1
|
Rgs4 is a regulator of mTOR activity required for motoneuron axon outgrowth and neuronal development in zebrafish. Sci Rep 2021; 11:13338. [PMID: 34172795 PMCID: PMC8233358 DOI: 10.1038/s41598-021-92758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
Collapse
|
2
|
Valentini A, Nucci M, Frutos LM, Marazzi M. Photosensitized Retinal Isomerization in Rhodopsin Mediated by a Triplet State. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alessio Valentini
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Department of Biotechnology, Chemistry and PharmacyUniversity of Siena via A. Moro 2 53100 Siena Italy
- Theoretical Physical Chemistry, Research Unit MolSysUniversité de Liège Allée du 6 Aôut, 11 4000 Liège Belgium
| | - Martina Nucci
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Unidad de Química FísicaUniversidad de Alcalá Ctra. Madrid-Barcelona Km. 33,600 E-28871 Alcalá de Henares, Madrid Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR)Universidad de Alcalá E-28871 Alcalá de Henares, Madrid Spain
| |
Collapse
|
3
|
Pokharel K, Weldenegodguad M, Popov R, Honkatukia M, Huuki H, Lindeberg H, Peippo J, Reilas T, Zarovnyaev S, Kantanen J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub-arctic conditions. Anim Genet 2019; 50:217-227. [PMID: 30957254 PMCID: PMC6593690 DOI: 10.1111/age.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Indigenous cattle breeds in northern Eurasia have adapted to harsh climate conditions. The local breeds are important genetic resources with cultural and historical heritages, and therefore, their preservation and genetic characterization are important. In this study, we profiled the whole‐blood transcriptome of two native breeds (Northern Finncattle and Yakutian cattle) and one commercial breed (Holstein) using high‐throughput RNA sequencing. More than 15 000 genes were identified, of which two, 89 and 162 genes were significantly upregulated exclusively in Northern Finncattle, Yakutian cattle and Holstein cattle respectively. The functional classification of these significantly differentially expressed genes identified several biological processes and pathways related to signalling mechanisms, cell differentiation and host–pathogen interactions that, in general, point towards immunity and disease resistance mechanisms. The gene expression pattern observed in Northern Finncattle was more similar to that of Yakutian cattle, despite sharing similar living conditions with the Holstein cattle included in our study. In conclusion, our study identified unique biological processes in these breeds that may have helped them to adapt and survive in northern and sub‐arctic environments.
Collapse
Affiliation(s)
- K Pokharel
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - M Weldenegodguad
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70311, Finland
| | - R Popov
- Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH), ul. Bestyzhevo-Marlinskogo 23/1, Yakutsk, 67001, The Sakha Republic (Yakutia), Russia
| | - M Honkatukia
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,The Nordic Genetic Resources Center (Nordgen), P.O. Box 115, Ås, NO-1431, Norway
| | - H Huuki
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - H Lindeberg
- Production Systems, Natural Resources Institute Finland (Luke), Halolantie 31A, Maaninka, FI-71750, Finland
| | - J Peippo
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - T Reilas
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - S Zarovnyaev
- GBU Saha Agroplem, ul. Ordzhonkidze 20/204, Yakutsk, 67700, The Sakha Republic (Yakutia), Russia
| | - J Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| |
Collapse
|
4
|
Bickelmann C, Morrow JM, Du J, Schott RK, van Hazel I, Lim S, Müller J, Chang BSW. The molecular origin and evolution of dim-light vision in mammals. Evolution 2015; 69:2995-3003. [PMID: 26536060 DOI: 10.1111/evo.12794] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 01/19/2023]
Abstract
The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin--the vertebrate visual pigment mediating the first step in phototransduction at low-light levels--via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels.
Collapse
Affiliation(s)
- Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany.
| | - James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jing Du
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ilke van Hazel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Steve Lim
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada. .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada. .,Centre for the Analysis of Genome Evolution and Function, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
5
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
6
|
RGS2 and RGS4 modulate melatonin-induced potentiation of glycine currents in rat retinal ganglion cells. Brain Res 2011; 1411:1-8. [DOI: 10.1016/j.brainres.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/08/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
|
7
|
Hartong DT, Pott JWR, Kooijman AC. Six Patients with Bradyopsia (Slow Vision). Ophthalmology 2007; 114:2323-31. [PMID: 17826834 DOI: 10.1016/j.ophtha.2007.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 04/09/2007] [Accepted: 04/10/2007] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Recently, it was discovered that subjects who showed a prolonged response suppression on their electroretinogram (ERG) and had symptoms of photophobia, problems adjusting to bright light, and difficulties seeing moving objects shared a mutation in the RGS9 (regulator of G-protein signaling 9) gene that is involved in the deactivation of photoreceptor responses. The disorder was termed bradyopsia (slow vision). This paper reports the clinical presentation and long-term follow-up of 6 bradyopsia patients. DESIGN Retrospective observational case series with a follow-up ranging from 6 to 30 years. PARTICIPANTS Six patients with a homozygous mutation in the RGS9 gene. METHODS Clinical symptoms and signs were compared between the subjects and between their visits over time. MAIN OUTCOME MEASURES Symptoms, visual acuity (VA), ocular findings, visual fields, dark-adaptation tests, color tests, fluorescein angiography, and ERG findings. RESULTS Data showed a consistency in the individual symptoms and ERG recordings, but an extreme variation in VA between visits. Beside some irregularities in the macula in some patients, no other related eye abnormalities were seen. The low-to-subnormal VA varied with background luminance and typically increased by 2 to 3 lines when pinholes were used. Dark-adaptation tests, color tests, and fluorescein angiography were normal. Visual field tests showed a minor diffuse sensitivity loss. No progressive changes were seen over time. CONCLUSIONS No signs of progression were noted in the 6 bradyopsia patients. Photophobia, impaired movement perception, variable reduced VA that improved with the use of pinholes and ERG abnormalities were typical for the disease.
Collapse
Affiliation(s)
- Dyonne T Hartong
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | | | | |
Collapse
|
8
|
Bansal G, Druey KM, Xie Z. R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 2007; 116:473-95. [PMID: 18006065 DOI: 10.1016/j.pharmthera.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 12/21/2022]
Abstract
The regulators of G-protein signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCR) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating protein (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways, as well as a diverse array of non-GPCR-mediated biological responses.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States
| | | | | |
Collapse
|
9
|
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006; 60:319-46. [PMID: 16786561 DOI: 10.1002/syn.20303] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitivity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200-400% in striata. Similar supersensitivity and D2High elevations occur in rats born by Caesarian section and in rats treated with corticosterone or antipsychotics such as reserpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter two inducing elevated D2High states less than that caused by haloperidol or olanzapine. Mice born with gene knockouts of some possible schizophrenia susceptibility genes are dopamine supersensitive, and their striata reveal markedly elevated D2High states; suchgenes include dopamine-beta-hydroxylase, dopamine D4 receptors, G protein receptor kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 receptor, regulator of G protein signaling RGS9, and the RIIbeta form of cAMP-dependent protein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal elevated D2High states; these include mice with knockouts of adenosine A2A receptors, glycogen synthase kinase GSK3beta, metabotropic glutamate receptor 5, dopamine D1 or D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or aD1 antagonist. The evidence suggests that there are multiple pathways that convergetoelevate the D2High state in brain regions and that this elevation may elicit psychosis. This proposition is supported by the dopamine supersensitivity that is a common feature of schizophrenia and that also occurs in many types of genetically altered, drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates with D2High states. The finding that all antipsychotics, traditional and recent ones, act on D2High dopamine receptors further supports the proposition.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, and Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|