1
|
Garcês A, Pires I, Garcês S. Ancient Diseases in Vertebrates: Tumours through the Ages. Animals (Basel) 2024; 14:1474. [PMID: 38791691 PMCID: PMC11117314 DOI: 10.3390/ani14101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Paleo-oncology studies neoplastic diseases in fossilised animals, including human remains. Recent advancements have enabled more accurate diagnoses of ancient pathologies despite the inherent challenges in identifying tumours in fossils-such as the rarity of well-preserved specimens, the predominance of bone remains, and the difficulty in distinguishing neoplastic from non-neoplastic lesions. This study compiles reports of tumours in fossilised animals, highlighting that neoplasms are present in a wide range of vertebrates and drawing comparisons to modern instances of similar diseases. The findings underscore the multifactorial aetiology of tumours, which involves genetic, environmental, and lifestyle factors, and suggest that tumours have been around for at least 350 million years.
Collapse
Affiliation(s)
- Andreia Garcês
- Exotic and Wildlife Service, Veterinary Hospital University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Isabel Pires
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science—AL4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Sara Garcês
- Earth and Memory Institute, 6120-750 Mação, Portugal;
- Polytechnic Institute of Tomar (IPT), Geosciences Center (UID73), 2300-000 Tomar, Portugal
- Geosciences Centre, University of Coimbra (u. ID73–FCT), 3001-401 Coimbra, Portugal
| |
Collapse
|
2
|
Werneburg I, Preuschoft H. Evolution of the temporal skull openings in land vertebrates: A hypothetical framework on the basis of biomechanics. Anat Rec (Hoboken) 2024; 307:1559-1593. [PMID: 38197580 DOI: 10.1002/ar.25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
The complex constructions of land vertebrate skulls have inspired a number of functional analyses. In the present study, we provide a basic view on skull biomechanics and offer a framework for more general observations using advanced modeling approaches in the future. We concentrate our discussion on the cranial openings in the temporal skull region and work out two major, feeding-related factors that largely influence the shape of the skull. We argue that (1) the place where the most forceful biting is conducted and (2) the handling of resisting food (sideward movements) constitute the formation and shaping of either one or two temporal arcades surrounding these openings. Diversity in temporal skull anatomy among amniotes can be explained by specific modulations of these factors with different amounts of acting forces which inevitably lead to deposition or reduction of bone material. For example, forceful anterior bite favors an infratemporal bar, whereas forceful posterior bite favors formation of an upper temporal arcade. Transverse forces (inertia and resistance of seized objects) as well as neck posture also influence the shaping of the temporal region. Considering their individual skull morphotypes, we finally provide hypotheses on the feeding adaptation in a variety of major tetrapod groups. We did not consider ligaments, internal bone structure, or cranial kinesis in our considerations. Involving those in quantitative tests of our hypotheses, such as finite element system synthesis, will provide a comprehensive picture on cranial mechanics and evolution in the future.
Collapse
Affiliation(s)
- Ingmar Werneburg
- Paläontologische Sammlung, Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
| | - Holger Preuschoft
- Funktionelle Morphologie im Anatomischen Institut, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
3
|
Pedro Selvatti A, Romero Rebello Moreira F, Cardoso de Carvalho D, Prosdocimi F, Augusta de Moraes Russo C, Carolina Martins Junqueira A. Phylogenomics reconciles molecular data with the rich fossil record on the origin of living turtles. Mol Phylogenet Evol 2023; 183:107773. [PMID: 36977459 DOI: 10.1016/j.ympev.2023.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/07/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Although a consensus exists that all living turtles fall within either Pleurodira or Cryptodira clades, estimating when these lineages split is still under debate. Most molecular studies date the split in the Triassic Period, whereas a Jurassic age is unanimous among morphological studies. Each hypothesis implies different paleobiogeographical scenarios to explain early turtle evolution. Here we explored the rich turtle fossil record with the Fossilized Birth-Death (FBD) and the traditional node dating (ND) methods using complete mitochondrial genomes (147 taxa) and a set of nuclear orthologs with over 10 million bp (25 taxa) to date the major splits in Testudines. Our results support an Early Jurassic split (191-182 Ma) for the crown Testudines with great consistency across different dating methods and datasets, with a narrow confidence interval. This result is independently supported by the oldest fossils of Testudines that postdate the Middle Jurassic (174 Ma), which were not used for calibration in this study. This age coincides with the Pangaea fragmentation and the formation of saltwater barriers such as the Atlantic Ocean and the Turgai Strait, supporting that diversification in Testudines was triggered by vicariance. Our ages of the splits in Pleurodira coincide with the geologic events of the Late Jurassic and Early Cretaceous. Conversely, the early Cryptodira radiation remained in Laurasia, and its diversification ensued as all its major lineages expanded their distribution into every continent during the Cenozoic. We provide the first detailed hypothesis of the evolution of Cryptodira in the Southern Hemisphere, in which our time estimates are correlated with each contact between landmasses derived from Gondwana and Laurasia. Although most South American Cryptodira arrived through the Great American Biotic Interchange, our results indicate that the Chelonoidis ancestor probably arrived from Africa through the chain islands of the South Atlantic during the Paleogene. Together, the presence of ancient turtle diversity and the vital role that turtles occupy in marine and terrestrial ecosystems underline South America as a chief area for conservation.
Collapse
|
4
|
Mezzasalma M, Capriglione T, Kupriyanova L, Odierna G, Pallotta MM, Petraccioli A, Picariello O, Guarino FM. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life (Basel) 2023; 13:life13030637. [PMID: 36983793 PMCID: PMC10058329 DOI: 10.3390/life13030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (G.O.)
| | - Teresa Capriglione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Larissa Kupriyanova
- Zoological Institute, Russian Academy of Sciences, 190121 St. Petersburg, Russia
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
- Correspondence: (M.M.); (G.O.)
| | | | - Agnese Petraccioli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Orfeo Picariello
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| |
Collapse
|
5
|
Simões TR, Kammerer CF, Caldwell MW, Pierce SE. Successive climate crises in the deep past drove the early evolution and radiation of reptiles. SCIENCE ADVANCES 2022; 8:eabq1898. [PMID: 35984885 PMCID: PMC9390993 DOI: 10.1126/sciadv.abq1898] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Climate change-induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.
Collapse
Affiliation(s)
- Tiago R. Simões
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
- Corresponding author.
| | - Christian F. Kammerer
- North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University, Campus Box 7617, Raleigh, NC 27695, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, 11645 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Abel P, Pommery Y, Ford DP, Koyabu D, Werneburg I. Skull Sutures and Cranial Mechanics in the Permian Reptile Captorhinus aguti and the Evolution of the Temporal Region in Early Amniotes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While most early limbed vertebrates possessed a fully-roofed dermatocranium in their temporal skull region, temporal fenestrae and excavations evolved independently at least twice in the earliest amniotes, with several different variations in shape and position of the openings. Yet, the specific drivers behind this evolution have been only barely understood. It has been mostly explained by adaptations of the feeding apparatus as a response to new functional demands in the terrestrial realm, including a rearrangement of the jaw musculature as well as changes in strain distribution. Temporal fenestrae have been retained in most extant amniotes but have also been lost again, notably in turtles. However, even turtles do not represent an optimal analog for the condition in the ancestral amniote, highlighting the necessity to examine Paleozoic fossil material. Here, we describe in detail the sutures in the dermatocranium of the Permian reptile Captorhinus aguti (Amniota, Captorhinidae) to illustrate bone integrity in an early non-fenestrated amniote skull. We reconstruct the jaw adductor musculature and discuss its relation to intracranial articulations and bone flexibility within the temporal region. Lastly, we examine whether the reconstructed cranial mechanics in C. aguti could be treated as a model for the ancestor of fenestrated amniotes. We show that C. aguti likely exhibited a reduced loading in the areas at the intersection of jugal, squamosal, and postorbital, as well as at the contact between parietal and postorbital. We argue that these “weak” areas are prone for the development of temporal openings and may be treated as the possible precursors for infratemporal and supratemporal fenestrae in early amniotes. These findings provide a good basis for future studies on other non-fenestrated taxa close to the amniote base, for example diadectomorphs or other non-diapsid reptiles.
Collapse
|
7
|
Chromosome-level genome assembly of Asian yellow pond turtle (Mauremys mutica) with temperature-dependent sex determination system. Sci Rep 2022; 12:7905. [PMID: 35550586 PMCID: PMC9098631 DOI: 10.1038/s41598-022-12054-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Knowledge of sex determination has important implications in physiology, ecology and genetics, but the evolutionary mechanisms of sex determination systems in turtles have not been fully elucidated, due to a lack of reference genomes. Here, we generate a high-quality genome assembly of Asian yellow pond turtle (Mauremys mutica) using continuous long-read (PacBio platform), Illumina, and high-throughput chromatin conformation capture (Hi-C) technologies. The M. mutica haplotype has a genome size of 2.23 Gb with a contig N50 of 8.53 Mb and scaffold N50 of 141.98 Mb. 99.98% sequences of the total assembly are anchored to 26 pseudochromosomes. Comparative genomics analysis indicated that the lizard-snake-tuatara clade diverged from the bird-crocodilian-turtle clade at approximately 267.0-312.3 Mya. Intriguingly, positive selected genes are mostly enriched in the calcium signaling pathway and neuroactive ligand-receptor interaction, which are involved in the process of temperature-dependent sex determination. These findings provide important evolutionary insights into temperature-dependent sex determination system.
Collapse
|
8
|
Abel P, Werneburg I. Morphology of the temporal skull region in tetrapods: research history, functional explanations, and a new comprehensive classification scheme. Biol Rev Camb Philos Soc 2021; 96:2229-2257. [PMID: 34056833 DOI: 10.1111/brv.12751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
The morphology of the temporal region in the tetrapod skull traditionally has been a widely discussed feature of vertebrate anatomy. The evolution of different temporal openings in Amniota (mammals, birds, and reptiles), Lissamphibia (frogs, salamanders, and caecilians), and several extinct tetrapod groups has sparked debates on the phylogenetic, developmental, and functional background of this region in the tetrapod skull. This led most famously to the erection of different amniote taxa based on the number and position of temporal fenestrae in their skulls. However, most of these taxa are no longer recognised to represent natural groupings and the morphology of the temporal region is not necessarily an adequate trait for use in the reconstruction of amniote phylogenies. Yet, new fossil finds, most notably of parareptiles and stem-turtles, as well as modern embryological and biomechanical studies continue to provide new insights into the morphological diversity of the temporal region. Here, we introduce a novel comprehensive classification scheme for the various temporal morphotypes in all Tetrapoda that is independent of phylogeny and previous terminology and may facilitate morphological comparisons in future studies. We then review the history of research on the temporal region in the tetrapod skull. We document how, from the early 19th century with the first recognition of differences in the temporal region to the first proposals of phylogenetic relationships and their assessment over the centuries, the phylogenetic perspective on the temporal region has developed, and we highlight the controversies that still remain. We also compare the different functional and developmental drivers proposed for the observed morphological diversity and how the effects of internal and external factors on the structure of the tetrapod skull have been interpreted.
Collapse
Affiliation(s)
- Pascal Abel
- Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) at Eberhard Karls Universität, Sigwartstraße 10, Tübingen, 72076, Germany.,Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, Tübingen, 72074, Germany
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) at Eberhard Karls Universität, Sigwartstraße 10, Tübingen, 72076, Germany.,Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, Tübingen, 72074, Germany
| |
Collapse
|
9
|
Starck JM, Stewart JR, Blackburn DG. Phylogeny and evolutionary history of the amniote egg. J Morphol 2021; 282:1080-1122. [PMID: 33991358 DOI: 10.1002/jmor.21380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
We review morphological features of the amniote egg and embryos in a comparative phylogenetic framework, including all major clades of extant vertebrates. We discuss 40 characters that are relevant for an analysis of the evolutionary history of the vertebrate egg. Special attention is given to the morphology of the cellular yolk sac, the eggshell, and extraembryonic membranes. Many features that are typically assigned to amniotes, such as a large yolk sac, delayed egg deposition, and terrestrial reproduction have evolved independently and convergently in numerous clades of vertebrates. We use phylogenetic character mapping and ancestral character state reconstruction as tools to recognize sequence, order, and patterns of morphological evolution and deduce a hypothesis of the evolutionary history of the amniote egg. Besides amnion and chorioallantois, amniotes ancestrally possess copulatory organs (secondarily reduced in most birds), internal fertilization, and delayed deposition of eggs that contain an embryo in the primitive streak or early somite stage. Except for the amnion, chorioallantois, and amniote type of eggshell, these features evolved convergently in almost all major clades of aquatic vertebrates possibly in response to selective factors such as egg predation, hostile environmental conditions for egg development, or to adjust hatching of young to favorable season. A functionally important feature of the amnion membrane is its myogenic contractility that moves the (early) embryo and prevents adhering of the growing embryo to extraembryonic materials. This function of the amnion membrane and the liquid-filled amnion cavity may have evolved under the requirements of delayed deposition of eggs that contain developing embryos. The chorioallantois is a temporary embryonic exchange organ that supports embryonic development. A possible evolutionary scenario is that the amniote egg presents an exaptation that paved the evolutionary pathway for reproduction on land. As shown by numerous examples from anamniotes, reproduction on land has occurred multiple times among vertebrates-the amniote egg presenting one "solution" that enabled the conquest of land for reproduction.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - James R Stewart
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | | |
Collapse
|
10
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
Kundu S, Kumar V, Tyagi K, Chandra K. The complete mitochondrial genome of the endangered Assam Roofed Turtle, Pangshura sylhetensis (Testudines: Geoemydidae): Genomic features and phylogeny. PLoS One 2020; 15:e0225233. [PMID: 32324729 PMCID: PMC7179895 DOI: 10.1371/journal.pone.0225233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). Most of the genes were encoded on the majority strand, except NADH dehydrogenase subunit 6 (nad6) and eight tRNAs. All PCGs start with an ATG initiation codon, except for Cytochrome oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5), which both start with GTG codon. The study also found the typical cloverleaf secondary structures in most of the predicted tRNA structures, except for serine (trnS1) which lacks of conventional DHU arm and loop. Both Bayesian and maximum-likelihood phylogenetic inference using 13 concatenated PCGs demonstrated strong support for the monophyly of all 52 Testudines species within their respective families and revealed Batagur trivittata as the nearest neighbor of P. sylhetensis. The mitogenomic phylogeny with other amniotes is congruent with previous research, supporting the sister relationship of Testudines and Archosaurians (birds and crocodilians). Additionally, the mitochondrial Gene Order (GO) analysis indicated plesiomorphy with the typical vertebrate GO in most of the Testudines species.
Collapse
Affiliation(s)
- Shantanu Kundu
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| |
Collapse
|
12
|
Botha AE, Botha J. Ontogenetic and inter-elemental osteohistological variability in the leopard tortoise Stigmochelys pardalis. PeerJ 2019; 7:e8030. [PMID: 31871831 PMCID: PMC6924341 DOI: 10.7717/peerj.8030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Testudines are a group of reptiles characterized by the presence of a shell covered by keratinous shields. Stigmochelys pardalis is the most widely distributed terrestrial testudine in southern Africa. Although relatively common with some life history traits being well known, the growth of this species has yet to be studied in any detail. The bone microanatomy of this clade differs from that found in other amniotes, where terrestrial species tend to display characteristics normally seen in aquatic species and vice versa. A detailed histological analysis of the limb bones of S. pardalis reveals extensive variation through ontogeny. Cortical bone becomes increasingly thicker through ontogeny and is finally resorbed in the late sub-adult stage, resulting in a thin cortex and a large infilled medullary cavity. The predominant bone tissues are parallel-fibred and lamellar-zonal for the forelimbs and hind limbs respectively. The oldest individual displayed an External Fundamental System indicating that the growth rate had decreased substantially by this stage. Variability is prevalent between the forelimb and hind limb as well as between early and late sub-adults Forelimb elements exhibit characteristics such as faster growing parallel-fibered bone tissue, slightly higher vascularization and a predominance of annuli over Lines of Arrested Growth (LAG) compared to the hind limb which exhibits poorly vascularized, slower growing lamellar-zonal bone interrupted by LAGs. These differences indicate that the forelimb grew more rapidly than the hind limb, possibly due to the method of locomotion seen in terrestrial species. The extensive bone resorption that occurs from the early sub-adult stage destroys much of the primary cortex and results in a significantly different ratio of inner and outer bone diameter (p = 3.59 × 10--5; df = 28.04) as well as compactness (p = 2.91 × 10--5; df = 31.27) between early and late sub-adults. The extensive bone resorption seen also destroys the ecological signal and infers an aquatic lifestyle for this species despite it being clearly terrestrial. This supports the results of other studies that have found that using bone microanatomy to determine lifestyle in testudines does not produce accurate results.
Collapse
Affiliation(s)
- Alexander Edward Botha
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Jennifer Botha
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa.,Department of Karoo Palaeontology, National Museum, Bloemfontein, Free State, South Africa
| |
Collapse
|
13
|
Camper JD, Krysko KL. BOOK REVIEWS. COPEIA 2019. [DOI: 10.1643/ot-19-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeffrey D. Camper
- Department of Biology, Francis Marion University, Florence, South Carolina 29502-0547;
| | - Kenneth L. Krysko
- Division of Herpetology, Florida Museum, 1659 Museum Road, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
14
|
Janovcová M, Rádlová S, Polák J, Sedláčková K, Peléšková Š, Žampachová B, Frynta D, Landová E. Human Attitude toward Reptiles: A Relationship between Fear, Disgust, and Aesthetic Preferences. Animals (Basel) 2019; 9:E238. [PMID: 31091781 PMCID: PMC6562393 DOI: 10.3390/ani9050238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Focusing on one group of animals can bring interesting results regarding our attitudes toward them and show the key features that our evaluation of such animals is based on. Thus, we designed a study of human perception of all reptiles focusing on the relationship between perceived fear, disgust, and aesthetic preferences and differences between snakes and other reptiles. Two sets containing 127 standardized photos of reptiles were developed, with one species per each subfamily. Respondents were asked to rate the animals according to fear, disgust, and beauty on a seven-point Likert scale. Evaluation of reptile species shows that people tend to perceive them as two clearly distinct groups based on their similar morphotype. In a subset of lizards, there was a positive correlation between fear and disgust, while disgust and fear were both negatively correlated with beauty. Surprisingly, a positive correlation between fear and beauty of snakes was revealed, i.e., the most feared species also tend to be perceived as beautiful. Snakes represent a distinct group of animals that is also reflected in the theory of attentional prioritization of snakes as an evolutionary relevant threat.
Collapse
Affiliation(s)
- Markéta Janovcová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Silvie Rádlová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Jakub Polák
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Kristýna Sedláčková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Šárka Peléšková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Barbora Žampachová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
15
|
Moustakas-Verho JE, Cebra-Thomas J, Gilbert SF. Patterning of the turtle shell. Curr Opin Genet Dev 2017; 45:124-131. [DOI: 10.1016/j.gde.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
|
16
|
Lee MSY, Shine R. REPTILIAN VIVIPARITY AND DOLLO'S LAW. Evolution 2017; 52:1441-1450. [DOI: 10.1111/j.1558-5646.1998.tb02025.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1998] [Accepted: 05/26/1998] [Indexed: 11/30/2022]
Affiliation(s)
- Michael S. Y. Lee
- School of Biological Sciences A08; University of Sydney; New South Wales 2006 Australia
| | - Richard Shine
- School of Biological Sciences A08; University of Sydney; New South Wales 2006 Australia
| |
Collapse
|
17
|
Vieira LG, Santos AL, Moura LR, Orpinelli SR, Pereira KF, Lima FC. Morphology, development and heterochrony of the carapace of Giant Amazon River Turtle Podocnemis expansa (Testudines, Podocnemidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000500014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: With aim to report the ontogeny of the osseous elements of the carapace in Peurodiras, 62 embryos and 43 nestlings of Podocnemis expansa were collected and submitted to the clearing and staining technique of bones and cartilages and study of serial histological slices. The carapace has mixed osseous structure of endo and exoskeleton, formed by 8 pairs of costal bones associated with ribs, 7 neural bones associated with neural arches, 11 pairs of peripheral bones, 1 nuchal, 1 pygal and 1 suprapygal. This structure begins its formation in the beginning of stage 16 with the ossification of the periosteal collar of the ribs. With exception of the peripheral bones, the other ones begin their ossification during the embrionary period. In histologic investigation it was found that the costal bones and neural bones have a close relation to the endoskeleton components, originating themselves as intramembranous expansions of the periosteal collar of the ribs and neural arches, respectively. The condensation of the mesenchyme adjacent to the periosteal collar induces the formation of spikes that grow in trabeculae permeated by fibroblasts below the dermis. The nuchal bone also ossifies in an intramembranous way, but does not show direct relation to the endoskeleton. Such information confirms those related to the other Pleurodira, mainly with Podocnemis unifilis, sometimes with conspicuous variations in the chronology of the ossification events. The formation of dermal plates in the carapace of Pleurodira and Criptodira follow the same pattern.
Collapse
|
18
|
Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution. Sci Rep 2016; 6:24087. [PMID: 27071447 PMCID: PMC4829860 DOI: 10.1038/srep24087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
Temporal fenestration has long been considered a key character to understand relationships amongst reptiles. In particular, the absence of the lower temporal bar (LTB) is considered one of the defining features of squamates (lizards and snakes). In a re-assessment of the borioteiioid lizard Polyglyphanodon sternbergi (Cretaceous, North America), we detected a heretofore unrecognized ontogenetic series, sexual dimorphism (a rare instance for Mesozoic reptiles), and a complete LTB, a feature only recently recognized for another borioteiioid, Tianyusaurus zhengi (Cretaceous, China). A new phylogenetic analysis (with updates on a quarter of the scorings for P. sternbergi) indicates not only that the LTB was reacquired in squamates, but it happened independently at least twice. An analysis of the functional significance of the LTB using proxies indicates that, unlike for T. zhengi, this structure had no apparent functional advantage in P. sternbergi, and it is better explained as the result of structural constraint release. The observed canalization against a LTB in squamates was broken at some point in the evolution of borioteiioids, whereas never re-occuring in other squamate lineages. This case of convergent evolution involves a mix of both adaptationist and structuralist causes, which is unusual for both living and extinct vertebrates.
Collapse
|
19
|
Legendre LJ, Guénard G, Botha-Brink J, Cubo J. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs. Syst Biol 2016; 65:989-996. [PMID: 27073251 DOI: 10.1093/sysbio/syw033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous.
Collapse
Affiliation(s)
- Lucas J Legendre
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Universités - Université Pierre et Marie Curie , 4 Place Jussieu, F-75005 Paris, France;
| | - Guillaume Guénard
- Département de sciences biologiques, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Jennifer Botha-Brink
- Karoo Palaeontology, National Museum, Bloemfontein 9300, South Africa; and.,Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa
| | - Jorge Cubo
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Universités - Université Pierre et Marie Curie , 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
20
|
|
21
|
Mesquita DO, Faria RG, Colli GR, Vitt LJ, Pianka ER. Lizard life-history strategies. AUSTRAL ECOL 2015. [DOI: 10.1111/aec.12276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel Oliveira Mesquita
- Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba; Cidade Universitária - Castelo Branco; João Pessoa Paraíba 58059-900 Brazil
| | - Renato Gomes Faria
- Departamento de Biologia; Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; Cidade Universitária José Luis de Campos; São Cristovão Sergipe
| | - Guarino Rinaldi Colli
- Departamento de Zoologia; Instituto de Ciências Biológicas; Universidade de Brasília; Brasília Federal District Brazil
| | - Laurie J. Vitt
- Sam Noble Museum and Department of Biology; University of Oklahoma; Norman
| | - Eric R. Pianka
- Department of Integrative Biology; University of Texas at Austin; USA
| |
Collapse
|
22
|
Joyce WG. The origin of turtles: a paleontological perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:181-93. [PMID: 25712176 DOI: 10.1002/jez.b.22609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
23
|
Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S. On the homology of the shoulder girdle in turtles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:244-54. [PMID: 25052382 DOI: 10.1002/jez.b.22584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022]
Abstract
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
24
|
Nakajima Y, Hirayama R, Endo H. Turtle humeral microanatomy and its relationship to lifestyle. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhisa Nakajima
- Steinmann Institute for Geology, Mineralogy and Paleontology; University of Bonn; Nussallee 8 53115 Bonn Germany
| | - Ren Hirayama
- School of International Liberal Studies; Waseda University; Nishiwaseda 1-6-1 Shinjuku-ku Tokyo Japan
| | - Hideki Endo
- The University Museum; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo Japan
| |
Collapse
|
25
|
Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev 2014; 16:189-96. [PMID: 24798503 PMCID: PMC4215941 DOI: 10.1111/ede.12081] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the phylogenetic position of crown turtles (Testudines) among amniotes has been a source of particular contention. Recent morphological analyses suggest that turtles are sister to all other reptiles, whereas the vast majority of gene sequence analyses support turtles as being inside Diapsida, and usually as sister to crown Archosauria (birds and crocodilians). Previously, a study using microRNAs (miRNAs) placed turtles inside diapsids, but as sister to lepidosaurs (lizards and Sphenodon) rather than archosaurs. Here, we test this hypothesis with an expanded miRNA presence/absence dataset, and employ more rigorous criteria for miRNA annotation. Significantly, we find no support for a turtle + lepidosaur sister-relationship; instead, we recover strong support for turtles sharing a more recent common ancestor with archosaurs. We further test this result by analyzing a super-alignment of precursor miRNA sequences for every miRNA inferred to have been present in the most recent common ancestor of tetrapods. This analysis yields a topology that is fully congruent with our presence/absence analysis; our results are therefore in accordance with most gene sequence studies, providing strong, consilient molecular evidence from diverse independent datasets regarding the phylogenetic position of turtles.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Benjamin L. King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, United Kingdom and School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Tyler R. Lyson
- Smithsonian National Museum of Natural History, 10 Street and Constitution Avenue, Washington, DC 20013, USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Ezcurra MD, Scheyer TM, Butler RJ. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence. PLoS One 2014; 9:e89165. [PMID: 24586565 PMCID: PMC3937355 DOI: 10.1371/journal.pone.0089165] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth strategies appear to be more diverse than previously suggested based on new data on the osteohistology of Aenigmastropheus.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
| | - Torsten M. Scheyer
- Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
| |
Collapse
|
27
|
Lee MSY. Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds. J Evol Biol 2013; 26:2729-38. [DOI: 10.1111/jeb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/15/2013] [Indexed: 01/26/2023]
Affiliation(s)
- M. S. Y. Lee
- Earth Sciences Section; South Australian Museum; North Terrace Adelaide SA Australia
- School of Earth and Environmental Sciences; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
28
|
Nagashima H, Hirasawa T, Sugahara F, Takechi M, Usuda R, Sato N, Kuratani S. Origin of the unique morphology of the shoulder girdle in turtles. J Anat 2013; 223:547-56. [PMID: 24117338 DOI: 10.1111/joa.12116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 11/29/2022] Open
Abstract
The shoulder girdle of turtles has a triradiate morphology. Although its dorsal process represents the scapular blade, the skeletal identities of the two ventral processes remain uncertain. To elucidate the question, developmental patterns of the girdles were compared between Chinese soft-shelled turtles, chickens, and mice. Despite the morphological diversity of adults, the initial primordia of the shoulder girdles showed similar morphological patterns. The ventral two processes developed from the anlagen comparable to those of the acromion and the coracoid in other amniotes. The developmental pattern of the acromion is very similar among embryos, whereas that of the coracoid in mammals differs from that in non-mammals, implying that coracoids are not homologous between non-mammals and mammals. Therefore, amniotes have retained the ancestral pattern of the girdle anlage, and the shoulder girdle of turtles has been achieved through a transformation of the pattern in the late ontogenic period.
Collapse
Affiliation(s)
- Hiroshi Nagashima
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology (CDB), Hyogo, Japan; Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Lyson TR, Bhullar BAS, Bever GS, Joyce WG, de Queiroz K, Abzhanov A, Gauthier JA. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol Dev 2013; 15:317-25. [DOI: 10.1111/ede.12041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler R. Lyson
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Bhart-Anjan S. Bhullar
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Gabe S. Bever
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Department of Anatomy; New York Institute of Technology, College of Osteopathic Medicine; New York NY USA
- Division of Paleontology; American Museum of Natural History; New York NY USA
| | - Walter G. Joyce
- Department of Geosciences; University of Tübingen; 72074 Tübingen Germany
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology; National Museum of Natural History, Smithsonian Institution; Washington DC 20560 USA
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics; Yale University; New Haven CT 06511 USA
- Division of Vertebrate Paleontology; Yale Peabody Museum of Natural History; New Haven CT 06511 USA
| |
Collapse
|
30
|
Tokita M, Chaeychomsri W, Siruntawineti J. Skeletal gene expression in the temporal region of the reptilian embryos: implications for the evolution of reptilian skull morphology. SPRINGERPLUS 2013; 2:336. [PMID: 24711977 PMCID: PMC3970585 DOI: 10.1186/2193-1801-2-336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023]
Abstract
Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and historically it has been treated as an important character for classifying reptiles and has helped us understand the ecology and physiology of each species. However, the developmental mechanism that generates diversity of reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene expression in the embryos of reptile species with different skull morphology. By investigating genes known to regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle, crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2 expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal region of the reptilian skull.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tenno-dai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan ; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
| | - Win Chaeychomsri
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| | - Jindawan Siruntawineti
- Department of Zoology, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900 Thailand
| |
Collapse
|
31
|
Kálmán M, Somiya H, Lazarevic L, Milosevic I, Ari C, Majorossy K. Absence of post-lesion reactive gliosis in elasmobranchs and turtles and its bearing on the evolution of astroglia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:351-67. [DOI: 10.1002/jez.b.22505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Affiliation(s)
- M. Kálmán
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - Hiro Somiya
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya; Japan
| | | | | | - Csilla Ari
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| | - K. Majorossy
- Department of Anatomy; Semmelweis University; Budapest; Hungary
| |
Collapse
|
32
|
The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 2013; 45:701-706. [PMID: 23624526 PMCID: PMC4000948 DOI: 10.1038/ng.2615] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/27/2013] [Indexed: 12/23/2022]
Abstract
The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.
Collapse
|
33
|
Werneburg I. The Tendinous Framework in the Temporal Skull Region of Turtles and Considerations About Its Morphological Implications in Amniotes: A Review. Zoolog Sci 2013; 30:141-53. [DOI: 10.2108/zsj.30.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Middle ear cavity morphology is consistent with an aquatic origin for testudines. PLoS One 2013; 8:e54086. [PMID: 23342082 PMCID: PMC3544720 DOI: 10.1371/journal.pone.0054086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/10/2012] [Indexed: 12/05/2022] Open
Abstract
The position of testudines in vertebrate phylogeny is being re-evaluated. At present, testudine morphological and molecular data conflict when reconstructing phylogenetic relationships. Complicating matters, the ecological niche of stem testudines is ambiguous. To understand how turtles have evolved to hear in different environments, we examined middle ear morphology and scaling in most extant families, as well as some extinct species, using 3-dimensional reconstructions from micro magnetic resonance (MR) and submillimeter computed tomography (CT) scans. All families of testudines exhibited a similar shape of the bony structure of the middle ear cavity, with the tympanic disk located on the rostrolateral edge of the cavity. Sea Turtles have additional soft tissue that fills the middle ear cavity to varying degrees. When the middle ear cavity is modeled as an air-filled sphere of the same volume resonating in an underwater sound field, the calculated resonances for the volumes of the middle ear cavities largely fell within testudine hearing ranges. Although there were some differences in morphology, there were no statistically significant differences in the scaling of the volume of the bony middle ear cavity with head size among groups when categorized by phylogeny and ecology. Because the cavity is predicted to resonate underwater within the testudine hearing range, the data support the hypothesis of an aquatic origin for testudines, and function of the middle ear cavity in underwater sound detection.
Collapse
|
35
|
Three Ways to Tackle the Turtle: Integrating Fossils, Comparative Embryology, and Microanatomy. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Lyson TR, Joyce WG. Evolution of the turtle bauplan: the topological relationship of the scapula relative to the ribcage. Biol Lett 2012; 8:1028-31. [PMID: 22809725 PMCID: PMC3497105 DOI: 10.1098/rsbl.2012.0462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/21/2012] [Indexed: 11/12/2022] Open
Abstract
The turtle shell and the relationship of the shoulder girdle inside or 'deep' to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used.
Collapse
Affiliation(s)
- Tyler R Lyson
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA.
| | | |
Collapse
|
37
|
Werneburg I. Temporal bone arrangements in turtles: an overview. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:235-49. [PMID: 22821860 DOI: 10.1002/jez.b.22450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The temporal region of turtles is characterized by significant anatomical diversity. Turtles show a pure anapsid morphotype that exhibits various different marginal reductions known as emarginations. As a result of this diversity, turtles can be taken as a model by which to understand the processes that may have resulted in the highly debated anatomy of the amniote temporal region in general. In this review on almost forgotten literature, I summarize ten potential factors that may act on the skull to shape the temporal region of turtles. These are: (1) phylogenetic constraints, (2) skull weights, (3) type of food, (4) skull dimensions, (5) muscle bulging, (6) ear anatomy and jaw muscle bending mechanisms, (7) extent and nature of muscle attachment sites, (8) internal forces within the jaw adductor chamber, (9) environmental pressure, and (10) neck bending mechanisms. Particular focus is laid on the interrelationship of the jaw musculature and the dermatocranial armour, which were assumed to influence each other to a certain degree. In the literature, cranial dimensions were assumed to influence temporal bone formation within major tetrapod groups. Among these, turtles seem to represent a kind of intermixture, a phenomenon that may be reflected in their specific anatomy. The references presented should be understood as product of the scientific environment in which they developed and the older literature does not always insist current empirical demands. However, the intuitive and creative ideas and the comprehensive anatomical considerations of these authors may inspire future studies in several fields related to this topic.
Collapse
Affiliation(s)
- Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard Karls Universität Tübingen, Tübingen, Germany. ingmar_werneburg@ yahoo.de
| |
Collapse
|
38
|
Jones MEH, Werneburg I, Curtis N, Penrose R, O'Higgins P, Fagan MJ, Evans SE. The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines. PLoS One 2012; 7:e47852. [PMID: 23144831 PMCID: PMC3492385 DOI: 10.1371/journal.pone.0047852] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/19/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. METHODOLOGY/PRINCIPAL FINDINGS Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. CONCLUSIONS/SIGNIFICANCE In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, UCL, University College London, London, England, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
39
|
Dugas-Ford J, Rowell JJ, Ragsdale CW. Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci U S A 2012; 109:16974-9. [PMID: 23027930 PMCID: PMC3479531 DOI: 10.1073/pnas.1204773109] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The six-layered neocortex is a uniquely mammalian structure with evolutionary origins that remain in dispute. One long-standing hypothesis, based on similarities in neuronal connectivity, proposes that homologs of the layer 4 input and layer 5 output neurons of neocortex are present in the avian forebrain, where they contribute to specific nuclei rather than to layers. We devised a molecular test of this hypothesis based on layer-specific gene expression that is shared across rodent and carnivore neocortex. Our findings establish that the layer 4 input and the layer 5 output cell types are conserved across the amniotes, but are organized into very different architectures, forming nuclei in birds, cortical areas in reptiles, and cortical layers in mammals.
Collapse
Affiliation(s)
- Jennifer Dugas-Ford
- Department of Neurobiology and Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Joanna J. Rowell
- Department of Neurobiology and Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Clifton W. Ragsdale
- Department of Neurobiology and Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| |
Collapse
|
40
|
Sterli J, Pol D, Laurin M. Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification. Cladistics 2012; 29:233-246. [DOI: 10.1111/j.1096-0031.2012.00425.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 2012; 10:65. [PMID: 22839781 PMCID: PMC3473239 DOI: 10.1186/1741-7007-10-65] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes), to archosaurs (birds and crocodiles), or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. RESULTS In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites) for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation. CONCLUSIONS These results provide a phylogenetic framework and timescale with which to interpret the evolution of the peculiar morphological, developmental, and molecular features of turtles within the amniotes.
Collapse
Affiliation(s)
- Ylenia Chiari
- Institut des Sciences de l'Evolution, UMR5554-CNRS-IRD, Université Montpellier 2, Montpellier, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Vincent Cahais
- Institut des Sciences de l'Evolution, UMR5554-CNRS-IRD, Université Montpellier 2, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554-CNRS-IRD, Université Montpellier 2, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR5554-CNRS-IRD, Université Montpellier 2, Montpellier, France
| |
Collapse
|
42
|
Abstract
The position of turtles among amniotes remains in dispute, with morphological and molecular comparisons giving different results. Morphological analyses align turtles with either lizards and their relatives, or at the base of the reptile tree, whereas molecular analyses, including a recent study by Chiari et al. in BMC Biology, place turtles with birds and crocodilians. Molecular studies have not wavered as the numbers of genes and species have increased, but morphologists have been reluctant to embrace the molecular tree.
Collapse
Affiliation(s)
- S Blair Hedges
- Department of Biology, Pennsylvania State University, University Park, PA 16802-5301, USA.
| |
Collapse
|
43
|
Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL, Peterson KJ. MicroRNAs support a turtle + lizard clade. Biol Lett 2012; 8:104-7. [PMID: 21775315 PMCID: PMC3259949 DOI: 10.1098/rsbl.2011.0477] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/27/2011] [Indexed: 11/12/2022] Open
Abstract
Despite much interest in amniote systematics, the origin of turtles remains elusive. Traditional morphological phylogenetic analyses place turtles outside Diapsida-amniotes whose ancestor had two fenestrae in the temporal region of the skull (among the living forms the tuatara, lizards, birds and crocodilians)-and allied with some unfenestrate-skulled (anapsid) taxa. Nonetheless, some morphological analyses place turtles within Diapsida, allied with Lepidosauria (tuatara and lizards). Most molecular studies agree that turtles are diapsids, but rather than allying them with lepidosaurs, instead place turtles near or within Archosauria (crocodilians and birds). Thus, three basic phylogenetic positions for turtles with respect to extant Diapsida are currently debated: (i) sister to Diapsida, (ii) sister to Lepidosauria, or (iii) sister to, or within, Archosauria. Interestingly, although these three alternatives are consistent with a single unrooted four-taxon tree for extant reptiles, they differ with respect to the position of the root. Here, we apply a novel molecular dataset, the presence versus absence of specific microRNAs, to the problem of the phylogenetic position of turtles and the root of the reptilian tree, and find that this dataset unambiguously supports a turtle + lepidosaur group. We find that turtles and lizards share four unique miRNA gene families that are not found in any other organisms' genome or small RNA library, and no miRNAs are found in all diapsids but not turtles, or in turtles and archosaurs but not in lizards. The concordance between our result and some morphological analyses suggests that there have been numerous morphological convergences and reversals in reptile phylogeny, including the loss of temporal fenestrae.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Erik A. Sperling
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Alysha M. Heimberg
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jacques A. Gauthier
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Benjamin L. King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
44
|
Tzika AC, Helaers R, Schramm G, Milinkovitch MC. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo 2011; 2:19. [PMID: 21943375 PMCID: PMC3192992 DOI: 10.1186/2041-9139-2-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 09/26/2011] [Indexed: 12/05/2022] Open
Abstract
Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Dept, of Genetics & Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211 Genève 4, Switzerland.
| | | | | | | |
Collapse
|
45
|
Lima FC, Santos ALQ, Vieira LG, Coutinho ME. Sequência de ossificação do sincrânio e hioide em embriões de Caiman yacare (Crocodylia, Alligatoridae). IHERINGIA. SERIE ZOOLOGIA 2011. [DOI: 10.1590/s0073-47212011000200003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
O crânio representa uma estrutura única e complexa dos vertebrados, sendo foco relevante objeto de estudos morfológicos e sistemáticos. Embora os crocodilianos constituam um importante grupo representante dos Archosauria, nossos conhecimentos acerca de seu desenvolvimento e homologias ainda são escassos. Aqui descrevemos uma sequência detalhada de ossificação dos ossos do crânio de Caiman yacare (Daudin, 1802), objetivando contribuir com informações de foco anatômico. Coletaram-se ao acaso embriões em intervalos regulares durante todo o período de incubação, sendo estes posteriormente submetidos a protocolo de diafanização e coloração de ossos. O padrão de ossificação em C. yacare segue parâmetros gerais em répteis e outros tetrápodes. Os primeiros centros de ossificação correspondem aos ossos dérmicos, envolvidos com funções primárias como a alimentação e respiração (e.g. maxila, dentário, esplenial, angular, pterigoide, ectopterigoide e jugal, incluindo ainda os dentes). Os ossos da porção dorsal do neurocrânio se ossificam posteriormente, evidenciando uma fontanela cranial que permanece até o momento da eclosão. Os ossos parietal, frontal e opstótico possuem mais de um centro de ossificação que se fundem durante a ontogenia. O centro de ossificação do parisfenoide está ausente, e apenas um centro de ossificação está presente para o basisfenoide. A porção posterior do crânio é formada por centros de substituição do condrocrânio que se ossificam em estágios posteriores.
Collapse
|
46
|
Lima FC, Santos ALQ, Vieira LG, Da Silva-Junior LM, Romão MF, De Simone SBS, Hirano LQL, Silva JMM, Montelo KM, Malvásio A. Ontogeny of the Shell Bones of Embryos of Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae). Anat Rec (Hoboken) 2011; 294:621-32. [DOI: 10.1002/ar.21359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/26/2010] [Indexed: 11/08/2022]
|
47
|
Vieira LG, Santos AL, Lima FC, Moura LR. Chondrogenesis of the limbs and mesopodial ossification ofPodocnemis expansaSchweigger, 1812 (Testudines: Podocnemidae). J Morphol 2011; 272:404-18. [DOI: 10.1002/jmor.10917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 09/03/2010] [Accepted: 09/25/2010] [Indexed: 11/06/2022]
|
48
|
Liang D, Wu R, Geng J, Wang C, Zhang P. A general scenario of Hox gene inventory variation among major sarcopterygian lineages. BMC Evol Biol 2011; 11:25. [PMID: 21266090 PMCID: PMC3038165 DOI: 10.1186/1471-2148-11-25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. RESULTS We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. CONCLUSIONS Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to Hox gene numbers. Furthermore, our results provide basis for future sequencing of the entire Hox clusters of these animals.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Geng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chaolin Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
49
|
Kuratani S, Kuraku S, Nagashima H. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 2011; 13:1-14. [DOI: 10.1111/j.1525-142x.2010.00451.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Lyson TR, Bever GS, Bhullar BAS, Joyce WG, Gauthier JA. Transitional fossils and the origin of turtles. Biol Lett 2010; 6:830-3. [PMID: 20534602 PMCID: PMC3001370 DOI: 10.1098/rsbl.2010.0371] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/17/2010] [Indexed: 11/12/2022] Open
Abstract
The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.
Collapse
Affiliation(s)
- Tyler R Lyson
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|