1
|
Luo JJ, Shang H, Xue ZQ, Wang Y, Dai XL, Shen H, Yan YH. Genome-wide data reveal bi-direction and asymmetrical hybridization origin of a fern species Microlepia matthewii. FRONTIERS IN PLANT SCIENCE 2024; 15:1392990. [PMID: 39040506 PMCID: PMC11260791 DOI: 10.3389/fpls.2024.1392990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Introduction Natural hybridization is common and plays a crucial role in driving biodiversity in nature. Despite its significance, the understanding of hybridization in ferns remains inadequate. Therefore, it is imperative to study fern hybridization to gain a more comprehensive understanding of fern biodiversity. Our study delves into the role of hybridization in shaping fern species, employing Microlepia matthewii as a case study to investigate its origins of hybridization. Methods We performed double digest Genotyping-by-sequencing (dd-GBS) on M. matthewii and its potential parent species, identifying nuclear and chloroplast SNPs. Initially, nuclear SNPs were employed to construct the three cluster analysis: phylogenetic tree, principal component analysis, and population structure analysis. Subsequently, to confirm whether the observed genetic mixture pattern resulted from hybridization, we utilized two methods: ABBA-BABA statistical values in the D-suite program and gene frequency covariance in the Treemix software to detect gene flow. Finally, we employed chloroplast SNPs to construct a phylogenetic tree, tracing the maternal origin. Results and discussion The analysis of the nuclear SNP cluster revealed that M. matthewii possesses a genetic composition that is a combination of M. hancei and M. calvescens. Furthermore, the analysis provided strong evidence of significant gene flow signatures from the parental species to the hybrid, as indicated by the two gene flow analyses. The samples of M. matthewii cluster separately with M. hancei or M. calvescens on the chloroplast systematic tree. However, the parentage ratio significantly differs from 1:1, suggesting that M. matthewii is a bidirectional and asymmetrical hybrid offspring of M. hancei and M. calvescens.
Collapse
Affiliation(s)
- Jun-Jie Luo
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Middle School Department, Songjiang Experimental School Affiliated To Shanghai University of International Business and Economics (SUIBE), Shanghai, China
| | - Hui Shang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zhi-Qing Xue
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xi-Ling Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shanghai Chenshan Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation& Research Center of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Zalewska-Gałosz J, Kwiatkowska M, Prančl J, Skubała K, Lučanová M, Gebler D, Szoszkiewicz K. Origin, genetic structure and evolutionary potential of the natural hybrid Ranunculus circinatus × R. fluitans. Sci Rep 2023; 13:9030. [PMID: 37270656 DOI: 10.1038/s41598-023-36253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Understanding the genetic variability of hybrids provides information on their current and future evolutionary role. In this paper, we focus on the interspecific hybrid Ranunculus circinatus × R. fluitans that forms spontaneously within the group Ranuculus L. sect. Batrachium DC. (Ranunculaceae Juss.). Genome-wide DNA fingerprinting using amplified fragment length polymorphisms (AFLP) was employed to determine the genetic variation among 36 riverine populations of the hybrid and their parental species. The results demonstrate a strong genetic structure of R. circinatus × R. fluitans within Poland (Central Europe), which is attributed to independent hybridization events, sterility of hybrid individuals, vegetative propagation, and isolation through geographical distance within populations. The hybrid R. circinatus × R. fluitans is a sterile triploid, but, as we have shown in this study, it may participate in subsequent hybridization events, resulting in a ploidy change that can lead to spontaneous fertility recovery. The ability to produce unreduced female gametes of the hybrid R. circinatus × R. fluitans and the parental species R. fluitans is an important evolutionary mechanism in Ranunculus sect. Batrachium that could give rise to new taxa.
Collapse
Affiliation(s)
- J Zalewska-Gałosz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - M Kwiatkowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - J Prančl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - K Skubała
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - M Lučanová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - D Gebler
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - K Szoszkiewicz
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| |
Collapse
|
3
|
Scott AD, King DM, Ordway SW, Bahar S. Phase transitions in evolutionary dynamics. CHAOS (WOODBURY, N.Y.) 2022; 32:122101. [PMID: 36587338 DOI: 10.1063/5.0124274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Sharp changes in state, such as transitions from survival to extinction, are hallmarks of evolutionary dynamics in biological systems. These transitions can be explored using the techniques of statistical physics and the physics of nonlinear and complex systems. For example, a survival-to-extinction transition can be characterized as a non-equilibrium phase transition to an absorbing state. Here, we review the literature on phase transitions in evolutionary dynamics. We discuss directed percolation transitions in cellular automata and evolutionary models, and models that diverge from the directed percolation universality class. We explore in detail an example of an absorbing phase transition in an agent-based model of evolutionary dynamics, including previously unpublished data demonstrating similarity to, but also divergence from, directed percolation, as well as evidence for phase transition behavior at multiple levels of the model system's evolutionary structure. We discuss phase transition models of the error catastrophe in RNA virus dynamics and phase transition models for transition from chemistry to biochemistry, i.e., the origin of life. We conclude with a review of phase transition dynamics in models of natural selection, discuss the possible role of phase transitions in unraveling fundamental unresolved questions regarding multilevel selection and the major evolutionary transitions, and assess the future outlook for phase transitions in the investigation of evolutionary dynamics.
Collapse
Affiliation(s)
- Adam D Scott
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Dawn M King
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Stephen W Ordway
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Sonya Bahar
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| |
Collapse
|
4
|
Li X, Ru D, Garber PA, Zhou Q, Li M, Zhao X. Climate change and human activities promoted speciation of two endangered langurs (François' langur and white-headed langur). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Kleindorfer S, Colombelli‐Négrel D, Common LK, O’Connor JA, Peters KJ, Katsis AC, Dudaniec RY, Sulloway FJ, Adreani NM. Functional traits and foraging behaviour: avian vampire fly larvae change the beak and fitness of their Darwin’s finch hosts. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sonia Kleindorfer
- College of Science and Engineering Flinders University Adelaide Australia
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| | | | - Lauren K. Common
- College of Science and Engineering Flinders University Adelaide Australia
| | | | - Katharina J. Peters
- College of Science and Engineering Flinders University Adelaide Australia
- Evolutionary Genetics Group, Department of Anthropology University of Zurich Zurich Switzerland
- School of Earth and Environment Christchurch New Zealand
| | - Andrew C. Katsis
- College of Science and Engineering Flinders University Adelaide Australia
| | | | | | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| |
Collapse
|
6
|
Liao R, Sun W, Ma Y. Natural hybridization between two butterfly bushes in Tibet: dominance of F 1 hybrids promotes strong reproductive isolation. BMC PLANT BIOLOGY 2021; 21:133. [PMID: 33691631 PMCID: PMC7945306 DOI: 10.1186/s12870-021-02909-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/28/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND It has been recognized that a certain amount of habitat disturbance is a facilitating factor for the occurrence of natural hybridization, yet to date we are unaware of any studies exploring hybridization and reproductive barriers in those plants preferentially occupying disturbed habitats. Buddleja plants (also called butterfly bush) generally do grow in disturbed habitats, and several species with hybrid origin have been proposed, based solely on morphological evidence. RESULTS In the present study, we test the hypothesis that B. × wardii is of natural hybridization origin in two sympatric populations of three taxa including B. × wardii and its parents (B. alternifolia and B. crispa) plus 4 referenced parental populations, using four nuclear genes and three chloroplast intergenic spacers, as well as with 10 morphological characters. Our results suggest that at both sites B. × wardii is likely to be a hybrid between B. alternifolia and B. crispa, and moreover, we confirm that most of the hybrids examined are F1s. That these plants are F1s is further supported by morphology, as no transgressive characters were detected. B. crispa was found to be the maternal parent in the Bahe (BH) population, from cpDNA evidence. However, in the Taji (TJ) population, the direction of hybridization was difficult to establish due to the shared cpDNA haplotypes between B. alternifolia and B. crispa, however we still predicted a similar unidirectional hybridization pattern due to results from cross-specific pollination treatments which supported the "SI × SC rule". CONCLUSIONS The presence of mainly F1 hybrids can successfully impede gene flow and thus maintain species boundaries in parental species in a typical distribution of Buddleja, i.e. in disturbed habitats.
Collapse
Affiliation(s)
- Rongli Liao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
7
|
Zhang L, Thibert‐Plante X, Ripa J, Svanbäck R, Brännström Å. Biodiversity loss through speciation collapse: Mechanisms, warning signals, and possible rescue*. Evolution 2019; 73:1504-1516. [DOI: 10.1111/evo.13736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Lai Zhang
- School of Mathematical ScienceYangzhou University 225002 Yangzhou China
- Department of Mathematics and Mathematical StatisticsUmeå University SE‐90187 Umeå Sweden
| | | | - Jörgen Ripa
- Theoretical Population Ecology and Evolution Group, Department of BiologyLund University 22362 Lund Sweden
| | - Richard Svanbäck
- Department of Ecology and Genetics, Animal Ecology, Science for Life LaboratoryUppsala University 75236 Uppsala Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå University SE‐90187 Umeå Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis A‐2361 Laxenburg Austria
| |
Collapse
|
8
|
Zink RM, Vázquez-Miranda H. Species Limits and Phylogenomic Relationships of Darwin’s Finches Remain Unresolved: Potential Consequences of a Volatile Ecological Setting. Syst Biol 2018; 68:347-357. [DOI: 10.1093/sysbio/syy073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Robert M Zink
- School of Natural Resources
- School of Biological Sciences
- Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hernán Vázquez-Miranda
- School of Natural Resources
- Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Colección Nacional de Aves (CNAV), Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04500, Mexico
| |
Collapse
|
9
|
Clark TD, Kleindorfer S, Dudaniec RY. Baseline and stress-induced blood properties of male and female Darwin's small ground finch (Geospiza fuliginosa) of the Galapagos Islands. Gen Comp Endocrinol 2018; 259:199-206. [PMID: 29197554 DOI: 10.1016/j.ygcen.2017.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Birds are renowned for exhibiting marked sex-specific differences in activity levels and reproductive investment during the breeding season, potentially impacting circulating blood parameters associated with stress and energetics. Males of many passerines often do not incubate, but they experience direct exposure to intruder threat and exhibit aggressive behaviour during the nesting phase in order to defend territories against competing males and predators. Nesting females often have long bouts of inactivity during incubation, but they must remain vigilant of the risks posed by predators and conspecific intruders approaching the nest. Here, we use 33 free-living male (n = 16) and female (n = 17) Darwin's small ground finches (Geospiza fuliginosa) on Floreana Island (Galapagos Archipelago) to better understand how sex-specific roles during the reproductive period impact baseline and stress-induced levels of plasma corticosterone (CORT), blood glucose and haematocrit. Specifically, we hypothesise that males are characterised by higher baseline values given their direct and relatively frequent exposure to intruder threat, but that a standardised stress event (capture and holding) overrides any sex-specific differences. In contrast with expectations, baseline levels of all blood parameters were similar between sexes (13.4 ± 1.9 ng ml-1 for CORT, 13.7 ± 0.4 mmol l-1 for glucose, 58.3 ± 0.8% for haematocrit). Interestingly, females with higher body condition had lower baseline haematocrit. All blood parameters changed with time since capture (range 1.2-41.3 min) in both sexes, whereby CORT increased linearly, haematocrit decreased linearly, and glucose increased to a peak at ∼20 min post-capture and declined to baseline levels thereafter. Our results do not support the hypothesis that sex-specific roles during the reproductive period translate to differences in blood parameters associated with stress and energetics, but we found some evidence that blood oxygen transport capacity may decline as finches increase in body condition.
Collapse
Affiliation(s)
- Timothy D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong 3216, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia.
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
10
|
Vallejo-Marín M, Hiscock SJ. Hybridization and hybrid speciation under global change. THE NEW PHYTOLOGIST 2016; 211:1170-87. [PMID: 27214560 DOI: 10.1111/nph.14004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/07/2016] [Indexed: 05/24/2023]
Abstract
Contents 1170 I. 1170 II. 1172 III. 1175 IV. 1180 V. 1183 1184 References 1184 SUMMARY: An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization 'experiments', allowing us to peer into the birth and death of evolutionary lineages.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
| |
Collapse
|
11
|
McKay BD, Zink RM. Sisyphean evolution in Darwin's finches. Biol Rev Camb Philos Soc 2014; 90:689-98. [DOI: 10.1111/brv.12127] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Bailey D. McKay
- Department of Ornithology; American Museum of Natural History; Central Park West at 79th St. New York NY 10024 U.S.A
| | - Robert M. Zink
- Bell Museum; University of Minnesota; St. Paul MN 55108 U.S.A
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul MN 55108 U.S.A
| |
Collapse
|