1
|
González JF, Laipply B, Sadowski VA, Price M, Gunn JS. Functional role of the biofilm regulator CsgD in Salmonella enterica sv. Typhi. Front Cell Infect Microbiol 2024; 14:1478488. [PMID: 39720794 PMCID: PMC11668344 DOI: 10.3389/fcimb.2024.1478488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/07/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Typhoid fever is an infectious disease primarily caused by Salmonella enterica sv. Typhi (S. Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S. Typhi play a major role in the transmission of typhoid fever, as they intermittently shed the bacteria and can unknowingly infect humans in close proximity. An estimated 90% of chronic carriers have gallstones; biofilm formation on gallstones is a primary factor in the establishment and maintenance of gallbladder carriage. CsgD is a central biofilm regulator in Salmonella, but the S. Typhi csgD gene has a mutation that introduces an early stop codon, resulting in a protein truncated by 8 amino acids at the C-terminus. In this study, we investigate the role of role of CsgD in S. Typhi. Methods We introduced a fully functional copy of the csgD gene from S. Typhimurium into S. Typhi under both a native and a constitutive promoter and tested for red, dry, and rough (Rdar) colony morphology, curli fimbriae, cellulose, and biofilm formation. Results and discussion We demonstrate that although CsgD-regulated curli and cellulose production were partially restored, the introduction of the S. Typhimurium csgD did not induce the Rdar colony morphology. Interestingly, we show that CsgD does not have a significant role in S. Typhi biofilm formation, as biofilm-forming capacities depend more on the isolate than the CsgD regulator. This data suggests the presence of an alternative biofilm regulatory process in this human-restricted pathogen.
Collapse
Affiliation(s)
- Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Baileigh Laipply
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Victoria A. Sadowski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Matthew Price
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Wilkinson M, Xu Y, Thacker D, Taylor AIP, Fisher DG, Gallardo RU, Radford SE, Ranson NA. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023; 186:5798-5811.e26. [PMID: 38134875 DOI: 10.1016/j.cell.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander I P Taylor
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Declan G Fisher
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Bessho S, Grando KCM, Kyrylchuk K, Miller A, Klein-Szanto AJ, Zhu W, Gallucci S, Tam V, Tükel Ç. Systemic exposure to bacterial amyloid curli alters the gut mucosal immune response and the microbiome, exacerbating Salmonella-induced arthritis. Gut Microbes 2023; 15:2221813. [PMID: 37317012 PMCID: PMC10269392 DOI: 10.1080/19490976.2023.2221813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
The Salmonella biofilm-associated amyloid protein, curli, is a dominant instigator of systemic inflammation and autoimmune responses following Salmonella infection. Systemic curli injections or infection of mice with Salmonella Typhimurium induce the major features of reactive arthritis, an autoimmune disorder associated with Salmonella infection in humans. In this study, we investigated the link between inflammation and microbiota in exacerbating autoimmunity. We studied C57BL/6 mice from two sources, Taconic Farms and Jackson Labs. Mice from Taconic Farms have been reported to have higher basal levels of the inflammatory cytokine IL - 17 than do mice from Jackson Labs due to the differences in their microbiota. When we systemically injected mice with purified curli, we observed a significant increase in diversity in the microbiota of Jackson Labs mice but not in that of the Taconic mice. In Jackson Labs, mice, the most striking effect was the expansion of Prevotellaceae. Furthermore, there were increases in the relative abundance of the family Akkermansiaceae and decreases in families Clostridiaceae and Muribaculaceae in Jackson Labs mice. Curli treatment led to significantly aggravated immune responses in the Taconic mice compared to Jackson Labs counterparts. Expression and production of IL - 1β, a cytokine known to promote IL - 17 production, as well as expression of Tnfa increased in the gut mucosa of Taconic mice in the first 24 hours after curli injections, which correlated with significant increases in the number of neutrophils and macrophages in the mesenteric lymph nodes. A significant increase in the expression of Ccl3 in colon and cecum of Taconic mice injected with curli was detected. Taconic mice injected with curli also had elevated levels of inflammation in their knees. Overall, our data suggest that autoimmune responses to bacterial ligands, such as curli, are amplified in individuals with a microbiome that promote inflammation.
Collapse
Affiliation(s)
- Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kaitlyn C. M. Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kathrine Kyrylchuk
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Amanda Miller
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | | | - Wenhan Zhu
- Department of Pathology Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stefania Gallucci
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Tam
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
4
|
Nicastro LK, de Anda J, Jain N, Grando KCM, Miller AL, Bessho S, Gallucci S, Wong GCL, Tükel Ç. Assembly of ordered DNA-curli fibril complexes during Salmonella biofilm formation correlates with strengths of the type I interferon and autoimmune responses. PLoS Pathog 2022; 18:e1010742. [PMID: 35972973 PMCID: PMC9380926 DOI: 10.1371/journal.ppat.1010742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Deposition of human amyloids is associated with complex human diseases such as Alzheimer's and Parkinson's. Amyloid proteins are also produced by bacteria. The bacterial amyloid curli, found in the extracellular matrix of both commensal and pathogenic enteric bacterial biofilms, forms complexes with extracellular DNA, and recognition of these complexes by the host immune system may initiate an autoimmune response. Here, we isolated early intermediate, intermediate, and mature curli fibrils that form throughout the biofilm development and investigated the structural and pathogenic properties of each. Early intermediate aggregates were smaller than intermediate and mature curli fibrils, and circular dichroism, tryptophan, and thioflavin T analyses confirmed the establishment of a beta-sheet secondary structure as the curli conformations matured. Intermediate and mature curli fibrils were more immune stimulatory than early intermediate fibrils in vitro. The intermediate curli was cytotoxic to macrophages independent of Toll-like receptor 2. Mature curli fibrils had the highest DNA content and induced the highest levels of Isg15 expression and TNFα production in macrophages. In mice, mature curli fibrils induced the highest levels of anti-double-stranded DNA autoantibodies. The levels of autoantibodies were higher in autoimmune-prone NZBWxF/1 mice than wild-type C57BL/6 mice. Chronic exposure to all curli forms led to significant histopathological changes and synovial proliferation in the joints of autoimmune-prone mice; mature curli was the most detrimental. In conclusion, curli fibrils, generated during biofilm formation, cause pathogenic autoimmune responses that are stronger when curli complexes contain higher levels of DNA and in mice predisposed to autoimmunity.
Collapse
Affiliation(s)
- Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jaime de Anda
- Department of Bioengineering, California Nano Systems Institute, University of California, Los Angeles, California, United States of America
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Kaitlyn C. M. Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Amanda L. Miller
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stefania Gallucci
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, California Nano Systems Institute, University of California, Los Angeles, California, United States of America
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
de Eguileor M, Grimaldi A, Pulze L, Acquati F, Morsiani C, Capri M. Amyloid fil rouge from invertebrate up to human ageing: a focus on Alzheimer Disease. Mech Ageing Dev 2022; 206:111705. [DOI: 10.1016/j.mad.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
|
6
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
7
|
Mechanistic roles of tyrosine phosphorylation in reversible amyloids, autoinhibition, and endosomal membrane association of ALIX. J Biol Chem 2021; 297:101328. [PMID: 34688656 PMCID: PMC8577116 DOI: 10.1016/j.jbc.2021.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like β-sheet–rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B–mediated dephosphorylation of its conserved tyrosine residues. Analyses of the Bro1 domain of ALIX by solution NMR spectroscopy elucidated the conformational changes originating from its phosphorylation by Src and established that Bro1 binds to hyperphosphorylated proline-rich domain and to analogs of late endosomal membranes via its highly basic surface. These results uncover the autoinhibition mechanism that relocates ALIX to the cytosol and the diverse roles played by tyrosine phosphorylation in cellular and membrane functions of ALIX.
Collapse
|
8
|
Zeng X, Xiang Y, Liu Q, Wang L, Ma Q, Ma W, Zeng D, Yin Y, Wang D. Nanopore Technology for the Application of Protein Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1942. [PMID: 34443773 PMCID: PMC8400292 DOI: 10.3390/nano11081942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023]
Abstract
Protein is an important component of all the cells and tissues of the human body and is the material basis of life. Its content, sequence, and spatial structure have a great impact on proteomics and human biology. It can reflect the important information of normal or pathophysiological processes and promote the development of new diagnoses and treatment methods. However, the current techniques of proteomics for protein analysis are limited by chemical modifications, large sample sizes, or cumbersome operations. Solving this problem requires overcoming huge challenges. Nanopore single molecule detection technology overcomes this shortcoming. As a new sensing technology, it has the advantages of no labeling, high sensitivity, fast detection speed, real-time monitoring, and simple operation. It is widely used in gene sequencing, detection of peptides and proteins, markers and microorganisms, and other biomolecules and metal ions. Therefore, based on the advantages of novel nanopore single-molecule detection technology, its application to protein sequence detection and structure recognition has also been proposed and developed. In this paper, the application of nanopore single-molecule detection technology in protein detection in recent years is reviewed, and its development prospect is investigated.
Collapse
Affiliation(s)
- Xiaoqing Zeng
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Xiang
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qianshan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qianyun Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenhao Ma
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Delin Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yajie Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
9
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
11
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Diociaiuti M, Bombelli C, Zanetti-Polzi L, Belfiore M, Fioravanti R, Macchia G, Giordani C. The Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and a Lipid-Raft Model: Molecular Mechanisms Leading to Membrane Damage, Ca 2+-Influx and Neurotoxicity. Biomolecules 2019; 10:biom10010058. [PMID: 31905804 PMCID: PMC7022306 DOI: 10.3390/biom10010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate the interaction between amyloid assemblies and “lipid-rafts”, we performed functional and structural experiments on salmon calcitonin (sCT) solutions rich in prefibrillar oligomers, proto- and mature-fibers interacting with liposomes made of monosialoganglioside-GM1 (4%), DPPC (48%) and cholesterol (48%). To focus on the role played by electrostatic forces and considering that sCT is positive and GM1 is negative at physiologic pH, we compared results with those relative to GM1-free liposomes while, to assess membrane fluidity effects, with those relative to cholesterol-free liposomes. We investigated functional effects by evaluating Ca2+-influx in liposomes and viability of HT22-DIFF neurons. Only neurotoxic solutions rich in unstructured prefibrillar oligomers were able to induce Ca2+-influx in the “lipid-rafts” model, suggesting that the two phenomena were correlated. Thus, we investigated protein conformation and membrane modifications occurring during the interaction: circular dichroism showed that “lipid-rafts” fostered the formation of β-structures and energy filtered-transmission electron microscopy that prefibrillar oligomers formed pores, similar to Aβ did. We speculate that electrostatic forces between the positive prefibrillar oligomers and the negative GM1 drive the initial binding while the hydrophobic profile and flexibility of prefibrillar oligomers, together with the membrane fluidity, are responsible for the subsequent pore formation leading to Ca2+-influx and neurotoxicity.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Correspondence: ; Tel.: +39-06-49902981
| | - Cecilia Bombelli
- CNR-Istituto per i Sistemi Biologici, UOS di Roma, c/o Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy;
| | - Laura Zanetti-Polzi
- Dipartimento di Fisica e Scienze Chimiche, Università dell’Aquila, via Vetoio (Coppito 1), 67010 L’Aquila, Italy;
| | - Marcello Belfiore
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
| | - Raoul Fioravanti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Gianfranco Macchia
- Centro Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, I-00161 Roma, Italy;
| | - Cristiano Giordani
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|
13
|
Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Front Immunol 2019; 10:2608. [PMID: 31781110 PMCID: PMC6857005 DOI: 10.3389/fimmu.2019.02608] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins—including chromatin and ribonucleoproteins—are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Ding T, Chen AK, Lu Z. The applications of nanopores in studies of proteins. Sci Bull (Beijing) 2019; 64:1456-1467. [PMID: 36659703 DOI: 10.1016/j.scib.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 01/21/2023]
Abstract
Nanopores are a label-free platform with the ability to detect subtle changes in the activities of individual biomolecules under physiological conditions. Here, we comprehensively review the technological development of nanopores, focusing on their applications in studying the physicochemical properties and dynamic conformations of peptides, individual proteins, protein-protein complexes and protein-DNA complexes. This is followed by a brief discussion of the potential challenges that need to be overcome before the technology can be widely accepted by the scientific community. We believe that with continued refinement of the technology, significant understanding can be gained to help clarify the role of protein activities in the regulation of cellular physiology and pathogenesis.
Collapse
Affiliation(s)
- Taoli Ding
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zuhong Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
15
|
Marijan D, Tse R, Elliott K, Chandhok S, Luo M, Lacroix E, Audas TE. Stress-specific aggregation of proteins in the amyloid bodies. FEBS Lett 2019; 593:3162-3172. [PMID: 31512750 DOI: 10.1002/1873-3468.13597] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022]
Abstract
Physiological amyloid aggregation occurs within the nuclei of stress-treated cells. These structures, termed Amyloid bodies (A-bodies), assemble through the rapid accumulation of proteins into dense membrane-less organelles, which possess the same biophysical properties as plaques observed in many amyloid-based diseases. Here, we demonstrate that A-body proteomic compositions vary significantly between stimuli, as constituent proteins can be sequestered by one or more stressors. Stimulus exposure alone was insufficient to induce aggregation, demonstrating that this pathway is not regulated solely by stress-induced conformational changes of the A-body targets. We propose that different environmental conditions induce the formation of A-body subtypes containing distinct protein residents. This selective immobilization of proteins may have evolved as a finely tuned mechanism for surviving divergent stressors.
Collapse
Affiliation(s)
- Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Keenan Elliott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Monica Luo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
16
|
Cytotoxic Curli Intermediates Form during Salmonella Biofilm Development. J Bacteriol 2019; 201:JB.00095-19. [PMID: 31182496 DOI: 10.1128/jb.00095-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Enterobacteriaceae produce amyloid proteins called curli that are the major proteinaceous component of biofilms. Amyloids are also produced by humans and are associated with diseases such as Alzheimer's. During the multistep process of amyloid formation, monomeric subunits form oligomers, protofibrils, and finally mature fibrils. Amyloid β oligomers are more cytotoxic to cells than the mature amyloid fibrils. Oligomeric intermediates of curli had not been previously detected. We determined that turbulence inhibited biofilm formation and that, intriguingly, curli aggregates purified from cultures grown under high-turbulence conditions were structurally smaller and contained less DNA than curli preparations from cultures grown with less turbulence. Using flow cytometry analysis, we demonstrated that CsgA was expressed in cultures exposed to higher turbulence but that these cultures had lower levels of cell death than less-turbulent cultures. Our data suggest that the DNA released during cell death drives the formation of larger fibrillar structures. Consistent with this idea, addition of exogenous genomic DNA increased the size of the curli intermediates and led to binding to thioflavin T at levels observed with mature aggregates. Similar to the intermediate oligomers of amyloid β, intermediate curli aggregates were more cytotoxic than the mature curli fibrils when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.IMPORTANCE Amyloid proteins are the major proteinaceous components of biofilms, which are associated with up to 65% of human bacterial infections. Amyloids produced by human cells are also associated with diseases such as Alzheimer's. The amyloid monomeric subunits self-associate to form oligomers, protofibrils, and finally mature fibrils. Amyloid β oligomers are more cytotoxic to cells than the mature amyloid fibrils. Here we detected oligomeric intermediates of curli for the first time. Like the oligomers of amyloid β, intermediate curli fibrils were more cytotoxic than the mature curli fibrillar aggregates when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.
Collapse
|
17
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
18
|
Paik YK, Lane L, Kawamura T, Chen YJ, Cho JY, LaBaer J, Yoo JS, Domont G, Corrales F, Omenn GS, Archakov A, Encarnación-Guevara S, Lui S, Salekdeh GH, Cho JY, Kim CY, Overall CM. Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. J Proteome Res 2018; 17:4042-4050. [PMID: 30269496 PMCID: PMC6693327 DOI: 10.1021/acs.jproteome.8b00383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing ∼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Collapse
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Lydie Lane
- CALIPHO group, Swiss Institute of Bioinformatics & Department of Microbiology and Molecular medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0032 Japan
| | - Yu-Ju Chen
- Institute of Chemistry Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Je-Yoel Cho
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul University, 1 Gwanak-, Gwanak-gu, 151-742 Seoul, South Korea
| | - Joshua LaBaer
- McAllister Ave. Arizona State University, Tempe, Arizona, 85287-5001, USA
| | - Jong Shin Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Korea
| | - Gilberto Domont
- Federal University of Rio de Janeiro Institute of Chemistry, Rio de Janeiro, RJ Brazil
| | - Fernando Corrales
- Functional Proteomics Laboratory National Center of Biotechnology, CSIC 28049 Madrid, Spain
| | - Gilbert S. Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | | | | | - Siqi Lui
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, 1665659911, Tehran, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Jin-Young Cho
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center and Department of Integrative Omics, Yonsei University, Sudaemoon-ku, Seoul, Korea
| | - Christopher M. Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol Mol Biol Rev 2018; 82:82/4/e00028-18. [PMID: 30305312 DOI: 10.1128/mmbr.00028-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.
Collapse
|
20
|
Humenik M, Mohrand M, Scheibel T. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity. Bioconjug Chem 2018; 29:898-904. [DOI: 10.1021/acs.bioconjchem.7b00759] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Choi JY, Hwang CJ, Lee DY, Gu SM, Lee HP, Choi DY, Oh KW, Han SB, Hong JT. (E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates LPS-Mediated Memory Impairment by Inhibition of STAT3 Pathway. Neuromolecular Med 2017; 19:555-570. [PMID: 29052076 PMCID: PMC5683055 DOI: 10.1007/s12017-017-8469-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is pathologically characterized by an excessive accumulation of amyloid-beta (Aβ) fibrils within the brain. We tested the anti-inflammatory and anti-amyloidogenic effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. We examined whether MMPP (5 mg/kg in drinking water for 1 month) prevents amyloidogenesis and cognitive impairment on AD model mice induced by intraperitoneal LPS (250 μg/kg daily 7 times) injections. Additionally, we investigated the anti-neuroinflammatory and anti-amyloidogenic effect of MMPP (1, 5, and 10 μg/mL) in LPS (1 μg/mL)-treated cultured astrocytes and microglial BV-2 cells. MMPP treatment reduced LPS-induced memory loss. This memory recovery effect was associated with the reduction of LPS-induced inflammatory proteins; cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as activation of microglial cells and astrocytes in the brain. Furthermore, MMPP reduced LPS-induced β-secretase and Aβ generation. In in vitro study, LPS-induced expression of inflammatory proteins and amyloidogenic proteins was decreased in microglial BV-2 cells and cultured astrocytes by MMPP treatment. Moreover, MMPP treatment suppressed DNA binding activities of the activation of STAT3 in in vivo and in vitro. These results indicated that MMPP inhibits LPS-induced amyloidogenesis and neuroinflammation via inhibition of STAT3.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Do Yeon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
22
|
Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature. Arch Biochem Biophys 2017. [DOI: 10.1016/j.abb.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
HIV-Enhancing and HIV-Inhibiting Properties of Cationic Peptides and Proteins. Viruses 2017; 9:v9050108. [PMID: 28505117 PMCID: PMC5454421 DOI: 10.3390/v9050108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic antimicrobial peptides and proteins have historically been ascribed roles in innate immunity that infer killing of microbial and viral pathogens and protection of the host. In the context of sexually transmitted HIV-1, we take an unconventional approach that questions this paradigm. It is becoming increasingly apparent that many of the cationic polypeptides present in the human genital or anorectal mucosa, or human semen, are capable of enhancing HIV-1 infection, often in addition to other reported roles as viral inhibitors. We explore how the in vivo environment may select for or against the HIV-enhancing aspects of these cationic polypeptides by focusing on biological relevance. We stress that the distinction between enhancing and inhibiting HIV-1 infection is not mutually exclusive to specific classes of cationic polypeptides. Understanding how virally enhancing peptides and proteins act to promote sexual transmission of HIV-1 would be important for the design of topical microbicides, mucosal vaccines, and other preventative measures.
Collapse
|
24
|
Tursi SA, Lee EY, Medeiros NJ, Lee MH, Nicastro LK, Buttaro B, Gallucci S, Wilson RP, Wong GCL, Tükel Ç. Bacterial amyloid curli acts as a carrier for DNA to elicit an autoimmune response via TLR2 and TLR9. PLoS Pathog 2017; 13:e1006315. [PMID: 28410407 PMCID: PMC5406031 DOI: 10.1371/journal.ppat.1006315] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/26/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms are associated with numerous human infections. The predominant protein expressed in enteric biofilms is the amyloid curli, which forms highly immunogenic complexes with DNA. Infection with curli-expressing bacteria or systemic exposure to purified curli-DNA complexes triggers autoimmunity via the generation of type I interferons (IFNs) and anti-double-stranded DNA antibodies. Here, we show that DNA complexed with amyloid curli powerfully stimulates Toll-like receptor 9 (TLR9) through a two-step mechanism. First, the cross beta-sheet structure of curli is bound by cell-surface Toll-like receptor 2 (TLR2), enabling internalization of the complex into endosomes. After internalization, the curli-DNA immune complex binds strongly to endosomal TLR9, inducing production of type I IFNs. Analysis of wild-type and TLR2-deficient macrophages showed that TLR2 is the major receptor that drives the internalization of curli-DNA complexes. Suppression of TLR2 internalization via endocytosis inhibitors led to a significant decrease in Ifnβ expression. Confocal microscopy analysis confirmed that the TLR2-bound curli was required for shuttling of DNA to endosomal TLR9. Structural analysis using small-angle X-ray scattering revealed that incorporation of DNA into curli fibrils resulted in the formation of ordered curli-DNA immune complexes. Curli organizes parallel, double-stranded DNA rods at an inter-DNA spacing that matches up well with the steric size of TLR9. We also found that production of anti-double-stranded DNA autoantibodies in response to curli-DNA was attenuated in TLR2- and TLR9-deficient mice and in mice deficient in both TLR2 and TLR9 compared to wild-type mice, suggesting that both innate immune receptors are critical for shaping the autoimmune adaptive immune response. We also detected significantly lower levels of interferon-stimulated gene expression in response to purified curli-DNA in TLR2 and TLR9 deficient mice compared to wild-type mice, confirming that TLR2 and TLR9 are required for the induction of type I IFNs. Finally, we showed that curli-DNA complexes, but not cellulose, were responsible elicitation of the immune responses to bacterial biofilms. This study defines the series of events that lead to the severe pro-autoimmune effects of amyloid-expressing bacteria and suggest a mechanism by which amyloid curli acts as a carrier to break immune tolerance to DNA, leading to the activation of TLR9, production of type I IFNs, and subsequent production of autoantibodies.
Collapse
Affiliation(s)
- Sarah A. Tursi
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ernest Y. Lee
- Department of Bioengineering, California Nano Systems Institute, University of California, Los Angeles, California, United States of America
| | - Nicole J. Medeiros
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael H. Lee
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lauren K. Nicastro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Bettina Buttaro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ronald Paul Wilson
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, California Nano Systems Institute, University of California, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (CT); (GCLW)
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CT); (GCLW)
| |
Collapse
|
25
|
Wang M, Audas TE, Lee S. Disentangling a Bad Reputation: Changing Perceptions of Amyloids. Trends Cell Biol 2017; 27:465-467. [PMID: 28359692 DOI: 10.1016/j.tcb.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Historically, amyloids were perceived as toxic/irreversible protein aggregates associated with neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Recent papers are challenging this perception by uncovering widespread cellular roles for physiological amyloidogenesis. These findings suggest that the amyloid-fold should be considered, alongside the native-fold and unfolded configurations, as a physiological and reversible protein organization.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA.
| |
Collapse
|
26
|
Diociaiuti M, Giordani C, Kamel GS, Brasili F, Sennato S, Bombelli C, Meneses KY, Giraldo MA, Bordi F. Monosialoganglioside-GM1 triggers binding of the amyloid-protein salmon calcitonin to a Langmuir membrane model mimicking the occurrence of lipid-rafts. Biochem Biophys Rep 2016; 8:365-375. [PMID: 28955978 PMCID: PMC5614544 DOI: 10.1016/j.bbrep.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
GM1 ganglioside is known to be involved in the amyloid-associated diseases and it is a crucial factor for the assembly of amyloid proteins on lipid-rafts, which are lipid structures located on the synaptic plasma membranes. Due to its slow aggregation rate, we employed salmon calcitonin (sCT) as a suitable probe representative of amyloid proteins, to study the interaction between this class of proteins and a membrane model. Here, we prepared a neuronal membrane model by depositing onto mica two Langmuir-Blodgett films in liquid-condensed phase: the outer monolayer was characterized by high content of GM1 (50%) and minority parts of cholesterol and POPC (25-25%), while the inner one by plain POPC. To deeply investigate the interaction of sCT with this model and the role-played by GM1, we prepared the outer leaflet adding sCT at a concentration such that the number of proteins equals that of GM1. Atomic Force Microscopy revealed the occurrence of two distinct kinds of flat surfaces, with globular aggregates localized exclusively on top of the highest one. To unravel the nature of the interaction, we studied by ζ-potential technique liposomes composed as the outer leaflet of the model. Results demonstrated that an electrostatic interaction sCT-GM1 occurred. Finally, to investigate the interaction thermodynamics between sCT and the outer leaflet, Langmuir films as the outer monolayer and containing increasing content of sCT were studied by compression isotherms and Brewster Angle Microscopy experiments. Based on the all body of results we propose an interaction model where GM1 plays a pivotal role.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, I-00161 Roma, Italy
- Correspondence to: Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Roma, Italy.
| | - Cristiano Giordani
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, I-00161 Roma, Italy
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Gihan S. Kamel
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Francesco Brasili
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Simona Sennato
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Cecilia Bombelli
- CNR, Istituto di Metodologie Chimiche, Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma “Sapienza”, I-00185 Roma, Italy
| | - Karen Y. Meneses
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Marco A. Giraldo
- Instituto de Física, Universidad de Antioquia, Medellín, Colombia
| | - Federico Bordi
- Dipartimento di Fisica and ISC-CNR, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
27
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG. Amyloids: from Pathogenesis to Function. BIOCHEMISTRY (MOSCOW) 2016; 80:1127-44. [PMID: 26555466 DOI: 10.1134/s0006297915090047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The term "amyloids" refers to fibrillar protein aggregates with cross-β structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics.
Collapse
Affiliation(s)
- A A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|
28
|
Tobias F, Keiderling TA. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4653-61. [PMID: 27099990 DOI: 10.1021/acs.langmuir.6b00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.
Collapse
Affiliation(s)
- Fernando Tobias
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street (m/c111), Chicago, Illinois 60607-7061, United States
| | - Timothy A Keiderling
- Department of Chemistry, University of Illinois at Chicago , 845 W. Taylor Street (m/c111), Chicago, Illinois 60607-7061, United States
| |
Collapse
|
29
|
Kakish J, Lee D, Lee JS. Drugs That Bind to α-Synuclein: Neuroprotective or Neurotoxic? ACS Chem Neurosci 2015; 6:1930-40. [PMID: 26378986 DOI: 10.1021/acschemneuro.5b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Drugs that bind to α-synuclein and form a loop structure between the N- and C-terminus tend to be neuroprotective, whereas others that cause a more compact structure tend to be neurotoxic. The binding of several natural products and other drugs that are involved in dopamine metabolism were investigated by nanopore analysis and isothermal titration calorimetry. The antinausea drugs, cinnarizine and metoclopramide, do not bind to α-synuclein, whereas amphetamine and the herbicides, paraquat and rotenone, bind tightly and cause α-synuclein to adopt a more compact conformation. The recreational drug, cocaine, binds to α-synuclein, whereas heroin and methadone do not. Metformin, which is prescribed for diabetes and is neuroprotective, binds well without causing α-synuclein to adopt a more compact conformation. Methylphenidate (ritalin) binds to sites in both the N- and C-terminus and causes α-synuclein to adopt a loop conformation. In contrast, amphetamine only binds to the N-terminus. Except for cinnarizine and metoclopramide, there is a good correlation between the mode of binding to α-synuclein and whether a drug is neuroprotective or neurotoxic.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Dongsoo Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| |
Collapse
|
30
|
Huang X, Dorta-Estremera S, Yao Y, Shen N, Cao W. Predominant Role of Plasmacytoid Dendritic Cells in Stimulating Systemic Autoimmunity. Front Immunol 2015; 6:526. [PMID: 26528288 PMCID: PMC4601279 DOI: 10.3389/fimmu.2015.00526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), which are prominent type I interferon (IFN-I)-producing immune cells, have been extensively implicated in systemic lupus erythematosus (SLE). However, whether they participate critically in lupus pathogenesis remains unknown. Recent studies using various genetic and cell type-specific ablation strategies have demonstrated that pDCs play a pivotal role in the development of autoantibodies and the progression of lupus under diverse experimental conditions. The findings of several investigations highlight a notion that pDCs operate critically at the early stage of lupus development. In particular, pDCs have a profound effect on B-cell activation and humoral autoimmunity in vivo. This deeper understanding of the vital role of pDCs in lupus pathogenesis supports the therapeutic targeting of the pDC-IFN-I pathway in SLE.
Collapse
Affiliation(s)
- Xinfang Huang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China ; Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences , Houston, TX , USA
| | - Yihong Yao
- Cellular Biomedicine Group Inc. , Palo Alto, CA , USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wei Cao
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China ; Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences , Houston, TX , USA
| |
Collapse
|
31
|
Wang X, Weber JK, Liu L, Dong M, Zhou R, Li J. A novel form of β-strand assembly observed in Aβ(33-42) adsorbed onto graphene. NANOSCALE 2015; 7:15341-15348. [PMID: 26331805 DOI: 10.1039/c5nr00555h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted.
Collapse
Affiliation(s)
- Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
| | | | | | | | | | | |
Collapse
|
32
|
Gallo PM, Rapsinski GJ, Wilson RP, Oppong GO, Sriram U, Goulian M, Buttaro B, Caricchio R, Gallucci S, Tükel Ç. Amyloid-DNA Composites of Bacterial Biofilms Stimulate Autoimmunity. Immunity 2015; 42:1171-84. [PMID: 26084027 PMCID: PMC4500125 DOI: 10.1016/j.immuni.2015.06.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 12/08/2014] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity.
Collapse
Affiliation(s)
- Paul M Gallo
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Glenn J Rapsinski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - R Paul Wilson
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Gertrude O Oppong
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Uma Sriram
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bettina Buttaro
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA; Laboratory of Dendritic Cell Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Çagla Tükel
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
33
|
|
34
|
Dorta-Estremera SM, Cao W. Human Pentraxins Bind to Misfolded Proteins and Inhibit Production of Type I Interferon Induced by Nucleic Acid-Containing Amyloid. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6. [PMID: 31080694 DOI: 10.4172/2155-9899.1000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Amyloid deposition is linked to multiple human ailments, including neurodegenerative diseases, type 2 diabetes, and systemic amyloidosis. The assembly of misfolded proteins into amyloid fibrils involves an intermediate form, i.e., soluble amyloid precursor (AP), which exerts cytotoxic function. Insoluble amyloid also stimulates innate immune cells to elicit cytokine response and inflammation. How any of these misfolded proteins are controlled by the host remains obscure. Serum amyloid-P component (SAP) is a universal constituent of amyloid deposits. Short-chain pentraxins, which include both SAP and C-reactive protein (CRP), are pattern recognition molecules that bind to diverse ligands and promote the clearance of microbes and cell debris. Whether these pentraxins interact with AP and cofactor-containing amyloid and subsequently impact their function is not known. Methods and Results To detect the interaction between SAP and different types of amyloids, we performed dot blot analysis. The results showed that SAP invariably bound to protein-only, nucleic acid-containing and glycosaminoglycan-containing amyloid fibrils. This interaction required the presence of calcium. By ELISA, both SAP and CRP bound to soluble AP in the absence of divalent cations. Further characterization, by gel filtration, implied that SAP decamer may recognize AP whereas aggregated SAP preferentially associates with amyloid fibril. Although SAP binding did not affect cytotoxic function of AP, SAP potently inhibited the production of interferon-α from human plasmacytoid dendritic cells triggered by DNA-containing amyloid. Conclusions Our data suggest that short pentraxins differentially interact with various forms of misfolded proteins and, in particular, modulate the ability of nucleic acid-containing amyloid to stimulate aberrant type I interferon response. Hence, pentraxins may function as key players in modulating the pathogenesis of protein misfolding diseases as well as interferon-mediated autoimmune manifestation.
Collapse
Affiliation(s)
- Stephanie M Dorta-Estremera
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
35
|
Fernández MS. Human IAPP amyloidogenic properties and pancreatic β-cell death. Cell Calcium 2014; 56:416-27. [PMID: 25224501 DOI: 10.1016/j.ceca.2014.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/09/2014] [Accepted: 08/20/2014] [Indexed: 02/07/2023]
Abstract
A hallmark of type 2 diabetes mellitus (T2DM) is the presence of extracellular amyloid deposits in the islets of Langerhans. These deposits are formed by the human islet amyloid polypeptide, hIAPP (or amylin), which is a hormone costored and cosecreted with insulin. Under normal conditions, the hormone remains in solution but, in the pancreas of T2DM individuals, it undergoes misfolding giving rise to oligomers and cross-β amyloid fibrils. Accumulating evidence suggests that the amyloid deposits that accompany type 2 diabetes mellitus are not just a trivial epiphenomenon derived from the disease progression. Rather, hIAPP aggregation induces processes that impair the functionality and viability of β-cells and may lead to apoptosis. The present review article aims to summarize a few aspects of the current knowledge of this amyloidogenic polypeptide. In the first place, the physicochemical properties which condition its propensity to misfold and form aggregates. Secondly, how these properties confer hIAPP the capacity to interfere with some signaling of the pancreatic β-cell, interact with membranes, form channels or affect natural ion channels, including calcium channels. Finally, how misfolded hIAPP cytotoxicity results in apoptosis. A number of pathophysiological changes of the T2DM islet can be related to the amyloidogenic properties of hIAPP. However, in a certain way, the in vivo aggregation of the polypeptide also reflects a failure of chaperones and, in general, of cellular proteostasis, supporting the view that T2DM may also be considered as a conformational disorder.
Collapse
Affiliation(s)
- Marta S Fernández
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Ave, Politécnico 2508, PO Box 14-740, 07000 México D.F., Mexico.
| |
Collapse
|
36
|
Vajda T, Perczel A. Role of water in protein folding, oligomerization, amyloidosis and miniprotein. J Pept Sci 2014; 20:747-59. [PMID: 25098401 DOI: 10.1002/psc.2671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023]
Abstract
The essential involvement of water in most fundamental extra-cellular and intracellular processes of proteins is critically reviewed and evaluated in this article. The role of water in protein behavior displays structural ambivalence; it can protect the disordered peptide-chain by hydration or helps the globular chain-folding, but promotes also the protein aggregation, as well (see: diseases). A variety of amyloid diseases begins as benign protein monomers but develops then into toxic amyloid aggregates of fibrils. Our incomplete knowledge of this process emphasizes the essential need to reveal the principles of governing this oligomerization. To understand the biophysical basis of the simpler in vitro amyloid formation may help to decipher also the in vivo way. Nevertheless, to ignore the central role of the water's effect among these events means to receive an uncompleted picture of the true phenomenon. Therefore this review represents a stopgap role, because the most published studies--with a few exceptions--have been neglected the crucial importance of water in the protein research. The following questions are discussed from the water's viewpoint: (i) interactions between water and proteins, (ii) protein hydration/dehydration, (iii) folding of proteins and miniproteins, (iv) peptide/protein oligomerization, and (v) amyloidosis.
Collapse
Affiliation(s)
- Tamás Vajda
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University and Laboratory of Structural Chemistry & Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | | |
Collapse
|
37
|
Li Q, Liu L, Zhang S, Xu M, Wang X, Wang C, Besenbacher F, Dong M. Modulating aβ33-42 peptide assembly by graphene oxide. Chemistry 2014; 20:7236-40. [PMID: 24838837 DOI: 10.1002/chem.201402022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Graphene oxide (GO) is utilized as the modulator to tune the formation and development of amyloid fibrils (Aβ33-42 ). Atomic force microscopy temporal evolution measurements reveal that the initial binding between the peptide monomer and the large available surface of the GO sheets can redirect the assembly pathway of amyloid beta. The results support the possibility to develop graphene-based materials to inhibit amyloidosis.
Collapse
Affiliation(s)
- Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark), Fax: (+45) 8942-3690
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Are proposed early genetic codes capable of encoding viable proteins? J Mol Evol 2014; 78:263-74. [PMID: 24826911 DOI: 10.1007/s00239-014-9622-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/28/2014] [Indexed: 01/10/2023]
Abstract
Proteins are elaborate biopolymers balancing between contradicting intrinsic propensities to fold, aggregate, or remain disordered. Assessing their primary structural preferences observable without evolutionary optimization has been reinforced by the recent identification of de novo proteins that have emerged from previously non-coding sequences. In this paper we investigate structural preferences of hypothetical proteins translated from random DNA segments using the standard genetic code and three of its proposed evolutionarily predecessor models encoding 10, 6, and 4 amino acids, respectively. Our only main assumption is that the disorder, aggregation, and transmembrane helix predictions used are able to reflect the differences in the trends of the protein sets investigated. We found that the 10-residue code encodes proteins that resemble modern proteins in their predicted structural properties. All of the investigated early genetic codes give rise to proteins with enhanced disorder and diminished aggregation propensities. Our results suggest that an ancestral genetic code similar to the proposed 10-residue one is capable of encoding functionally diverse proteins but these might have existed under conditions different from today's common physiological ones. The existence of a protein functional repertoire for the investigated earlier stages which is quite distinct as it is today can be deduced from the presented results.
Collapse
|
39
|
Abstract
Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
40
|
Dorta-Estremera SM, Li J, Cao W. Rapid generation of amyloid from native proteins in vitro. J Vis Exp 2013:50869. [PMID: 24335677 DOI: 10.3791/50869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteins carry out crucial tasks in organisms by exerting functions elicited from their specific three dimensional folds. Although the native structures of polypeptides fulfill many purposes, it is now recognized that most proteins can adopt an alternative assembly of beta-sheet rich amyloid. Insoluble amyloid fibrils are initially associated with multiple human ailments, but they are increasingly shown as functional players participating in various important cellular processes. In addition, amyloid deposited in patient tissues contains nonproteinaceous components, such as nucleic acids and glycosaminoglycans (GAGs). These cofactors can facilitate the formation of amyloid, resulting in the generation of different types of insoluble precipitates. By taking advantage of our understanding how proteins misfold via an intermediate stage of soluble amyloid precursor, we have devised a method to convert native proteins to amyloid fibrils in vitro. This approach allows one to prepare amyloid in large quantities, examine the properties of amyloid generated from specific proteins, and evaluate the structural changes accompanying the conversion.
Collapse
|
41
|
Chi H, Welch WRW, Kubelka J, Keiderling TA. Insight into the Packing Pattern of β2 Fibrils: A Model Study of Glutamic Acid Rich Oligomers with 13C Isotopic Edited Vibrational Spectroscopy. Biomacromolecules 2013; 14:3880-91. [DOI: 10.1021/bm401015f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Chi
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street (m/c111), Chicago, Illinois 60607-7061, United States
| | - William R. W. Welch
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Timothy A. Keiderling
- Department
of Chemistry, University of Illinois at Chicago, 845 West Taylor
Street (m/c111), Chicago, Illinois 60607-7061, United States
| |
Collapse
|
42
|
Di Domizio J, Cao W. Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Rev Clin Immunol 2013; 9:201-10. [PMID: 23445195 DOI: 10.1586/eci.12.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, active research using genomic, cellular and animal modeling approaches has revealed the fundamental forces driving the development of autoimmune diseases. Type I interferon imprints unique molecular signatures in a list of autoimmune diseases. Interferon is induced by diverse nucleic acid-containing complexes, which trigger innate immune activation of plasmacytoid dendritic cells. Interferon primes, activates or differentiates various leukocyte populations to promote autoimmunity. Accordingly, interferon signaling is essential for the initiation and/or progression of lupus in several experimental models. However, the heterogeneous nature of systemic lupus erythematosus requires better characterization on how interferon pathways are activated and subsequently promote the advancement of autoimmune diseases. Given the central role of type I interferon, various strategies are devised to target these cytokines or related pathways to curtail the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | |
Collapse
|
43
|
López GE, Cruz A, Sepulveda-Chervony M, López-Garriga J, Torres-Lugo M. Using a reduced dimensionality model to compute the thermodynamic properties of finite polypeptide aggregates. J Biol Phys 2013; 38:383-95. [PMID: 23729904 DOI: 10.1007/s10867-011-9259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/21/2011] [Indexed: 12/01/2022] Open
Abstract
By implementing a simple reduced dimensionality model to describe the interactions in finite systems composed of two seven-amino-acid peptides, the thermodynamic properties of ordered and disordered aggregates were computed. Within this model, the hydrophobicity of each amino acid was varied, and the stability of the systems computed. Accurate averages in the canonical ensemble were obtained using various replica exchange Monte Carlo algorithms. Low and high temperature regions were encountered where the ordered and disordered aggregates were stabilized. It was observed that as the degree of hydrophobicity increased, the stability of the aggregates increased, with a significant energetic stabilization obtained for the ordered aggregates. Upon decreasing the concentration of the solution, the stability of the amorphous aggregates increased when compared to the ordered systems.
Collapse
Affiliation(s)
- Gustavo E López
- Department of Chemistry, University of Puerto Rico, at Mayagüez, Mayagüez, P.R. 00681 USA ; Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468 USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Amyloidosis is the name for protein-folding diseases characterized by extracellular deposition of a specific soluble precursor protein that aggregates in the form of insoluble fibrils. The classification of amyloidosis is based on the chemical characterization of the precursor protein. Deposition of amyloid is localized or systemic. The 4 main types of systemic amyloidosis are AL, AA, ATTR, and Aβ2M type. A schematic approach is proposed for the clinical management of systemic amyloidosis. The importance of typing amyloid with confidence, the usefulness of imaging techniques, the principles of treatment, and the need for well-planned treatment monitoring during follow-up are discussed.
Collapse
Affiliation(s)
- Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology, AA21, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
45
|
Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy. Proc Natl Acad Sci U S A 2013; 110:2798-803. [PMID: 23388629 DOI: 10.1073/pnas.1209955110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing β sheets in cross-β motifs as the basis of self-assembled amyloids.
Collapse
|
46
|
Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc Natl Acad Sci U S A 2012; 109:14550-5. [PMID: 22904191 DOI: 10.1073/pnas.1206923109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunopathophysiologic development of systemic autoimmunity involves numerous factors through complex mechanisms that are not fully understood. In systemic lupus erythematosus, type I IFN (IFN-I) produced by plasmacytoid dendritic cells (pDCs) critically promotes the autoimmunity through its pleiotropic effects on immune cells. However, the host-derived factors that enable abnormal IFN-I production and initial immune tolerance breakdown are largely unknown. Previously, we found that amyloid precursor proteins form amyloid fibrils in the presence of nucleic acids. Here we report that nucleic acid-containing amyloid fibrils can potently activate pDCs and enable IFN-I production in response to self-DNA, self-RNA, and dead cell debris. pDCs can take up DNA-containing amyloid fibrils, which are retained in the early endosomes to activate TLR9, leading to high IFNα/β production. In mice treated with DNA-containing amyloid fibrils, a rapid IFN response correlated with pDC infiltration and activation. Immunization of nonautoimmune mice with DNA-containing amyloid fibrils induced antinuclear serology against a panel of self-antigens. The mice exhibited positive proteinuria and deposited antibodies in their kidneys. Intriguingly, pDC depletion obstructed IFN-I response and selectively abolished autoantibody generation. Our study reveals an innate immune function of nucleic acid-containing amyloid fibrils and provides a potential link between compromised protein homeostasis and autoimmunity via a pDC-IFN axis.
Collapse
|
47
|
Tavassoly O, Lee JS. Methamphetamine binds to α-synuclein and causes a conformational change which can be detected by nanopore analysis. FEBS Lett 2012; 586:3222-8. [DOI: 10.1016/j.febslet.2012.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 01/14/2023]
|
48
|
Zhang S, Cho SJ, Busuttil K, Wang C, Besenbacher F, Dong M. Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale. NANOSCALE 2012; 4:3105-3110. [PMID: 22532425 DOI: 10.1039/c2nr12049f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) has developed to become a very versatile nano-scale technique to reveal the three-dimensional (3D) morphology of amyloid aggregates under physiological conditions. However, the imaging principle of AFM is based on measuring the 'force' between a sharp tip and a given nanostructure, which may cause mechanical deformation of relatively soft objects. To avoid the deformation, scanning ion conductance microscopy (SICM) is an alternative scanning probe microscopy technique, operating with alternating current mode. Here we can indeed reveal the 3D morphology of amyloid fibrils and it is capable of exploring proteins with nanoscale resolution. Compared with conventional AFM, we show that SICM can provide precise height measurements of amyloid protein aggregates, a feature that enables us to obtain unique insight into the detailed nucleation and growth mechanisms behind amyloid self-assembly.
Collapse
Affiliation(s)
- Shuai Zhang
- Interdisciplinary Nanoscience Center (iNANO), Ny Munkegade 118, Building 152, Aarhus C, DK8000, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Madampage CA, Tavassoly O, Christensen C, Kumari M, Lee JS. Nanopore analysis: An emerging technique for studying the folding and misfolding of proteins. Prion 2012; 6:116-23. [PMID: 22421211 PMCID: PMC7082088 DOI: 10.4161/pri.18665] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 12/28/2022] Open
Abstract
Nanopore analysis is an emerging technique that enables the investigation of the conformation of a single peptide or protein molecule. Briefly, a pore is inserted into a membrane under voltage clamp conditions. When a molecule interacts with the pore there is a change in the current, I, for a time, T. Small unfolded molecules can translocate the pore whereas folded or large molecules tend to simply bump into the pore and then diffuse away. Therefore, the parameters, I and T, are dependent on the conformation of the molecule at the instant at which it encounters the pore. Thus, multiple conformations can be detected simultaneously in a single sample. As well, the analysis can be performed under dilute conditions so that folding or dimerization of a peptide can be followed in real time, which is generally difficult to study for proteins that are prone to aggregate. In this report, we describe our initial analysis of (1) Aβ peptides, which are deposited as amyloid plaques in Alzheimer disease, (2) α-synuclein, which is implicated in Parkinson disease and (3) prion proteins whose misfolding is evident in transmissable spongiform encephalopathies. In each case conformational information can be obtained which may help in understanding the early steps in the misfolding pathways.
Collapse
Affiliation(s)
| | - Omid Tavassoly
- Department of Biochemistry; University of Saskatchewan; Saskatoon, SK Canada
| | - Chris Christensen
- Department of Biochemistry; University of Saskatchewan; Saskatoon, SK Canada
| | - Meena Kumari
- Department of Biochemistry; University of Saskatchewan; Saskatoon, SK Canada
| | - Jeremy S. Lee
- Department of Biochemistry; University of Saskatchewan; Saskatoon, SK Canada
| |
Collapse
|
50
|
Pulawski W, Ghoshdastider U, Andrisano V, Filipek S. Ubiquitous amyloids. Appl Biochem Biotechnol 2012; 166:1626-43. [PMID: 22350870 PMCID: PMC3324686 DOI: 10.1007/s12010-012-9549-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 01/05/2012] [Indexed: 01/04/2023]
Abstract
The common view of amyloids and prion proteins is that they are associated with many currently incurable diseases and present a great danger to an organism. This danger comes from the fact that not only prion proteins, but also the infectious form(s) of amyloids, as it has been shown recently, are able to transmit the disease. On the other hand, organisms take advantage of the strength and durability of specific forms of amyloids. Such forms do not spread any disease. Also, in nanotechnology there is a constantly growing need to employ amyloid fibrils in many industrial applications. With increasing knowledge about amyloids and prion proteins we are aware that the amyloidal state is inherent to any protein, making the problem of amyloid formation a central one in aging-related diseases. However, the “good” amyloids can be beneficial and even necessary for our health. Furthermore, because of their mechanical properties, the amyloids are of great interest to engineers.
Collapse
Affiliation(s)
- Wojciech Pulawski
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|