1
|
Chattopadhayay S, Banzal KV, Talukdar P. Photo-activation of Tolane-based Synthetic Ion Channel for Transmembrane Chloride Transport. Angew Chem Int Ed Engl 2024:e202414354. [PMID: 39248101 DOI: 10.1002/anie.202414354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
While natural channels respond to external stimuli to regulate ion concentration across cell membranes, creating a synthetic version remains challenging. Here, we present a photo-responsive uncaging technique within an artificial ion channel system, which activates the ion transport process from a transport-inactive o-nitrobenzyl-based caged system. From the comparative ion transport screening, 1 b emerged as the most active transporter. Interestingly, its bis(o-nitrobenzyl) derivative, i.e., protransporter 1 b' was inefficient in transporting ions. Detailed transport studies indicated that compound 1 b is an anion selective transporter with a prominent selectivity towards chloride ions by following the antiport mechanism. Compound 1 b' did not form an ion channel, but after the o-nitrobenzyl groups were photocleaved, it released 1 b, forming a transmembrane ion channel. The channel exhibited an average diameter of 6.5±0.2 Å and a permeability ratio ofP C l - / P K + = 7 . 3 ± 1 . 5 ${{P}_{{Cl}^{-}}/{P}_{{K}^{+}}=7.3\pm 1.5}$ . The geometry-optimization of protransporter 1 b' indicated significant non-planarity, corroborating its inefficient self-assembly. In contrast, the crystal structure of 1 b demonstrates strong self-assembly via the formation of an intermolecular H-bond. Geometry optimization studies revealed the plausible self-assembled channel model and the interactions between the channel and chloride ion.
Collapse
Affiliation(s)
- Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Kshitij V Banzal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
2
|
Xu Q, Xia M, He G, Zhang Q, Meng Y, Ming F. New insights into the influence of NHX-type Cation/H + antiporter on flower color in Phalaenopsis orchids. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153857. [PMID: 36370614 DOI: 10.1016/j.jplph.2022.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Vacuolar sodium/proton Na+(K+)/H+ exchanger (NHX) influence color formation because of their effects on cellular pH and Na+/K+ homeostasis. Research regarding NHXs has mainly focused on the vacuolar NHX family members. However, the NHX functions related to Phalaenopsis flower coloration remain relatively uncharacterized. In this study, we cloned and characterized PeNHX1, a vacuolar cation/H+ antiporter-encoding gene that is highly expressed in the Phalaenopsis equestris (orchid) flower lip. Phylogenetic and sequence analyses showed that PeNHX1 is a vacuolar NHX protein family member that is similar to other known vacuolar antiporters. The PeNHX1-GFP fusion protein was clearly localized to the vacuolar membrane in a transient transfection assay. A quantitative real-time PCR analysis revealed the increased expression of PeNHX1 in different flower developmental stages. Moreover, it was more highly expressed in the lip than in the other flower organs. On the basis of virus-induced gene silencing, we determined that decreased PeNHX1 expression significantly reduces P. equestris petal coloration. Furthermore, the overexpression of PeNHX1 in Phalaenopsis Big Chili caused the pH to increase and the petal color to change from red to blue. The results indicate that NHX1 may mediates the Na + or K+/H+ exchange, thereby regulating the vacuolar pH to promote blue coloration. This research provides a theoretical basis for the development of orchid varieties with blue flowers.
Collapse
Affiliation(s)
- Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meng Xia
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiyu Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Meng
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
3
|
Winkelmann I, Uzdavinys P, Kenney IM, Brock J, Meier PF, Wagner LM, Gabriel F, Jung S, Matsuoka R, von Ballmoos C, Beckstein O, Drew D. Crystal structure of the Na +/H + antiporter NhaA at active pH reveals the mechanistic basis for pH sensing. Nat Commun 2022; 13:6383. [PMID: 36289233 PMCID: PMC9606361 DOI: 10.1038/s41467-022-34120-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The strict exchange of protons for sodium ions across cell membranes by Na+/H+ exchangers is a fundamental mechanism for cell homeostasis. At active pH, Na+/H+ exchange can be modelled as competition between H+ and Na+ to an ion-binding site, harbouring either one or two aspartic-acid residues. Nevertheless, extensive analysis on the model Na+/H+ antiporter NhaA from Escherichia coli, has shown that residues on the cytoplasmic surface, termed the pH sensor, shifts the pH at which NhaA becomes active. It was unclear how to incorporate the pH senor model into an alternating-access mechanism based on the NhaA structure at inactive pH 4. Here, we report the crystal structure of NhaA at active pH 6.5, and to an improved resolution of 2.2 Å. We show that at pH 6.5, residues in the pH sensor rearrange to form new salt-bridge interactions involving key histidine residues that widen the inward-facing cavity. What we now refer to as a pH gate, triggers a conformational change that enables water and Na+ to access the ion-binding site, as supported by molecular dynamics (MD) simulations. Our work highlights a unique, channel-like switch prior to substrate translocation in a secondary-active transporter.
Collapse
Affiliation(s)
- Iven Winkelmann
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Povilas Uzdavinys
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ian M. Kenney
- grid.215654.10000 0001 2151 2636Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287 USA
| | - Joseph Brock
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pascal F. Meier
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lina-Marie Wagner
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Florian Gabriel
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sukkyeong Jung
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rei Matsuoka
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Christoph von Ballmoos
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oliver Beckstein
- grid.215654.10000 0001 2151 2636Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287 USA
| | - David Drew
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Kühlbrandt W. Forty years in cryoEM of membrane proteins. Microscopy (Oxf) 2022; 71:i30-i50. [PMID: 35275191 PMCID: PMC8855526 DOI: 10.1093/jmicro/dfab041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
In a surprisingly short time, electron cryo-microscopy (cryoEM) has developed from a niche technique in structural biology to a mainstream method practiced in a rapidly growing number of laboratories around the world. From its beginnings about 40 years ago, cryoEM has had a major impact on the study of membrane proteins, in particular the energy-converting systems from bacterial, mitochondrial and chloroplast membranes. Early work on two-dimensional crystals attained resolutions ∼3.5 Å, but at present, single-particle cryoEM delivers much more detailed structures without crystals. Electron cryo-tomography of membranes and membrane-associated proteins adds valuable context, usually at lower resolution. The review ends with a brief outlook on future prospects.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt am Main 60438, Germany
| |
Collapse
|
5
|
Cao B, Xia Z, Hao Z, Liu C, Long D, Fan W, Zhao A. The C-terminal tail of the plant endosomal-type NHXs plays a key role in its function and stability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110791. [PMID: 33487365 DOI: 10.1016/j.plantsci.2020.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Typically, Na+/H+ antiporters (NHXs) possess a conserved N-terminus for cation binding and exchange and a hydrophilic C-terminus for regulating the antiporter activity. Plant endosomal-type NHXs play important roles in protein trafficking, as well as K+ and vesicle pH homeostasis, however the role of the C-terminal tail remains unclear. Here, the function of MnNHX6, an endosomal-type NHX in mulberry, was investigated using heterologous expression in yeast. Functional and localization analyses of C-terminal truncation and mutations in MnNHX6 revealed that the C-terminal conserved region was responsible for the function and stability of the protein and its hydrophobicity, which is a key domain requirement. Nuclear magnetic resonance spectroscopy provided direct structural evidence and yeast two-hybrid screening indicated that this functional domain was also necessary for interaction with sorting nexin 1. Our findings demonstrate that although the C-terminal tail of MnNHX6 is intrinsically disordered, the C-terminal conserved region may be an important part of the external mouth of this transporter, which controls protein function and stability by serving as an inter-molecular cork with a chain mechanism. These findings improve our understanding of the roles of the C-terminal tail of endosomal-type NHXs in plants and the ion transport mechanism of NHX-like antiporters.
Collapse
Affiliation(s)
- Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
6
|
Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump. Proc Natl Acad Sci U S A 2020; 117:31166-31176. [PMID: 33229520 PMCID: PMC7733839 DOI: 10.1073/pnas.2006276117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) complexes are the most sophisticated known cation/proton exchangers and are essential for the survival of a vast variety of alkaliphilic and/or halophilic microorganisms. Moreover, this family of antiporters represents the ancestor of cation pumps in nearly all known redox-driven transporter complexes, including the complex I of the respiratory chain. For the Mrp complex, an experimental structure is lacking. We now report the structure of Mrp complex at 3.0-Å resolution solved using the single-particle cryo-EM method. The structure-inspired functional study of Mrp provides detailed information for further biophysical and biochemical investigation of the intriguingly pumping mechanism and physiological functions of this complex, as well as for exploring its potential as a therapeutic drug target. Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.
Collapse
|
7
|
Cao B, Xia Z, Liu C, Fan W, Zhang S, Liu Q, Xiang Z, Zhao A. New Insights into the Structure-Function Relationship of the Endosomal-Type Na +, K +/H + Antiporter NHX6 from Mulberry ( Morus notabilis). Int J Mol Sci 2020; 21:ijms21020428. [PMID: 31936580 PMCID: PMC7014192 DOI: 10.3390/ijms21020428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 01/31/2023] Open
Abstract
The endosomal-type Na+, K+/H+ antiporters (NHXs) play important roles in K+, vesicle pH homeostasis, and protein trafficking in plant. However, the structure governing ion transport mechanism and the key residues related to the structure–function of the endosomal-type NHXs remain unclear. Here, the structure-function relationship of the only endosomal-type NHX from mulberry, MnNHX6, was investigated by homology modeling, mutagenesis, and localization analyses in yeast. The ectopic expression of MnNHX6 in arabidopsis and Nhx1 mutant yeast can enhance their salt tolerance. MnNHX6’s three-dimensional structure, established by homology modeling, was supported by empirical, phylogenetic, and experimental data. Structure analysis showed that MnNHX6 contains unusual 13 transmembrane helices, but the structural core formed by TM5-TM12 assembly is conserved. Localization analysis showed that MnNHX6 has the same endosomal localization as yeast Nhx1/VPS44, and Arg402 is important for protein stability of MnNHX6. Mutagenesis analysis demonstrated MnNHX6 contains a conserved cation binding mechanism and a similar charge-compensated pattern as NHE1, but shares a different role in ion selectivity than the vacuolar-type NHXs. These results improve our understanding of the role played by the structure–function related key residues of the plant endosomal-type NHXs, and provide a basis for the ion transport mechanism study of endosomal-type NHXs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aichun Zhao
- Correspondence: ; Tel.: +86-23-6825-1803; Fax: +86-23-6825-1128
| |
Collapse
|
8
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
9
|
Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b. Appl Microbiol Biotechnol 2018; 102:3765-3777. [DOI: 10.1007/s00253-018-8846-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
|
10
|
Curtis KJ, Meyrick VM, Mehta B, Haji GS, Li K, Montgomery H, Man WDC, Polkey MI, Hopkinson NS. Angiotensin-Converting Enzyme Inhibition as an Adjunct to Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 194:1349-1357. [PMID: 27248440 DOI: 10.1164/rccm.201601-0094oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Epidemiological studies in older individuals have found an association between the use of angiotensin-converting enzyme (ACE) inhibition (ACE-I) therapy and preserved locomotor muscle mass, strength, and walking speed. ACE-I therapy might therefore have a role in the context of pulmonary rehabilitation (PR). OBJECTIVES To investigate the hypothesis that enalapril, an ACE inhibitor, would augment the improvement in exercise capacity seen during PR. METHODS We performed a double-blind, placebo-controlled, parallel-group randomized controlled trial. Patients with chronic obstructive pulmonary disease, who had at least moderate airflow obstruction and were taking part in PR, were randomized to either 10 weeks of therapy with an ACE inhibitor (10 mg enalapril) or placebo. MEASUREMENTS AND MAIN RESULTS The primary outcome measurement was the change in peak power (assessed using cycle ergometry) from baseline. Eighty patients were enrolled, 78 were randomized (age 67 ± 8 years; FEV1 48 ± 21% predicted), and 65 completed the trial (34 on placebo, 31 on the ACE inhibitor). The ACE inhibitor-treated group demonstrated a significant reduction in systolic blood pressure (Δ, -16 mm Hg; 95% confidence interval [CI], -22 to -11) and serum ACE activity (Δ, -18 IU/L; 95% CI, -23 to -12) versus placebo (between-group differences, P < 0.0001). Peak power increased significantly more in the placebo group (placebo Δ, +9 W; 95% CI, 5 to 13 vs. ACE-I Δ, +1 W; 95% CI, -2 to 4; between-group difference, 8 W; 95% CI, 3 to 13; P = 0.001). There was no significant between-group difference in quadriceps strength or health-related quality of life. CONCLUSIONS Use of the ACE inhibitor enalapril, together with a program of PR, in patients without an established indication for ACE-I, reduced the peak work rate response to exercise training in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Katrina J Curtis
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Victoria M Meyrick
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom.,2 Department of Respiratory Medicine, King's College London NHS Foundation Trust, London, United Kingdom
| | - Bhavin Mehta
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Gulam S Haji
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Kawah Li
- 3 Institute for Sport, Exercise and Health, University College London, London, United Kingdom; and
| | - Hugh Montgomery
- 3 Institute for Sport, Exercise and Health, University College London, London, United Kingdom; and
| | - William D-C Man
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom.,4 Harefield Pulmonary Rehabilitation Unit, Harefield Hospital, London, United Kingdom
| | - Michael I Polkey
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| | - Nicholas S Hopkinson
- 1 National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust and Imperial College, London, United Kingdom
| |
Collapse
|
11
|
Landreh M, Marklund EG, Uzdavinys P, Degiacomi MT, Coincon M, Gault J, Gupta K, Liko I, Benesch JLP, Drew D, Robinson CV. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na +/H + antiporters. Nat Commun 2017; 8:13993. [PMID: 28071645 PMCID: PMC5234078 DOI: 10.1038/ncomms13993] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022] Open
Abstract
Na+/H+ antiporters are found in all kingdoms of life and exhibit catalysis rates that are among the fastest of all known secondary-active transporters. Here we combine ion mobility mass spectrometry and molecular dynamics simulations to study the conformational stability and lipid-binding properties of the Na+/H+ exchanger NapA from Thermus thermophilus and compare this to the prototypical antiporter NhaA from Escherichia coli and the human homologue NHA2. We find that NapA and NHA2, but not NhaA, form stable dimers and do not selectively retain membrane lipids. By comparing wild-type NapA with engineered variants, we show that the unfolding of the protein in the gas phase involves the disruption of inter-domain contacts. Lipids around the domain interface protect the native fold in the gas phase by mediating contacts between the mobile protein segments. We speculate that elevator-type antiporters such as NapA, and likely NHA2, use a subset of annular lipids as structural support to facilitate large-scale conformational changes within the membrane.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Erik G. Marklund
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
- Department of Chemistry–BMC, Uppsala University, Box 576, Uppsala SE-751 23, Sweden
| | - Povilas Uzdavinys
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Matteo T. Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Mathieu Coincon
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Joseph Gault
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Kallol Gupta
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Idlir Liko
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - Justin L. P. Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| | - David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Carol V. Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QZ, UK
| |
Collapse
|
12
|
Kuzhelev AA, Shevelev GY, Krumkacheva OA, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG. Saccharides as Prospective Immobilizers of Nucleic Acids for Room-Temperature Structural EPR Studies. J Phys Chem Lett 2016; 7:2544-8. [PMID: 27320083 PMCID: PMC5453311 DOI: 10.1021/acs.jpclett.6b01024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for structural studies of biomolecules and their complexes. This method, whose applicability has been recently extended to room temperatures, requires immobilization of the studied biosystem to prevent averaging of dipolar couplings; at the same time, the modification of native conformations by immobilization must be avoided. In this work, we provide first demonstration of room-temperature EPR distance measurements in nucleic acids using saccharides trehalose, sucrose, and glucose as immobilizing media. We propose an approach that keeps structural conformation and unity of immobilized double-stranded DNA. Remarkably, room-temperature electron spin dephasing time of triarylmethyl-labeled DNA in trehalose is noticeably longer compared to previously used immobilizers, thus providing a broader range of available distances. Therefore, saccharides, and especially trehalose, can be efficiently used as immobilizers of nucleic acids, mimicking native conditions and allowing wide range of structural EPR studies at room temperatures.
Collapse
Affiliation(s)
- Andrey A. Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Georgiy Yu. Shevelev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M. Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
14
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
|
16
|
Uchiyama S, Fukatsu E, McClean GD, de Silva AP. Measurement of Local Sodium Ion Levels near Micelle Surfaces with Fluorescent Photoinduced-Electron-Transfer Sensors. Angew Chem Int Ed Engl 2015; 55:768-71. [DOI: 10.1002/anie.201509096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/09/2022]
|
17
|
Uchiyama S, Fukatsu E, McClean GD, de Silva AP. Measurement of Local Sodium Ion Levels near Micelle Surfaces with Fluorescent Photoinduced-Electron-Transfer Sensors. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Lee C, Yashiro S, Dotson DL, Uzdavinys P, Iwata S, Sansom MSP, von Ballmoos C, Beckstein O, Drew D, Cameron AD. Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. ACTA ACUST UNITED AC 2015; 144:529-44. [PMID: 25422503 PMCID: PMC4242812 DOI: 10.1085/jgp.201411219] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dimeric structure of the sodium–proton antiporter NhaA provides insight into the roles of Asp163 and Lys300 in the transport mechanism. Sodium–proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium–proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium–proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium–proton antiport in NhaA.
Collapse
Affiliation(s)
- Chiara Lee
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, England, UK
| | - Shoko Yashiro
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, England, UK Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England, UK
| | - David L Dotson
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Povilas Uzdavinys
- Department of Biochemistry and Biophysics, Centre for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - So Iwata
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, England, UK Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England, UK Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford, Didcot, Oxfordshire OX11 0FA, England, UK Japan Science and Technology Agency, ERATO, Human Crystallography Project, Sakyo-ku, Kyoto 606-851, Japan Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| | - Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Centre for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, AZ 85287 Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK
| | - David Drew
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, England, UK Department of Biochemistry and Biophysics, Centre for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander D Cameron
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, England, UK Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, England, UK Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford, Didcot, Oxfordshire OX11 0FA, England, UK School of Life Sciences, University of Warwick, Coventry CV4 7AL, England, UK
| |
Collapse
|
19
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
20
|
Jinadasa T, Josephson CB, Boucher A, Orlowski J. Determinants of Cation Permeation and Drug Sensitivity in Predicted Transmembrane Helix 9 and Adjoining Exofacial Re-entrant Loop 5 of Na+/H+ Exchanger NHE1. J Biol Chem 2015; 290:18173-18186. [PMID: 26063808 DOI: 10.1074/jbc.m115.642199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian Na(+)/H(+) exchangers (NHEs) regulate numerous physiological processes and are involved in the pathogenesis of several diseases, including tissue ischemia and reperfusion injuries, cardiac hypertrophy and failure, and cancer progression. Hence, NHEs are being targeted for pharmaceutical-based clinical therapies, but pertinent information regarding the structural elements involved in cation translocation and drug binding remains incomplete. Molecular manipulations of the prototypical NHE1 isoform have implicated several predicted membrane-spanning (M) helices, most notably M4, M9, and M11, as important determinants of cation permeation and drug sensitivity. Here, we have used substituted-cysteine accessibility mutagenesis and thiol-modifying methanethiosulfonate (MTS) reagents to further probe the involvement of evolutionarily conserved sites within M9 (residues 342-363) and the adjacent exofacial re-entrant loop 5 between M9 and M10 (EL5; residues 364-415) of a cysteine-less variant of rat NHE1 on its kinetic and pharmacological properties. MTS treatment significantly reduced the activity of mutants containing substitutions within M9 (H353C, S355C, and G356C) and EL5 (G403C and S405C). In the absence of MTS, mutants S355C, G403C, and S405C showed modest to significant decreases in their apparent affinities for Na(+) o and/or H(+) i. In addition, mutations Y370C and E395C within EL5, whereas failing to confer sensitivity to MTS, nevertheless, reduced the affinity for Na(+) o, but not for H(+) i. The Y370C mutant also exhibited higher affinity for ethylisopropylamiloride, a competitive antagonist of Na(+) o transport. Collectively, these results further implicate helix M9 and EL5 of NHE1 as important elements involved in cation transport and inhibitor sensitivity, which may inform rational drug design.
Collapse
Affiliation(s)
- Tushare Jinadasa
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6
| | - Colin B Josephson
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6; Division of Clinical Neurosciences, University of Calgary Foothills Medical Centre, Calgary, Alberta T2N 2T9, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6
| | - John Orlowski
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6.
| |
Collapse
|
21
|
Wöhlert D, Kühlbrandt W, Yildiz O. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. eLife 2014; 3:e03579. [PMID: 25426802 PMCID: PMC4381880 DOI: 10.7554/elife.03579] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022] Open
Abstract
Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed
structures of antiporters with bound substrate ions are essential for understanding
how they work. We have resolved the substrate ion in the dimeric, electroneutral
sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2
Å, and have determined its structure in two different conformations at pH 8 and
pH 4. The ion is coordinated by three acidic sidechains, a water molecule, a serine
and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the
deepest point of a negatively charged cytoplasmic funnel. A second narrow polar
channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP
is cooperative at pH 6 but not at pH 5. Cooperativity is due to pH-dependent
allosteric coupling of protomers through two histidines at the dimer interface.
Combined with comprehensive transport studies, the structures of PaNhaP offer unique
new insights into the transport mechanism of sodium/proton antiporters. DOI:http://dx.doi.org/10.7554/eLife.03579.001 Although the membrane that surrounds a cell is effective at separating the inside of
a cell from the outside environment, certain molecules must enter or leave the cell
for it to work correctly. One way this transport can occur is via proteins embedded
in the cell membrane, called transporters. Transporters that are found in all organisms include the sodium/proton antiporters,
which exchange protons from inside the cell with sodium ions from outside. However,
exactly how the antiporter works was unknown. Previous work suggested that the structure and activity of the sodium/proton
antiporter changes as the acidity of its environment changes, but the precise details
of how this occurs were unclear. Wöhlert et al. have now crystallised a
sodium/proton antiporter from a single-celled organism called Pyrococcus
abyssi, a species of archaea that has been found living in hydrothermal
vents deep in the Pacific Ocean. The structures the protein takes on in different
functional states were then deduced from these crystals using a technique called
X-ray crystallography. Using heavy thallium ions instead of sodium ions, which are
less visible to X-rays, Wöhlert et al. found the site in the antiporter where
the transported ion binds as it moves through the membrane. The antiporter has a funnel-shaped cavity that faces inwards (into the cell) in both
acidic and alkaline conditions, although a second narrow channel that is open in
alkaline conditions is blocked in acidic conditions by small protein rearrangements.
Wöhlert et al. suggest that the differences between both structures explain how
the antiporter tunes its ability to bind to the ions it transports. Wöhlert et al. further measured the activity of the antiporter and observed that
the transport of ions was most rapid under slightly acidic conditions. In more acidic
conditions, the sodium ion cannot bind to the antiporter, and in an alkaline
environment, the sodium ions bind too strongly to the antiporter; in both cases, the
ions cannot be transported. Comparing the findings presented here with separate work that uncovers the structure
of the sodium/proton antiporter in a different species of archaea revealed very
similar structures. Related transporters are also found in mammals, and defects in
these transporters can lead to problems with the heart and kidneys. A better
understanding of the sodium/proton antiporter structure could therefore help to
develop new treatments for these conditions. DOI:http://dx.doi.org/10.7554/eLife.03579.002
Collapse
Affiliation(s)
- David Wöhlert
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ozkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W, Polkey MI, Roca J, Saey D, Schols AMWJ, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62. [PMID: 24787074 DOI: 10.1164/rccm.201402-0373st] [Citation(s) in RCA: 704] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Collapse
|
23
|
Abstract
We examined substrate-induced conformational changes in MjNhaP1, an archaeal electroneutral Na(+)/H(+)-antiporter resembling the human antiporter NHE1, by electron crystallography of 2D crystals in a range of physiological pH and Na(+) conditions. In the absence of sodium, changes in pH had no major effect. By contrast, changes in Na(+) concentration caused a marked conformational change that was largely pH-independent. Crystallographically determined, apparent dissociation constants indicated ∼10-fold stronger Na(+) binding at pH 8 than at pH 4, consistent with substrate competition for a common ion-binding site. Projection difference maps indicated helix movements by about 2 Å in the 6-helix bundle region of MjNhaP1 that is thought to contain the ion translocation site. We propose that these movements convert the antiporter from the proton-bound, outward-open state to the Na(+)-bound, inward-open state. Oscillation between the two states would result in rapid Na(+)/H(+) antiport. DOI: http://dx.doi.org/10.7554/eLife.01412.001.
Collapse
Affiliation(s)
- Cristina Paulino
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | |
Collapse
|
24
|
Hendus-Altenburger R, Kragelund BB, Pedersen SF. Structural dynamics and regulation of the mammalian SLC9A family of Na⁺/H⁺ exchangers. CURRENT TOPICS IN MEMBRANES 2014; 73:69-148. [PMID: 24745981 DOI: 10.1016/b978-0-12-800223-0.00002-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian Na⁺/H⁺ exchangers of the SLC9A family are widely expressed and involved in numerous essential physiological processes. Their primary function is to mediate the 1:1 exchange of Na⁺ for H⁺ across the membrane in which they reside, and they play central roles in regulation of body, cellular, and organellar pH. Their function is tightly regulated through mechanisms involving interactions with multiple protein and lipid-binding partners, phosphorylations, and other posttranslational modifications. Biochemical and mutational analyses indicate that the SLC9As have a short intracellular N-terminus, 12 transmembrane (TM) helices necessary and sufficient for ion transport, and a C-terminal cytoplasmic tail region with essential regulatory roles. No high-resolution structures of the SLC9As exist; however, models based on crystal structures of the bacterial NhaAs support the 12 TM organization and suggest that TMIV and XI may form a central part of the ion-translocation pathway, whereas pH sensing may involve TMII, TMIX, and several intracellular loops. Similar to most ion transporters studied, SLC9As likely exist as coupled dimers in the membrane, and this appears to be important for the well-studied cooperativity of H⁺ binding. The aim of this work is to summarize and critically discuss the currently available evidence on the structural dynamics, regulation, and binding partner interactions of SLC9As, focusing in particular on the most widely studied isoform, SLC9A1/NHE1. Further, novel bioinformatic and structural analyses are provided that to some extent challenge the existing paradigm on how ions are transported by mammalian SLC9As.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell and Developmental Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
26
|
Functional and structural dynamics of NhaA, a prototype for Na(+) and H(+) antiporters, which are responsible for Na(+) and H(+) homeostasis in cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1047-62. [PMID: 24361841 DOI: 10.1016/j.bbabio.2013.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/14/2023]
Abstract
The crystal structure of down-regulated NhaA crystallized at acidic pH4 [21] has provided the first structural insights into the antiport mechanism and pH regulation of a Na(+)/H(+) antiporter [22]. On the basis of the NhaA crystal structure [21] and experimental data (reviewed in [2,22,38] we have suggested that NhaA is organized into two functional regions: (i) a cluster of amino acids responsible for pH regulation (ii) a catalytic region at the middle of the TM IV/XI assembly, with its unique antiparallel unfolded regions that cross each other forming a delicate electrostatic balance in the middle of the membrane. This unique structure contributes to the cation binding site and allows the rapid conformational changes expected for NhaA. Extended chains interrupting helices appear now a common feature for ion binding in transporters. However the NhaA fold is unique and shared by ASBTNM [30] and NapA [29]. Computation [13], electrophysiology [69] combined with biochemistry [33,47] have provided intriguing models for the mechanism of NhaA. However, the conformational changes and the residues involved have not yet been fully identified. Another issue which is still enigma is how energy is transduced "in this 'nano-machine.'" We expect that an integrative approach will reveal the residues that are crucial for NhaA activity and regulation, as well as elucidate the pHand ligand-induced conformational changes and their dynamics. Ultimately, integrative results will shed light on the mechanism of activity and pH regulation of NhaA, a prototype of the CPA2 family of transporters. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
27
|
Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P, Dotson DL, Iwata S, Beckstein O, Cameron AD, Drew D. A two-domain elevator mechanism for sodium/proton antiport. Nature 2013; 501:573-7. [PMID: 23995679 PMCID: PMC3914025 DOI: 10.1038/nature12484] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022]
Abstract
Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as, hypertension, heart failure and epilepsy and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1,3, where both EM and crystal structures are available4-6. NhaA is made up of two distinct domains, a Core domain and a Dimerisation domain. In the NhaA crystal structure a cavity is located between the two domains providing access to the ion-binding site from the inward-facing surface of the protein1,4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, where a conformational change is thought to occur7. To date, the only reported NhaA crystal structure is of the low pH inactivated form4. Here, we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the Core and Dimerisation domains are in different positions to those seen in NhaA and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to directly coordinate ion-binding1,8,9, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the Core domain, some 20° against the Dimerisation interface. We conclude that despite their fast transport rates of up to 1500 ions/sec3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general.
Collapse
Affiliation(s)
- Chiara Lee
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease. J Mol Cell Cardiol 2013; 61:68-76. [PMID: 23429007 DOI: 10.1016/j.yjmcc.2013.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
The Na(+) gradient produced across the cardiac sarcolemma by the ATP-dependent Na(+)-pump is a constant source of energy for Na(+)-dependent transporters. The plasma membrane Na(+)/H(+) exchanger (NHE) is one such secondary active transporter, regulating intracellular pH, Na(+) concentration, and cell volume. NHE1, the major isoform found in the heart, is activated in response to a variety of stimuli such as hormones and mechanical stress. This important characteristic of NHE1 is intimately linked to heart diseases, including maladaptive cardiac hypertrophy and subsequent heart failure, as well as acute ischemic-reperfusion injury. NHE1 activation results in elevation of pH and intracellular Na(+) concentration, which potentially enhance downstream signaling cascades in the myocardium. Therefore, in addition to determining the mechanism underlying regulation of NHE1 activity, it is important to understand how the ionic signal produced by NHE1 is transmitted to the downstream targets. Extensive studies have identified many accessory factors that interact with NHE1. Here, we have summarized the recent progress on understanding the molecular mechanism underlying NHE1 regulation and have shown a possible signaling pathway leading to cardiac remodeling, which is initiated from NHE1. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|
29
|
Angiotensin-converting enzyme gene polymorphism in north Indian population with obstructive sleep apnea. Sleep Breath 2013; 17:1029-37. [PMID: 23371888 DOI: 10.1007/s11325-012-0795-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/08/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND A deletion of 287-bp Alu repeat of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene is associated with hypertension. PURPOSE The aim of this study is to determine the frequency of ACE (I/D) polymorphism in patients with obstructive sleep apnea (OSA). METHODS Genotyping of ACE (I/D) gene polymorphism and estimation of serum angiotensin-converting enzyme (SACE) activity were done in 813 subjects who underwent polysomnography. Of these, 395 were apneics and 418 were non-apneics. RESULTS The frequencies of II genotype (OR = 1.8, 95 % CI 1.26-2.60, p = 0.001) and I allele (OR = 1.4, 95 % CI 1.13-1.69, p = 0.001) of ACE gene were found to be significantly increased in patients with OSA as compared to patients without OSA. Frequency of II genotype was significantly decreased (OR = 0.46, 95 % CI 0.28-0.77, p = 0.003) in OSA patients with hypertension. In contrast, the frequencies of ID (OR = 1.80, 95 % CI 1.08-2.99, p = 0.024) and DD genotypes (OR = 2.15, 95 % CI 1.30-3.57, p = 0.003) were significantly increased in this group. The activity of SACE was significantly decreased in the apneic group as compared to the non-apneic group (OR = 0.99, 95 % CI 0.98-1.00, p = 0.04). CONCLUSIONS The findings suggest that II genotype confers susceptibility towards development of OSA whereas DD genotype confers susceptibility towards hypertension irrespective of OSA.
Collapse
|
30
|
Abstract
From the earliest work on regular arrays in negative stain, electron crystallography has contributed greatly to our understanding of the structure and function of biological macromolecules. The development of electron cryo-microscopy (cryo-EM) then lead to the first groundbreaking atomic models of the membrane proteins bacteriorhodopsin and light harvesting complex II within lipid bilayers. Key contributions towards cryo-EM and electron crystallography methods included specimen preparation and vitrification, liquid-helium cooling, data collection, and image processing. These methods are now applied almost routinely to both membrane and soluble proteins. Here we outline the advances and the breakthroughs that paved the way towards high-resolution structures by electron crystallography, both in terms of methods development and biological milestones.
Collapse
|
31
|
Collinson I, Vonck J, Hizlan D. Using 2D crystals to analyze the structure of membrane proteins. Methods Mol Biol 2013; 1033:47-65. [PMID: 23996170 DOI: 10.1007/978-1-62703-487-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electron crystallography is a powerful technique for studying the structure and function of membrane proteins, not only in the ground state, but also in active conformations. When combined with high-resolution structures obtained by X-ray crystallography, electron crystallography can provide insights into the mechanism of the protein. In this chapter we discuss obtaining a three-dimensional map of membrane proteins by electron crystallography and how to combine these maps with atomic resolution models in order to study the function of membrane proteins. We argue that this approach is particularly powerful as it combines the high resolution attainable by X-ray crystallography with the visualization of the subject in the near-native environment of the membrane, by electron cryo-microscopy. This point has been illustrated by the analysis of the protein translocation complex SecYEG.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
32
|
Mills DJ, Vonck J. Choice and maintenance of equipment for electron crystallography. Methods Mol Biol 2013; 955:331-351. [PMID: 23132070 DOI: 10.1007/978-1-62703-176-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.
Collapse
|
33
|
Sampathkumar P, Mak MW, Fischer-Witholt SJ, Guigard E, Kay CM, Lemieux MJ. Oligomeric state study of prokaryotic rhomboid proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3090-7. [DOI: 10.1016/j.bbamem.2012.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022]
|
34
|
Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter. J Mol Biol 2012; 424:283-94. [PMID: 23022605 DOI: 10.1016/j.jmb.2012.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/07/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022]
Abstract
The Arabidopsisthaliana Na(+)/H(+) antiporter salt-overly-sensitive 1 (SOS1) is essential to maintain low intracellular levels of toxic Na(+) under salt stress. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety, indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single-particle reconstruction of negatively stained full-length and active SOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family and an elongated, large, and structured cytosolic domain. Both the transmembrane (TM) and cytosolic moieties contribute to the dimerization of the antiporter. The close contacts between the TM and the cytosolic domains provide a link between regulation and transport activity of the antiporter.
Collapse
|
35
|
Kuykendall LD, Shao JY, Hartung JS. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction. PLoS One 2012; 7:e38725. [PMID: 22761700 PMCID: PMC3382624 DOI: 10.1371/journal.pone.0038725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/14/2012] [Indexed: 01/09/2023] Open
Abstract
Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+)/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10) with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational analysis and is consistent with the hypothesis that these proteins may be of particular importance in host/microbe interaction and their duplication likely facilitates their ongoing evolution.
Collapse
Affiliation(s)
- L. David Kuykendall
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Jonathan Y. Shao
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - John S. Hartung
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
36
|
|
37
|
Ubarretxena-Belandia I, Stokes DL. Membrane protein structure determination by electron crystallography. Curr Opin Struct Biol 2012; 22:520-8. [PMID: 22572457 DOI: 10.1016/j.sbi.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/25/2022]
Abstract
During the past year, electron crystallography of membrane proteins has provided structural insights into the mechanism of several different transporters and into their interactions with lipid molecules within the bilayer. From a technical perspective there have been important advances in high-throughput screening of crystallization trials and in automated imaging of membrane crystals with the electron microscope. There have also been key developments in software, and in molecular replacement and phase extension methods designed to facilitate the process of structure determination.
Collapse
Affiliation(s)
- Iban Ubarretxena-Belandia
- Department of Structural and Chemical Biology, Mt. Sinai School of Medicine, New York, NY 10029, United States
| | | |
Collapse
|
38
|
Kim LY, Johnson MC, Schmidt‐Krey I. Cryo‐EM in the Study of Membrane Transport Proteins. Compr Physiol 2012; 2:283-93. [DOI: 10.1002/cphy.c110028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
The higher exercise intensity and the presence of allele I of ACE gene elicit a higher post-exercise blood pressure reduction and nitric oxide release in elderly women: an experimental study. BMC Cardiovasc Disord 2011; 11:71. [PMID: 22136292 PMCID: PMC3261092 DOI: 10.1186/1471-2261-11-71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The absence of the I allele of the angiotensin converting enzyme (ACE) gene has been associated with higher levels of circulating ACE, lower nitric oxide (NO) release and hypertension. The purposes of this study were to analyze the post-exercise salivary nitrite (NO2-) and blood pressure (BP) responses to different exercise intensities in elderly women divided according to their ACE genotype. METHODS Participants (n = 30; II/ID = 20 and DD = 10) underwent three experimental sessions: incremental test - IT (15 watts workload increase/3 min) until exhaustion; 20 min exercise 90% anaerobic threshold (90% AT); and 20 min control session without exercise. Volunteers had their BP and NO2- measured before and after experimental sessions. RESULTS Despite both intensities showed protective effect on preventing the increase of BP during post-exercise recovery compared to control, post-exercise hypotension and increased NO2- release was observed only for carriers of the I allele (p < 0.05). CONCLUSION Genotypes of the ACE gene may exert a role in post-exercise NO release and BP response.
Collapse
|
40
|
Abstract
Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, Faculty of Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
41
|
Seripa D, Paroni G, Matera MG, Gravina C, Scarcelli C, Corritore M, D’Ambrosio LP, Urbano M, D’Onofrio G, Copetti M, Kehoe PG, Panza F, Pilotto A. Angiotensin-converting enzyme (ACE) genotypes and disability in hospitalized older patients. AGE (DORDRECHT, NETHERLANDS) 2011; 33:409-419. [PMID: 21076879 PMCID: PMC3168594 DOI: 10.1007/s11357-010-9192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/28/2010] [Indexed: 05/29/2023]
Abstract
The association between angiotensin-converting enzyme (ACE) genotypes and functional decline in older adults remains controversial. To assess if ACE gene variations influences functional abilities at older age, the present study explored the association between the common ACE insertion/deletion (I/D) polymorphism and disability measured with activities of daily living (ADL) in hospitalized older patients. We analyzed the frequency of the ACE genotypes (I/I, I/D, and D/D) in a population of 2,128 hospitalized older patients divided according to presence or absence of ADL disability. Logistic regression analysis adjusted for possible confounding factors, identified an association between the I/I genotype with ADL disability (OR=1.54, 95% CI 1.04-2.29). This association was significant in men (OR=2.01, 95% CI 1.07-3.78), but not in women (OR=1.36, 95% CI 0.82-2.25). These results suggested a possible role of the ACE polymorphism as a genetic marker for ADL disability in hospitalized older patients.
Collapse
Affiliation(s)
- Davide Seripa
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Giulia Paroni
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Maria G. Matera
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Carolina Gravina
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Carlo Scarcelli
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Michele Corritore
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Luigi P. D’Ambrosio
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Maria Urbano
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Grazia D’Onofrio
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Patrick G. Kehoe
- Dementia Research Group, Institute of Clinical Neurosciences, The John James Building, Frenchay Hospital, University of Bristol, Bristol, UK
| | - Francesco Panza
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Alberto Pilotto
- Department of Medical Sciences, Geriatric Unit and Gerontology–Geriatrics Research Laboratory, IRCCS “Casa Sollievo della Sofferenza”, Padre Pio da Pietrelcina Foundation, 71013 San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
42
|
Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz O, Kühlbrandt W. Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J 2010; 30:439-49. [PMID: 21151096 DOI: 10.1038/emboj.2010.321] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/10/2010] [Indexed: 11/09/2022] Open
Abstract
We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane-spanning α-helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six-helix bundle at the tip of the protomer is conserved. The six-helix bundle of NhaA contains two partially unwound α-helices thought to harbour the ion-translocation site, which is thus similar in NhaP1. A model of NhaP1 based on detailed sequence comparison and the NhaA structure was fitted to the 7 Å map. The additional N-terminal helix 1 of NhaP1, which appears to be an uncleaved signal sequence, is located near the dimer interface. Similar sequences are present in many eukaryotic homologues of NhaP1, including NHE1. Although fully folded and able to dimerize, NhaP1 constructs without helix 1 are inactive. Possible reasons are investigated and discussed.
Collapse
Affiliation(s)
- Panchali Goswami
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Krauke Y, Sychrová H. Chimeras between C. glabrata Cnh1 and S. cerevisiae Nha1 Na+/H+-antiporters are functional proteins increasing the salt tolerance of yeast cells. Folia Microbiol (Praha) 2010; 55:435-41. [DOI: 10.1007/s12223-010-0073-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/02/2010] [Indexed: 10/19/2022]
|
44
|
Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W. EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 2010; 39:D456-64. [PMID: 20935055 PMCID: PMC3013769 DOI: 10.1093/nar/gkq880] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryo-electron microscopy reconstruction methods are uniquely able to reveal structures of many important macromolecules and macromolecular complexes. EMDataBank.org, a joint effort of the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB) and the National Center for Macromolecular Imaging (NCMI), is a global ‘one-stop shop’ resource for deposition and retrieval of cryoEM maps, models and associated metadata. The resource unifies public access to the two major archives containing EM-based structural data: EM Data Bank (EMDB) and Protein Data Bank (PDB), and facilitates use of EM structural data of macromolecules and macromolecular complexes by the wider scientific community.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rodríguez-Romo G, Ruiz JR, Santiago C, Fiuza-Luces C, González-Freire M, Gómez-Gallego F, Morán M, Lucia A. Does the ACE I/D polymorphism, alone or in combination with the ACTN3 R577X polymorphism, influence muscle power phenotypes in young, non-athletic adults? Eur J Appl Physiol 2010; 110:1099-106. [PMID: 20734058 DOI: 10.1007/s00421-010-1608-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2010] [Indexed: 10/19/2022]
Abstract
We investigated the association of the angiotensin converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism, alone or in combination with the α-actinin-3 gene (ACTN3) R577X polymorphism, with jumping (vertical squat and counter-movement jump tests) and sprint ability (30 m dash) in non-athletic, healthy young adults [N = 281 (214 male), mean (SD) age 21 (2) years]. We did not observe any effect of the ACE I/D polymorphism on study phenotypes. We repeated the analyses separately in men and women and the results did not materially change. Likewise, the mean estimates of the study phenotypes were similar in subjects with the genotype combinations ACE II + ID and ACTN3 XX or ACE DD and ACTN3 RR + RX. We found no association between the ACE DD and ACTN3 RR + RX genotype combination and performance (≥90th of the sex-specific percentile). In summary, though the ACE I/D polymorphism is a strong candidate to modulate some exercise-related phenotypes or athletic performance status, this polymorphism, alone or in combination with the ACTN3 R577X polymorphism, does not seem to exert a major influence in the muscle 'explosive' power of young healthy adults, as assessed during multi-joint exercise tests.
Collapse
|
46
|
The angiotensin-converting enzyme insertion/deletion polymorphism modifies the clinical outcome in patients with Pompe disease. Genet Med 2010; 12:206-11. [PMID: 20308911 DOI: 10.1097/gim.0b013e3181d2900e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The insertion/deletion polymorphism of angiotensin-converting enzyme may influence muscle properties. We examined whether Pompe disease clinical manifestations, which are known to be highly variable among late-onset patients, may be modulated by angiotensin-converting enzyme polymorphism. METHODS We included 38 patients with late-onset Pompe disease, aged 44.6 +/- 19.8 years. We compared the distribution of angiotensin-converting enzyme polymorphism according to demographic and disease parameters. RESULTS The distribution of angiotensin-converting enzyme polymorphism was in line with the general population, with 16% of patients carrying the II genotype, 37% carrying the DD genotype, and the remaining patients with the ID genotype. The three groups did not differ in mean age, disease duration, Walton score, and other scores used to measure disease severity. The DD polymorphism was associated with earlier onset of disease (P = 0.041), higher creatine kinase levels at diagnosis (P = 0.024), presence of muscle pain (P = 0.014), and more severe rate of disease progression (P = 0.037, analysis of variance test for interaction). DISCUSSION These findings suggest a potential role of angiotensin-converting enzyme polymorphism in modulating Pompe disease phenotype and prognosis.
Collapse
|
47
|
Pabst S, Theis B, Gillissen A, Lennarz M, Tuleta I, Nickenig G, Skowasch D, Grohé C. Angiotensin-converting enzyme I/D polymorphism in chronic obstructive pulmonary disease. Eur J Med Res 2010; 14 Suppl 4:177-81. [PMID: 20156752 PMCID: PMC3521361 DOI: 10.1186/2047-783x-14-s4-177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Study objective The etiology of chronic obstructive lung disease (COPD) is unclear. It is supposed to be the product of an exogenous antigenic stimulus, such as tobacco smoke, and an endogenous genetic susceptibility. The angiotensin-converting enzyme (ACE) gene contains a polymorphism based on the presence (insertion [I]) or absence (deletion [D]) of a 287-bp nonsense domain, resulting in three different genotypes (II, ID and DD). The aim of the study was to find out whether the ACE gene polymorphism can determine the course of COPD. Patients and design We genotyped 152 Caucasian patients with COPD and 158 healthy controls for the ACE (I/D) polymorphism. We divided the COPD group into one group of 64 patients with a stable course of disease, defined as less than three hospitalizations over the last three years due to COPD, and another group of 88 patients with an instable course with more than three hospitalizations. Results The I-allele was significantly associated with an increased risk for COPD in a dominant model (OR 1.67 (95% CI 1.00 to 2.78), p = 0.048), but not in a recessive or co-dominant model. Moreover, the I-allele of ACE (I/D) was significantly increased in patients with a stable course of COPD (p = 0.012) compared with controls. In a dominant model (II/ID v DD) we found an even stronger association between the I-allele and a stable course of COPD (OR 3.24 (95% CI 1.44 to 7.31), p = 0.003). Conclusion These data suggest that the presence of an ACE I-allele determines a stable course of COPD.
Collapse
Affiliation(s)
- S Pabst
- Medizinische Klinik und Poliklinik II, Pulmonary Division, Department of Medicine, Universitätsklinikum Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tsai CJ, Ziegler C. Coupling electron cryomicroscopy and X-ray crystallography to understand secondary active transport. Curr Opin Struct Biol 2010; 20:448-55. [PMID: 20620041 DOI: 10.1016/j.sbi.2010.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
In the past few years we have seen an amazing increase in the number of high-resolution structures for secondary transporters determined by X-ray crystallography, while 3D data obtained by electron cryomicroscopy (cryo-EM) from two-dimensional (2D) crystals are only available at medium resolutions of about 6-10A. Despite their superior resolution, it turned out that the description of a molecular mechanism of secondary transport could not solely rely on high-resolution X-ray structures and have to be supplemented with biochemical and spectroscopic data. Moreover, the comparison of X-ray structures and 3D EM maps has proved to be an important tool for validating native conformations of several membrane proteins, especially when functional data contradicted predictions based on a crystal structure. In addition, 3D EM maps are better suited to investigate transporter activation because of the lipidic environment.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | |
Collapse
|
49
|
Canuto S, Coutinho K, Cabral BJC, Zakrzewski VG, Ortiz JV. Delocalized water and fluoride contributions to Dyson orbitals for electron detachment from the hydrated fluoride anion. J Chem Phys 2010; 132:214507. [DOI: 10.1063/1.3431081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Richard EA, Fortier GD, Pitel PH, Dupuis MC, Valette JP, Art T, Denoix JM, Lekeux PM, Erck EV. Sub-clinical diseases affecting performance in Standardbred trotters: Diagnostic methods and predictive parameters. Vet J 2010; 184:282-9. [DOI: 10.1016/j.tvjl.2009.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|