
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
40
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
41
|
Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore. Nat Commun 2016; 7:13221. [PMID: 27762268 PMCID: PMC5080440 DOI: 10.1038/ncomms13221] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022] Open
Abstract
High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore–microtubule (kt–MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1–2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores. Chromosomes bind microtubules (MT) from opposite spindle poles and the generated tension stabilizes kinetochore-MT attachments. Here the authors measure kinetochore forces by engineering two force sensors and propose that kinetochore fibers exert hundreds of pNs of force to bioriented kinetochores.
Collapse
|
42
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
43
|
Foss KM, Robeson AC, Kornbluth S, Zhang L. Mitotic phosphatase activity is required for MCC maintenance during the spindle checkpoint. Cell Cycle 2016; 15:225-33. [PMID: 26652909 DOI: 10.1080/15384101.2015.1121331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The spindle checkpoint prevents activation of the anaphase-promoting complex (APC/C) until all chromosomes are correctly attached to the mitotic spindle. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C by binding the APC/C activating protein CDC20 until the chromosomes are properly aligned and attached to the mitotic spindle, at which point MCC disassembly releases CDC20 to activate the APC/C. Once the APC/C is activated, it targets cyclin B and securin for degradation, and the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. We sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined the effect on the MCC and APC/C activation. Using this approach we found that 2 phosphatase inhibitors, calyculin A and okadaic acid (1 μM), caused MCC dissociation and APC/C activation leading to cyclin A and B degradation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.
Collapse
Affiliation(s)
- Kristen M Foss
- a Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , NC , USA
| | - Alexander C Robeson
- a Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , NC , USA
| | - Sally Kornbluth
- a Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , NC , USA
| | - Liguo Zhang
- a Department of Pharmacology and Cancer Biology , Duke University Medical Center , Durham , NC , USA.,b Division of Medical Oncology , Department of Medicine, Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
44
|
Identification of Tension Sensing Motif of Histone H3 in Saccharomyces cerevisiae and Its Regulation by Histone Modifying Enzymes. Genetics 2016; 204:1029-1043. [PMID: 27672091 DOI: 10.1534/genetics.116.192443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
To ensure genome stability during cell division, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies before segregation. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. In budding yeast, the residue Gly44 of histone H3 is critical for retaining the conserved Shugoshin protein Sgo1p at the pericentromeres for monitoring the tension status during mitosis. Studies carried out in this work showed that Lys42, Gly44, and Thr45 of H3 form the core of a tension sensing motif (TSM). Similar to the previously reported G44S mutant, K42A, G44A, and T45A alleles all rendered cells unable to respond to erroneous spindle attachment, a phenotype suppressed by Sgo1p overexpression. TSM functions by physically recruiting or retaining Sgo1p at pericentromeres as evidenced by chromatin immunoprecipitation and by in vitro pulldown experiments. Intriguingly, the function of TSM is likely regulated by multiple histone modifying enzymes, including the histone acetyltransferase Gcn5p, and deacetylases Rpd3p and Hos2p Defects caused by TSM mutations can be suppressed by the expression of a catalytically inactive mutant of Gcn5p Conversely, G44S mutant cells exhibit prominent chromatin instability phenotype in the absence of RPD3 Importantly, the gcn5- suppressor restores the tension sensing function in tsm- background in a fashion that bypasses the need of stably associating Sgo1p with chromatin. These results demonstrate that the TSM of histone H3 is a key component of a mechanism that ensures faithful segregation, and that interaction with chromatin modifying enzymes may be an important part of the mitotic quality control process.
Collapse
|
45
|
Percival SM, Parant JM. Observing Mitotic Division and Dynamics in a Live Zebrafish Embryo. J Vis Exp 2016:10.3791/54218. [PMID: 27501381 PMCID: PMC6082026 DOI: 10.3791/54218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitosis is critical for organismal growth and differentiation. The process is highly dynamic and requires ordered events to accomplish proper chromatin condensation, microtubule-kinetochore attachment, chromosome segregation, and cytokinesis in a small time frame. Errors in the delicate process can result in human disease, including birth defects and cancer. Traditional approaches investigating human mitotic disease states often rely on cell culture systems, which lack the natural physiology and developmental/tissue-specific context advantageous when studying human disease. This protocol overcomes many obstacles by providing a way to visualize, with high resolution, chromosome dynamics in a vertebrate system, the zebrafish. This protocol will detail an approach that can be used to obtain dynamic images of dividing cells, which include: in vitro transcription, zebrafish breeding/collecting, embryo embedding, and time-lapse imaging. Optimization and modifications of this protocol are also explored. Using H2A.F/Z-EGFP (labels chromatin) and mCherry-CAAX (labels cell membrane) mRNA-injected embryos, mitosis in AB wild-type, auroraB(hi1045) (,) and esco2(hi2865) mutant zebrafish is visualized. High resolution live imaging in zebrafish allows one to observe multiple mitoses to statistically quantify mitotic defects and timing of mitotic progression. In addition, observation of qualitative aspects that define improper mitotic processes (i.e., congression defects, missegregation of chromosomes, etc.) and improper chromosomal outcomes (i.e., aneuploidy, polyploidy, micronuclei, etc.) are observed. This assay can be applied to the observation of tissue differentiation/development and is amenable to the use of mutant zebrafish and pharmacological agents. Visualization of how defects in mitosis lead to cancer and developmental disorders will greatly enhance understanding of the pathogenesis of disease.
Collapse
Affiliation(s)
- Stefanie M Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham;
| |
Collapse
|
46
|
Cenp-E inhibitor GSK923295: Novel synthetic route and use as a tool to generate aneuploidy. Oncotarget 2016; 6:20921-32. [PMID: 26320186 PMCID: PMC4673239 DOI: 10.18632/oncotarget.4879] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022] Open
Abstract
Aneuploidy is a common feature of cancer, with human solid tumour cells typically harbouring abnormal chromosome complements. The aneuploidy observed in cancer is often caused by a chromosome instability phenotype, resulting in genomic heterogeneity. However, the role aneuploidy and chromosome instability play in tumour evolution and chemotherapy response remains poorly understood. In some contexts, aneuploidy has oncogenic effects, whereas in others it is anti-proliferative and tumour-suppressive. Dissecting fully the role aneuploidy plays in tumourigenesis requires tools and facile assays that allow chromosome missegregation to be induced experimentally in cells that are otherwise diploid and chromosomally stable. Here, we describe a chemical biology approach that induces low-level aneuploidy across a large population of cells. Specifically, cells are first exposed to GSK923295, an inhibitor targeting the mitotic kinesin Cenp-E; while the majority of chromosomes align at the cell's equator, a small number cluster near the spindle poles. By then driving these cells into anaphase using AZ3146, an inhibitor targeting the spindle checkpoint kinase Mps1, the polar chromosomes are missegregated. This results in, on average, two chromosome missegregation events per division, and avoids trapping chromosomes in the spindle midzone, which could otherwise lead to DNA damage. We also describe an efficient route for the synthesis of GSK923295 that employs a novel enzymatic resolution. Together, the approaches described here open up new opportunities for studying cellular responses to aneuploidy.
Collapse
|
47
|
Schibler A, Koutelou E, Tomida J, Wilson-Pham M, Wang L, Lu Y, Cabrera AP, Chosed RJ, Li W, Li B, Shi X, Wood RD, Dent SYR. Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes Dev 2016; 30:1187-97. [PMID: 27198228 PMCID: PMC4888839 DOI: 10.1101/gad.278887.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Schibler et al. show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. Interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition. Histone H3 methylation on Lys4 (H3K4me) is associated with active gene transcription in all eukaryotes. In Saccharomyces cerevisiae, Set1 is the sole lysine methyltransferase required for mono-, di-, and trimethylation of this site. Although H3K4me3 is linked to gene expression, whether H3K4 methylation regulates other cellular processes, such as mitosis, is less clear. Here we show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. These proteins inhibit Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mutations in Cdc20 that block Mad2 interactions suppress the benomyl resistance of both set1 and H3K4 mutant cells. Furthermore, the HORMA domain in Mad2 directly binds H3, identifying a new histone H3 “reader” motif. Mad2 undergoes a conformational change important for execution of the SAC. We found that the closed (active) conformation of both yeast and human Mad2 is capable of binding methylated H3K4, but, in contrast, the open (inactive) Mad2 conformation limits interaction with methylated H3. Collectively, our data indicate that interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition.
Collapse
Affiliation(s)
- Andria Schibler
- Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Evangelia Koutelou
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Environmental and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marenda Wilson-Pham
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Wang
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alexa Parra Cabrera
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Renee J Chosed
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenqian Li
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Bing Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaobing Shi
- Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Richard D Wood
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Environmental and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Sharon Y R Dent
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| |
Collapse
|
48
|
Etemad B, Kops GJPL. Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 2016; 39:101-8. [PMID: 26947988 DOI: 10.1016/j.ceb.2016.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the kinetochores of all chromosomes are established. The anaphase inhibitor is generated at unattached kinetochores and inhibitor production is prevented when microtubules are captured. Understanding the molecular changes in the kinetochore that are evoked by microtubule attachments is crucial for understanding the mechanisms of SAC signaling and silencing. Here, we highlight the most recent findings on these events, pinpoint some remaining mysteries, and argue for incorporating holistic views of kinetochore dynamics in order to understand SAC silencing.
Collapse
Affiliation(s)
- Banafsheh Etemad
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
49
|
Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun 2015; 6:8987. [PMID: 26621779 PMCID: PMC4686852 DOI: 10.1038/ncomms9987] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023] Open
Abstract
The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule attachment or the force generated by dynamic microtubules that signals stable biorientation of chromosomes? To answer this, we uncoupled these two processes by expressing a non-phosphorylatable version of the main microtubule-binding protein at kinetochores (HEC1-9A), causing stabilization of incorrect kinetochore-microtubule attachments despite persistent activity of the error-correction machinery. The SAC is fully functional in HEC1-9A-expressing cells, yet cells in which chromosomes cannot biorient but are stably attached to microtubules satisfy the SAC and exit mitosis. SAC satisfaction requires neither intra-kinetochore stretching nor dynamic microtubules. Our findings support the hypothesis that in human cells the end-on interactions of microtubules with kinetochores are sufficient to satisfy the SAC without the need for microtubule-based pulling forces.
Collapse
|
50
|
Kim HH, Song HK, Lee BJ, Park SJ. Structural stability of CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.2.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|