1
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
2
|
Guo M, Cui C, Song X, Jia L, Li D, Wang X, Dong H, Ma Y, Liu Y, Cui Z, Yi L, Li Z, Bi Y, Li Y, Liu Y, Duan W, Li C. Deletion of FGF9 in GABAergic neurons causes epilepsy. Cell Death Dis 2021; 12:196. [PMID: 33608505 PMCID: PMC7896082 DOI: 10.1038/s41419-021-03478-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 9 (FGF9) has long been assumed to modulate multiple biological processes, yet very little is known about the impact of FGF9 on neurodevelopment. Herein, we found that loss of Fgf9 in olig1 progenitor cells induced epilepsy in mice, with pathological changes in the cortex. Then depleting Fgf9 in different neural populations revealed that epilepsy was associated with GABAergic neurons. Fgf9 CKO in GABAergic neuron (CKOVGAT) mice exhibited not only the most severe seizures, but also the most severe growth retardation and highest mortality. Fgf9 deletion in CKOVGAT mice caused neuronal apoptosis and decreased GABA expression, leading to a GABA/Glu imbalance and epilepsy. The adenylate cyclase/cyclic AMP and ERK signaling pathways were activated in this process. Recombinant FGF9 proteoliposomes could significantly decrease the number of seizures. Furthermore, the decrease of FGF9 was commonly observed in serum of epileptic patients, especially those with focal seizures. Thus, FGF9 plays essential roles in GABAergic neuron survival and epilepsy pathology, which could serve as a new target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Moran Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Can Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xueqin Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Lijing Jia
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Duan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiuli Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Hui Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yanqin Ma
- Jiangsu Nhwa Pharm. Co. Ltd, Nantong, Jiangsu, 210000, China
| | - Yaling Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Zhiqiang Cui
- Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Le Yi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yue Bi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yuanyuan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
3
|
Miterauer B, Baer W. Disorders of human consciousness in the Tri-partite synapses. Med Hypotheses 2020; 136:109523. [PMID: 31927223 DOI: 10.1016/j.mehy.2019.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023]
Abstract
Conscious Action Theory extends quantum theory to macroscopic phenomena and suggests physical correlates of consciousness occur at the intersection of external measurement signals and internally generated signals from memories that model the outside world. This physical theory predicts conscious phenomena happen at all scales and differ only by the size and complexity of material organizations involved. At the scale of the human "Brain" consciousness is predicted to happen where the processing loop of activity in the Glial network interfaces with the real world input-output processing loop of the Nuronal network. This happens at the Tripartite synapses creating an intersection plenum in biological systems that produces the experience of empty space and the objects it contains. Analysis of the transmitter-receptor strengths implementing the control and feedback between the Glial and Neuronal networks indicate imbalances can be directly related to schizophrenia, mania, epilepsy, and depression. This paper addresses three topics supporting the above mechanisms for normal consciousness functioning and its medical deviations. First we preset the architecture of a pan-psychic physical theory, which supports the hypothesis that tri-partite synapses are the location of human conscious experience. Second we discuss the inner workings of the Glial network to support long term memory and control functions corresponding to the inner feeling of the "I" self. Third, we consider the relation between psychiatric conditions and the balance states between the number of neuronal transmitters and astrocytic receptors.
Collapse
Affiliation(s)
- B Miterauer
- University of Salzburg, Volitronics-Institute, Wals, Austria
| | - W Baer
- Naval Postgraduate School, Monterey, CA, USA
| |
Collapse
|
4
|
Post JM, Loch S, Lerner R, Remmers F, Lomazzo E, Lutz B, Bindila L. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy. Front Mol Neurosci 2018; 11:67. [PMID: 29593494 PMCID: PMC5861196 DOI: 10.3389/fnmol.2018.00067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use. Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy. Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties. Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant. In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA). KA-induced epilepsy in rodents is assumed to resemble to different extents human temporal lobe epilepsy (TLE) depending on the route of KA administration; intracerebral (i.c.) injection was recently shown to most closely mimic human TLE, while systemic KA administration causes more widespread pathological damage, both in brain and periphery. To explore the potential of PEA to exert therapeutic effects both in brain and periphery, acute and subchronic administration of PEA by intraperitoneal (i.p.) injection was assessed on mice with systemically administered KA. Specifically, we investigated: (i) neuroprotective and anticonvulsant properties of acute and subchronic PEA treatment in KA-induced seizure models, and (ii) temporal dynamics of eCB and eicosanoid (eiC) levels in hippocampus and plasma over 180 min post seizure induction in PEA-treated and non-treated KA-injected mice vs. vehicle injected mice. Finally, we compared the systemic PEA treatment with, and in combination with, pharmacological blockade of fatty acid amide hydrolase (FAAH) in brain and periphery, in terms of anticonvulsant properties and modulation of eCBs and eiCs. Here, we demonstrate that subchronic administration of PEA significantly alleviates seizure intensity, promotes neuroprotection and induces modulation of the plasma and hippocampal eCB and eiC levels in systemic KA-injected mice.
Collapse
Affiliation(s)
- Julia M Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sebastian Loch
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
5
|
Sadilek M, Thurner S. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity. Sci Rep 2015; 5:10015. [PMID: 25996547 PMCID: PMC4650820 DOI: 10.1038/srep10015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 12/04/2022] Open
Abstract
We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations that describe neural activity on a network of interconnected cortical regions. This is mathematically possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic time delays. We study the phase diagram of this model numerically as a function of the inter-regional connection strength that is related to cerebral blood flow, and a phase shift parameter that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network models could hitherto not explain the existence of all three phases. We further observe a shift of the average oscillation frequency towards lower values together with the appearance of coherent slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully in line with experimental data and could explain the influence of GABAergic drugs both on gamma oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a direct connection to measurable physiological parameters.
Collapse
Affiliation(s)
- Maximilian Sadilek
- Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
- Santa Fe Institute, 1399 Hyde Park Road, New Mexico 87501, USA
- IIASA, Schlossplatz 1, A-2361 Laxenburg, Austria
| |
Collapse
|
6
|
Mitterauer BJ. Balancing and imbalancing effects of astrocytic receptors in tripartite synapses. Common pathophysiological model of mental disorders and epilepsy. Med Hypotheses 2015; 84:315-20. [PMID: 25655220 DOI: 10.1016/j.mehy.2015.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/15/2015] [Indexed: 02/01/2023]
Abstract
Based on a logic of balance mechanisms influencing information processing in tripartite synapses are proposed. It is hypothesized that the number of expressed astrocytic receptors determines balanced and imbalanced synaptic states. Synaptic information processing in mental disorders is underbalanced in depression, overbalanced in mania, and completely unbalanced in schizophrenia. The synaptic pathophysiology of the epileptic syndrome may also be based on comparable imbalances. In addition, this model of synaptic balancing enables a deduction in explaining the therapeutic effect of ECT in therapy resistant depression. Together, the model proposed may represent a contribution to the search for common synaptic mechanisms in normal brains and its various disorders.
Collapse
|