1
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
2
|
Chen R, Yan H, Zhao KN, Martinac B, Liu GB. Comprehensive analysis of prokaryotic mechanosensation genes: their characteristics in codon usage. ACTA ACUST UNITED AC 2007; 18:269-78. [PMID: 17541832 DOI: 10.1080/10425170601136564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present study, we examined GC nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI) and gene length for 308 prokaryotic mechanosensitive ion channel (MSC) genes from six evolutionary groups: Euryarchaeota, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria. Results showed that: (1) a wide variation of overrepresentation of nucleotides exists in the MSC genes; (2) codon usage bias varies considerably among the MSC genes; (3) both nucleotide constraint and gene length play an important role in shaping codon usage of the bacterial MSC genes; and (4) synonymous codon usage of prokaryotic MSC genes is phylogenetically conserved. Knowledge of codon usage in prokaryotic MSC genes may benefit from the study of the MSC genes in eukaryotes in which few MSC genes have been identified and functionally analysed.
Collapse
Affiliation(s)
- Rong Chen
- School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Martinac B, Kloda A. Evolutionary origins of mechanosensitive ion channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:11-24. [PMID: 12732265 DOI: 10.1016/s0079-6107(03)00002-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.
Collapse
Affiliation(s)
- Boris Martinac
- Department of Pharmacology, QEII Medical Center, The University of Western Australia, WA 6009, Crawley, Australia.
| | | |
Collapse
|
4
|
Ye X, Ou J, Ni L, Shi W, Shen P. Characterization of a novel plasmid from extremely halophilic Archaea: nucleotide sequence and function analysis. FEMS Microbiol Lett 2003; 221:53-7. [PMID: 12694910 DOI: 10.1016/s0378-1097(03)00175-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We determined the complete nucleotide sequence of the 16341 bp plasmid pHH205 of the extremely halophilic archaeon Halobacterium salinarum J7. The plasmid has a G+C content of 61.1%. A number of direct and inverted repeat sequences were found in pHH205, while no insertion sequences were found. Thirty-eight large open reading frames (ORFs) were identified in both strands, and most of them had no significant similarities to known proteins. A putative protein encoded by ORF31 showed 20-41% homology to some hypothetical proteins, which are annotated in several archaeal genome databases as predicted nucleic acid-binding proteins containing PIN domain. Sequence analysis using the GC skew procedure predicted a possible origin of replication. A 4.8 kb PvuII-SnaBI fragment containing both this region and ORF31 was shown to be able to restore replicate of pWL102, a replicon-deficient plasmid in Haloferax volcanii and in H. salinarum R1. Several methods failed to completely cure H. salinarum J7 of pHH205, suggesting that the plasmid probably played an important role in the growth and metabolism of the host. Our work describes a novel haloarchaeal replicon, which may be useful in the construction of cloning and shuttle vectors.
Collapse
Affiliation(s)
- Xuecheng Ye
- Department of Microbiology, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
5
|
Cann IK, Ishino S, Nomura N, Sako Y, Ishino Y. Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote. J Bacteriol 1999; 181:5984-92. [PMID: 10498710 PMCID: PMC103625 DOI: 10.1128/jb.181.19.5984-5992.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3'-->5' exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80 degrees C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95 degrees C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism. Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol BI proposed in this review from family B enzyme) was reported. This observation suggested that either a single DNA polymerase performs the task of replicating the genome and repairing the mutations or these genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a heterodimeric DNA polymerase (Pol II, or Pol D as proposed in this review) was discovered in the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of Pol II (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase delta. DP2 protein, the large subunit of Pol II (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer extension ability in vitro, Pol II (Pol D) may yet require accessory proteins to perform all of its functions in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases and their relationship with those accessory proteins, which were predicted from the genome sequences.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
7
|
Gupta RS. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435-91. [PMID: 9841678 PMCID: PMC98952 DOI: 10.1128/mmbr.62.4.1435-1491.1998] [Citation(s) in RCA: 384] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
8
|
Ishino Y, Cann IK. The euryarchaeotes, a subdomain of Archaea, survive on a single DNA polymerase: fact or farce? Genes Genet Syst 1998; 73:323-36. [PMID: 10333564 DOI: 10.1266/ggs.73.323] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Archaea is now recognized as the third domain of life. Since their discovery, much effort has been directed towards understanding the molecular biology and biochemistry of Archaea. The objective is to comprehend the complete structure and the depth of the phylogenetic tree of life. DNA replication is one of the most important events in living organisms and DNA polymerase is the key enzyme in the molecular machinery which drives the process. All archaeal DNA polymerases were thought to belong to family B. This was because all of the products of pol genes that had been cloned showed amino acid sequence similarities to those of this family, which includes three eukaryal DNA replicases and Escherichia coli DNA polymerase II. Recently, we found a new heterodimeric DNA polymerase from the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for the subunits of this DNA polymerase are conserved in the euryarchaeotes whose genomes have been completely sequenced. The biochemical characteristics of the novel DNA polymerase family suggest that its members play an important role in DNA replication within euryarchaeal cells. We review here our current knowledge on DNA polymerases in Archaea with emphasis on the novel DNA polymerase discovered in Euryarchaeota.
Collapse
Affiliation(s)
- Y Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Osaka, Japan
| | | |
Collapse
|
9
|
Affiliation(s)
- T F Smith
- BioMolecular Engineering Research Center, College of Engineering, Boston University, MA 02215, USA
| |
Collapse
|
10
|
Juretić D, Zucić D, Lucić B, Trinajstić N. Preference functions for prediction of membrane-buried helices in integral membrane proteins. COMPUTERS & CHEMISTRY 1998; 22:279-94. [PMID: 9680689 DOI: 10.1016/s0097-8485(97)00070-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The preference functions method is described for prediction of membrane-buried helices in membrane proteins. Preference for the alpha-helix conformation of amino acid residue in a sequence is a non-linear function of average hydrophobicity of its sequence neighbors. Kyte-Doolittle hydropathy values are used to extract preference functions from a training data set of integral membrane proteins of partially known secondary structure. Preference functions for beta-sheet, turn and undefined conformation are also extracted by including beta-class soluble proteins of known structure in the training data set. Conformational preferences are compared in tested sequence for each residue and predicted secondary structure is associated with the highest preference. This procedure is incorporated in an algorithm that performs accurate prediction of transmembrane helical segments. Correct sequence location and secondary structure of transmembrane segments is predicted for 20 of 21 reference membrane polypeptides with known crystal structure that were not included in the training data set. Comparison with hydrophobicity plots revealed that our preference profiles are more accurate and exhibit higher resolution and less noise. Shorter unstable or movable membrane-buried alpha-helices are also predicted to exist in different membrane proteins with transport function. For instance, in the sequence of voltage-gated ion channels and glutamate receptors, N-terminal parts of known P-segments can be located as characteristic alpha-helix preference peaks. Our e-mail server: predict@drava.etfos.hr, returns a preference profile and secondary structure prediction for a suspected or known membrane protein when its sequence is submitted.
Collapse
Affiliation(s)
- D Juretić
- Physics Department, Faculty of Science and Education, University of Split, Croatia.
| | | | | | | |
Collapse
|
11
|
Ishino Y, Komori K, Cann IK, Koga Y. A novel DNA polymerase family found in Archaea. J Bacteriol 1998; 180:2232-6. [PMID: 9555910 PMCID: PMC107154 DOI: 10.1128/jb.180.8.2232-2236.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1997] [Accepted: 01/22/1998] [Indexed: 02/07/2023] Open
Abstract
One of the most puzzling results from the complete genome sequence of the methanogenic archaeon Methanococcus jannaschii was that the organism may have only one DNA polymerase gene. This is because no other DNA polymerase-like open reading frames (ORFs) were found besides one ORF having the typical alpha-like DNA polymerase (family B). Recently, we identified the genes of DNA polymerase II (the second DNA polymerase) from the hyperthermophilic archaeon Pyrococcus furiosus, which has also at least one alpha-like DNA polymerase (T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, Genes Cells 2:499-512, 1997). The genes in M. jannaschii encoding the proteins that are homologous to the DNA polymerase II of P. furiosus have been located and cloned. The gene products of M. jannaschii expressed in Escherichia coli had both DNA polymerizing and 3'-->5' exonuclease activities. We propose here a novel DNA polymerase family which is entirely different from other hitherto-described DNA polymerases.
Collapse
Affiliation(s)
- Y Ishino
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
12
|
|
13
|
Janecek S. Sequence of archaeal Methanococcus jannaschii alpha-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor? Folia Microbiol (Praha) 1998; 43:123-8. [PMID: 9721603 DOI: 10.1007/bf02816496] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two sequentially different, seemingly unrelated alpha-amylase families exist, known as family-13 and family-57 glycosyl hydrolases. Despite the common enzyme activity, it has as yet been impossible to detect any sequence similarity between the two families. The detailed analysis of the recently determined sequence of the alpha-amylase from methanogenic archaeon Methanococcus jannaschii using the sensitive Hydrophobic Cluster Analysis method revealed that this alpha-amylase contains features of both families of alpha-amylases. Thus the M. jannaschii alpha-amylase is similar to the Pyrococcus furiosus alpha-amylase from family 57 while it obviously contains most of the sequence fingerprints characteristic for alpha-amylase family 13. Importantly, a glutamic acid residue equivalent with the family-13 catalytic glutamate positioned in the beta 5-strand segment was identified in members of family 57. The results presented in this report indicate that the two families, 13 and 57, are either the products of a very distant common ancestor or have evolved from each other, although at present they can represent two different alpha-amylase families with evolved different catalytic mechanisms, catalytic machinery and folds.
Collapse
Affiliation(s)
- S Janecek
- Institute of Microbiology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
14
|
Selkov E, Maltsev N, Olsen GJ, Overbeek R, Whitman WB. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data. Gene 1997; 197:GC11-26. [PMID: 9332394 DOI: 10.1016/s0378-1119(97)00307-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interpretation of the Methanococcus jannaschii genome will inevitably require many years of effort. This initial attempt to connect the sequence data to aspects of known biochemistry and to provide an overview of what is already apparent from the sequence data will be refined. Numerous issues remain that can be resolved only by direct biochemical analysis. Let us draw the reader's attention to just a few that might be considered central: (1) We are still missing key enzymes from the glycolytic pathway, and the conjecture is that this is due to ADP-dependency. The existence of glycolytic activity in the cell-free extract should be tested. (2) The issue of whether the Calvin cycle is present needs to be examined. (3) We need to determine whether the 2-oxoglutarate synthase (ferredoxin-dependent) (EC 1.2.7.3) activity is present. (4) The issue of whether cyclic 2,3-bisphosphate is detectable in the cell-free extracts needs to be checked. If it is, this result would confirm our assertion of the two pathways controlling synthesis and degradation of cyclic 2,3-bisphosphate.
Collapse
Affiliation(s)
- E Selkov
- Mathematics and Computer Science Division, Argonne National Laboratory, IL 60439-4844, USA.
| | | | | | | | | |
Collapse
|