1
|
Yang T, Zhang L, Shang Y, Zhu Z, Jin S, Guo Z, Wang X. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer's disease. Chem Sci 2022; 13:2971-2980. [PMID: 35382471 PMCID: PMC8905858 DOI: 10.1039/d1sc06071f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness accompanied by severe memory loss, cognitive disorders and impaired behavioral ability. Amyloid β-peptide (Aβ) aggregation and nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome play crucial roles in the pathogenesis of AD. Aβ plaques not only induce oxidative stress and impair neurons, but also activate the NLRP3 inflammasome, which releases inflammatory cytokine IL-1β to trigger neuroinflammation. A bifunctional molecule, 2-[2-(benzo[d]thiazol-2-yl)phenylamino]benzoic acid (BPBA), with both Aβ-targeting and inflammasome-inhibiting capabilities was designed and synthesized. BPBA inhibited self- and Cu2+- or Zn2+-induced Aβ aggregation, disaggregated the already formed Aβ aggregates, and reduced the neurotoxicity of Aβ aggregates; it also inhibited the activation of the NLRP3 inflammasome and reduced the release of IL-1β in vitro and vivo. Moreover, BPBA decreased the production of reactive oxygen species (ROS) and alleviated Aβ-induced paralysis in transgenic C. elegans with the human Aβ42 gene. BPBA exerts an anti-AD effect mainly through dissolving Aβ aggregates and inhibiting NLRP3 inflammasome activation synergistically. Bifunctional molecule BPBA inhibits Aβ aggregation and NLRP3 inflammasome activation, thereby decreasing ROS and IL-1β in vitro and vivo; it synergistically prevents Alzheimer's disease via alleviating Aβ neurotoxicity and reducing neuroinflammation.![]()
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yicun Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Bello-Corral L, Sánchez-Valdeón L, Casado-Verdejo I, Seco-Calvo JÁ, Antonio Fernández-Fernández J, Nélida Fernández-Martínez M. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Front Neurosci 2021; 15:677777. [PMID: 34489620 PMCID: PMC8417586 DOI: 10.3389/fnins.2021.677777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a primary, progressive, neurodegenerative disorder. Many risk factors for the development of AD have been investigated, including nutrition. Although it has been proven that nutrition plays a role in AD, the precise mechanisms through which nutrition exerts its influence remain undefined. The object of this study is to address this issue by elucidating some of the mechanisms through which nutrition interacts with AD. This work is a qualitative systematic bibliographic review of the current literature searchable on various available databases, including PubMed, Web of Science, and Google Scholar. Our evidence comprises 31 articles selected after a systematic search process. Patients suffering with AD present a characteristic microbiome that promotes changes in microglia generating a proinflammatory state. Many similarities exist between AD and prion diseases, both in terms of symptoms and in the molecular mechanisms of pathogenesis. Changes in the composition of the gut microbiome due to dietary habits could be one of the environmental factors affecting the development of AD; however, this is probably not the only factor. Similarly, the mechanism for self-propagation of beta-amyloid seen in AD is similar to that seen in prions.
Collapse
Affiliation(s)
- Laura Bello-Corral
- Department of Nursing and Physical Therapy, University of León, León, Spain
| | | | | | - Jesús Ángel Seco-Calvo
- Institute of Biomedicine, University of León, León, Spain.,University of the Basque Country, Leioa, Spain
| | | | | |
Collapse
|
3
|
Grossmann K. Alzheimer's Disease-Rationales for Potential Treatment with the Thrombin Inhibitor Dabigatran. Int J Mol Sci 2021; 22:ijms22094805. [PMID: 33946588 PMCID: PMC8125318 DOI: 10.3390/ijms22094805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by neurodegenerative, but also vascular and hemostatic changes in the brain. The oral thrombin inhibitor dabigatran, which has been used for over a decade in preventing thromboembolism and has a well-known pharmacokinetic, safety and antidote profile, can be an option to treat vascular dysfunction in early AD, a condition known as cerebral amyloid angiopathy (CAA). Recent results have revealed that amyloid-β proteins (Aβ), thrombin and fibrin play a crucial role in triggering vascular and parenchymal brain abnormalities in CAA. Dabigatran blocks soluble thrombin, thrombin-mediated formation of fibrin and Aβ-containing fibrin clots. These clots are deposited in brain parenchyma and blood vessels in areas of CAA. Fibrin-Aβ deposition causes microvascular constriction, occlusion and hemorrhage, leading to vascular and blood-brain barrier dysfunction. As a result, blood flow, perfusion and oxygen and nutrient supply are chronically reduced, mainly in hippocampal and neocortical brain areas. Dabigatran has the potential to preserve perfusion and oxygen delivery to the brain, and to prevent parenchymal Aβ-, thrombin- and fibrin-triggered inflammatory and neurodegenerative processes, leading to synapse and neuron death, and cognitive decline. Beneficial effects of dabigatran on CAA and AD have recently been shown in preclinical studies and in retrospective observer studies on patients. Therefore, clinical studies are warranted, in order to possibly expand dabigatran approval for repositioning for AD treatment.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Abstract
Alzheimer's disease (AD) is a multifactorial syndrome with a plethora of progressive, degenerative changes in the brain parenchyma, but also in the cerebrovascular and hemostatic system. A therapeutic approach for AD is reviewed, which is focused on the role of amyloid-β protein (Aβ) and fibrin in triggering intra-brain vascular dysfunction and connected, cognitive decline. It is proposed that direct oral anticoagulants (DOACs) counteract Aβ-induced pathological alterations in cerebral blood vessels early in AD, a condition, known as cerebral amyloid angiopathy (CAA). By inhibiting thrombin for fibrin formation, anticoagulants can prevent accumulations of proinflammatory thrombin and fibrin, and deposition of degradation-resistant, Aβ-containing fibrin clots. These fibrin-Aβ clots are found in brain parenchyma between neuron cells, and in and around cerebral blood vessels in areas of CAA, leading to decreased cerebral blood flow. Consequently, anticoagulant treatment could reduce hypoperfusion and restricted supply of brain tissue with oxygen and nutrients. Concomitantly, hypoperfusion-enhanced neurodegenerative processes, such as progressive Aβ accumulation via synthesis and reduced perivascular clearance, neuroinflammation, and synapse and neuron cell loss, could be mitigated. Given full cerebral perfusion and reduced Aβ- and fibrin-accumulating and inflammatory milieu, anticoagulants could be able to decrease vascular-driven progression in neurodegenerative and cognitive changes, present in AD, when treated early, therapeutically, or prophylactically.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Prpar Mihevc S, Majdič G. Canine Cognitive Dysfunction and Alzheimer's Disease - Two Facets of the Same Disease? Front Neurosci 2019; 13:604. [PMID: 31249505 PMCID: PMC6582309 DOI: 10.3389/fnins.2019.00604] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases present a major and increasing burden in the societies worldwide. With aging populations, the prevalence of neurodegenerative diseases is increasing, yet there are no effective cures and very few treatment options are available. Alzheimer's disease is one of the most prevalent neurodegenerative conditions and although the pathology is well studied, the pathogenesis of this debilitating illness is still poorly understood. This is, among other reasons, also due to the lack of good animal models as laboratory rodents do not develop spontaneous neurodegenerative diseases and human Alzheimer's disease is only partially mimicked by transgenic rodent models. On the other hand, older dogs commonly develop canine cognitive dysfunction, a disease that is similar to Alzheimer's disease in many aspects. Dogs show cognitive deficits that could be paralleled to human symptoms such as disorientation, memory loss, changes in behavior, and in their brains, beta amyloid plaques are commonly detected both in extracellular space as senile plaques and around the blood vessels. Dogs could be therefore potentially a very good model for studying pathological process and novel treatment options for Alzheimer's disease. In the present article, we will review the current knowledge about the pathogenesis of canine cognitive dysfunction, its similarities and dissimilarities with Alzheimer's disease, and developments of novel treatments for these two diseases with a focus on canine cognitive dysfunction.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
- Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Ma X, Hua J, Wang K, Zhang H, Zhang C, He Y, Guo Z, Wang X. Modulating Conformation of Aβ-Peptide: An Effective Way to Prevent Protein-Misfolding Disease. Inorg Chem 2018; 57:13533-13543. [PMID: 30345755 DOI: 10.1021/acs.inorgchem.8b02115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a typical protein-misfolding disease. Aggregation of amyloid β-peptide (Aβ) plays a key role in the etiology of AD. The misfolding of Aβ results in the formation of β-sheet-rich aggregates and damages the function of neurons. A modified polyoxometalate (POM), [CoL(H2O)]2[CoL]2[HAsVMoV6MoVI6O40] [CAM, L = 2-(1 H-pyrazol-3-yl)pyridine], was designed to disaggregate the Aβ aggregates, where L acts as an Aβ-targeting group and POM as a conformational modulator. X-ray crystallography shows that CAM is composed of a ε-Keggin unit and four coordination units. CAM can disaggregate the β-sheet-rich fibrils and metal-induced or self-aggregated Aβ aggregates, and it further inhibits the production of ROS; as a result, it can protect the neurons from synaptic toxicity induced by Zn2+- or Cu2+-Aβ aggregates or Aβ self-aggregation. The mechanism of disaggregation involves a transformation of Aβ conformation from β-sheet to other conformers. The nature of the process is an interference of the β-sheet conformation by CAM via hydrogen bonding. CAM specifically interacts with Aβ aggregates but does not disturb the cerebral metal homeostasis and enzymatic systems. Molecular simulation suggests that the appropriate size of CAM and the cavity of β-sheets facilitate the interaction between CAM and Aβ aggregates; additionally, the H-bonding-favored amino acid residues in the cavity provide a precondition for the interaction. Moreover, CAM is lipophilic and capable of penetrating the blood-brain barrier, and it is metabolizable without causing an untoward effect to mice at high dosages. In view of the significant inhibitory effect on the Aβ aggregation and related neurotoxicity, CAM represents a new type of leading compounds with a distinctive mechanism of action for the treatment of Alzheimer' disease. The conception of this study may be applied to other protein-misfolding diseases caused by conformational changes.
Collapse
Affiliation(s)
- Xiang Ma
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China.,Chemistry and Chemical Engineering Department , Taiyuan Institute of Technology , Taiyuan 030008 , P. R. China
| | - Jiai Hua
- Chemistry and Chemical Engineering Department , Taiyuan Institute of Technology , Taiyuan 030008 , P. R. China
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Hongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Changli Zhang
- School of Biochemical and Environmental Engineering , Nanjing Xiaozhuang University , Nanjing 210017 , P. R. China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
7
|
Chen J, Zhang T, Jiao S, Zhou X, Zhong J, Wang Y, Liu J, Deng J, Wang S, Xu Z. proBDNF Accelerates Brain Amyloid-β Deposition and Learning and Memory Impairment in APPswePS1dE9 Transgenic Mice. J Alzheimers Dis 2017; 59:941-949. [PMID: 28697556 DOI: 10.3233/jad-161191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is pathologically known for the amyloid-β (Aβ) deposition, neurofibrillary tangles, and neuronal loss in the brain. The precursor of brain-derived neurotrophic factor (proBDNF) before proteolysis has opposing functions to its mature form in neuronal survival and neurite growth. However, the role of proBDNF in the pathogenesis of AD remains unclear. OBJECTIVE To investigate the effects of proBDNF on neurons in vitro, and on learning and memory impairment and brain Aβ production in a transgenic AD mouse model (APPswePS1dE9). METHODS We here examined the effects of proBDNF on the viability (MTT assay) and neurite growth (morphologic measurement) of the primary neurons in vitro. After the intracerebroventricular injection of adeno-associated virus-proBDNF (AAV-proBDNF), we then investigated the learning and memory impairment (Morris water maze) and Aβ deposition in the brains of the AD mice. RESULTS The results showed that proBDNF could inhibit neuronal viability and neurite growth in vitro, enhance Aβ levels, and accelerate its deposition in the brain, which was consistent with the learning and memory impairment of AD mice, likely dependent on the membrane receptor of p75NTR. CONCLUSIONS Our findings suggest that proBDNF may exert a crucially negative effect during AD pathogenesis andprogression.
Collapse
Affiliation(s)
- Jia Chen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
- Department of Neurology, PLA 123 Hospital, Bengbu, PR China
| | - Tao Zhang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Shusheng Jiao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Xinfu Zhou
- School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jinhua Zhong
- School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Juan Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Juan Deng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Shuiping Wang
- Department of Neurology, PLA 123 Hospital, Bengbu, PR China
| | - Zhiqiang Xu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
8
|
Gospodarczyk W, Kozak M. The severe impact of in vivo-like microfluidic flow and the influence of gemini surfactants on amyloid aggregation of hen egg white lysozyme. RSC Adv 2017. [DOI: 10.1039/c6ra26675d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The formation of amyloid plaques is being intensively studied, as this process underlies severe human diseases, including Alzheimer's disease, and the exact mechanism of this specific aggregation has not been resolved yet.
Collapse
Affiliation(s)
- W. Gospodarczyk
- Department of Macromolecular Physics
- Faculty of Physics
- Adam Mickiewicz University
- Poznań
- Poland
| | - M. Kozak
- Department of Macromolecular Physics
- Faculty of Physics
- Adam Mickiewicz University
- Poznań
- Poland
| |
Collapse
|
9
|
Abstract
Amyloid plaques, along with neurofibrillary tangles, are a neuropathologic hallmark of Alzheimer disease (AD). Recently, amyloid PET radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disorders. In both research and clinical settings, amyloid PET imaging has provided important diagnostic and prognostic information for the management of patients with possible AD, mild cognitive impairment (MCI), and other challenging diagnostic presentations. Although the overall impact of amyloid imaging is still being evaluated, the Society of Nuclear Medicine and Molecular Imaging and Alzheimer's Association Amyloid Imaging Task Force have created appropriate use criteria for the standard clinical use of amyloid PET imaging. By the appropriate use criteria, amyloid imaging is appropriate for patients with (1) persistent or unexplained MCI, (2) AD as a possible but still uncertain diagnosis after expert evaluation and (3) atypically early-age-onset progressive dementia. To better understand the clinical and economic effect of amyloid imaging, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study is an ongoing large multicenter study in the United States, which is evaluating how amyloid imaging affects diagnosis, management, and outcomes for cognitively impaired patients who cannot be completely evaluated by clinical assessment alone. Multiple other large-scale studies are evaluating the prognostic role of amyloid PET imaging for predicting MCI progression to AD in general and high-risk populations. At the same time, amyloid imaging is an important tool for evaluating potential disease-modifying therapies for AD. Overall, the increased use of amyloid PET imaging has led to a better understanding of the strengths and limitations of this imaging modality and how it may best be used with other clinical, molecular, and imaging assessment techniques for the diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Atul Mallik
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT.
| | - Alex Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep 2016; 6:34477. [PMID: 27708338 PMCID: PMC5052651 DOI: 10.1038/srep34477] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C. elegans to E. coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C. elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.
Collapse
|
11
|
Rabinovici GD, Carrillo MC, Forman M, DeSanti S, Miller DS, Kozauer N, Petersen RC, Randolph C, Knopman DS, Smith EE, Isaac M, Mattsson N, Bain LJ, Hendrix JA, Sims JR. Multiple comorbid neuropathologies in the setting of Alzheimer's disease neuropathology and implications for drug development. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 3:83-91. [PMID: 29067320 PMCID: PMC5651346 DOI: 10.1016/j.trci.2016.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dementia is often characterized as being caused by one of several major diseases, such as Alzheimer's disease (AD), cerebrovascular disease, Lewy body disease, or a frontotemporal degeneration. Failure to acknowledge that more than one entity may be present precludes attempts to understand interactive relationships. The clinicopathological studies of dementia demonstrate that multiple pathologic processes often coexist. How overlapping pathologic findings affect the diagnosis and treatment of clinical AD and other dementia phenotypes was the topic taken up by the Alzheimer's Association's Research Roundtable in October 2014. This review will cover the neuropathologic basis of dementia, provide clinical perspectives on multiple pathologies, and discuss therapeutics and biomarkers targeting overlapping pathologies and how these issues impact clinical trials.High prevalence of multiple pathologic findings among individuals with clinical diagnosis of AD suggests that new treatment strategies may be needed to effectively treat AD and other dementing illnesses.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Memory & Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria C Carrillo
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago IL, USA
| | | | | | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Christopher Randolph
- MedAvante, Hamilton, NJ, USA.,Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Eric E Smith
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Lisa J Bain
- Independent Science Writer, Elverson, PA, USA
| | - James A Hendrix
- Division of Medical & Scientific Relations, Alzheimer's Association, Chicago IL, USA
| | | |
Collapse
|
12
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
13
|
Abstract
Although the prevalence of dementia continues to increase worldwide, incidence in the western world might have decreased as a result of better vascular care and improved brain health. Alzheimer's disease, the most prevalent cause of dementia, is still defined by the combined presence of amyloid and tau, but researchers are gradually moving away from the simple assumption of linear causality as proposed in the original amyloid hypothesis. Age-related, protective, and disease-promoting factors probably interact with the core mechanisms of the disease. Amyloid β42, and tau proteins are established core cerebrospinal biomarkers; novel candidate biomarkers include amyloid β oligomers and synaptic markers. MRI and fluorodeoxyglucose PET are established imaging techniques for diagnosis of Alzheimer's disease. Amyloid PET is gaining traction in the clinical arena, but validity and cost-effectiveness remain to be established. Tau PET might offer new insights and be of great help in differential diagnosis and selection of patients for trials. In the search for understanding the disease mechanism and keys to treatment, research is moving increasingly into the earliest phase of disease. Preclinical Alzheimer's disease is defined as biomarker evidence of Alzheimer's pathological changes in cognitively healthy individuals. Patients with subjective cognitive decline have been identified as a useful population in whom to look for preclinical Alzheimer's disease. Moderately positive results for interventions targeting several lifestyle factors in non-demented elderly patients and moderately positive interim results for lowering amyloid in pre-dementia Alzheimer's disease suggest that, ultimately, there will be a future in which specific anti-Alzheimer's therapy will be combined with lifestyle interventions targeting general brain health to jointly combat the disease. In this Seminar, we discuss the main developments in Alzheimer's research.
Collapse
Affiliation(s)
- Philip Scheltens
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands.
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monique M B Breteler
- German Center for Neurodegenerative diseases (DZNE), and Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Bart de Strooper
- VIB Center for the Biology of Disease, VIB-Leuven, Leuven, Belgium; KU Leuven Center for Human Genetics, LIND en Universitaire ziekenhuizen, Leuven, Belgium; Institute of Neurology, University College London, London, UK
| | - Giovanni B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland; IRCCS Fatebenefratelli, Brescia, Italy
| | - Stephen Salloway
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | |
Collapse
|
14
|
Hawkins R. Facing up to Complexity: Implications for Our Social Experiments. SCIENCE AND ENGINEERING ETHICS 2016; 22:775-814. [PMID: 26062747 DOI: 10.1007/s11948-015-9657-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Biological systems are highly complex, and for this reason there is a considerable degree of uncertainty as to the consequences of making significant interventions into their workings. Since a number of new technologies are already impinging on living systems, including our bodies, many of us have become participants in large-scale "social experiments". I will discuss biological complexity and its relevance to the technologies that brought us BSE/vCJD and the controversy over GM foods. Then I will consider some of the complexities of our social dynamics, and argue for making a shift from using the precautionary principle to employing the approach of evaluating the introduction of new technologies by conceiving of them as social experiments.
Collapse
Affiliation(s)
- Ronnie Hawkins
- Department of Philosophy, University of Central Florida, Orlando, FL, 32816-1352, USA.
| |
Collapse
|
15
|
Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang AH. Discovery of serum metabolites for diagnosis of progression of mild cognitive impairment to Alzheimer's disease using an optimized metabolomics method. RSC Adv 2016. [DOI: 10.1039/c5ra19349d] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A nontargeted metabolomics approach was developed to examine metabolic differences in serum samples from the mild cognitive impairment and Alzheimer's disease subjects.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
16
|
Liang Q, Liu H, Li X, Zhang AH. High-throughput metabolomics analysis discovers salivary biomarkers for predicting mild cognitive impairment and Alzheimer's disease. RSC Adv 2016. [DOI: 10.1039/c6ra16802g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mild cognitive impairment (MCI) confers an increased risk of developing Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University
- Burnaby
- Canada
| | - Xue Li
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
17
|
Ludolph AC, Brettschneider J. TDP-43 in amyotrophic lateral sclerosis - is it a prion disease? Eur J Neurol 2015; 22:753-61. [PMID: 25846565 DOI: 10.1111/ene.12706] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating disease characterized by rapidly progressive paresis. The neuropathological hallmark of most amyotrophic lateral sclerosis cases are neuronal and glial aggregates of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43). The accumulation of similar proteins into insoluble aggregates is now recognized as a common pathological hallmark of neurodegenerative diseases in general. Importantly, many of these proteins such as tau and amyloid-β in Alzheimer's disease and α-synuclein in Parkinson's show a stereotypical sequential distribution pattern with progressing disease. In this review, we discuss recent evidence that TDP-43 in ALS may propagate similarly to other neurodegenerative disease proteins. We furthermore delineate similarities and important differences of TDP-43 proteinopathies to prion diseases.
Collapse
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
18
|
Aguzzi A, Lakkaraju AKK. Cell Biology of Prions and Prionoids: A Status Report. Trends Cell Biol 2015; 26:40-51. [PMID: 26455408 DOI: 10.1016/j.tcb.2015.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/08/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
Abstract
The coalescence of proteins into highly ordered aggregates is a hallmark of protein misfolding disorders (PMDs), which, when affecting the central nervous system, lead to progressive neurodegeneration. Although the chemical identity and the topology of each culprit protein are unique, the principles governing aggregation and propagation are strikingly stereotypical. It is now clear that such protein aggregates can spread from cell to cell and eventually affect entire organ systems - similarly to prion diseases. However, because most aggregates are not found to transmit between individuals, they are not infectious sensu strictiori. Therefore, they are not identical to prions and we prefer to define them as 'prionoids'. Here we review recent advances in understanding the toxicity of protein aggregation affecting the brain.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, CH-8091 Zürich, Switzerland.
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zürich, CH-8091 Zürich, Switzerland.
| |
Collapse
|
19
|
Abstract
Prions are infective proteins, which can self-assemble into different strain conformations, leading to different disease phenotypes. An increasing number of studies suggest that prion-like self-propagation may be a common feature of amyloid-like structures. Thus it is important to unravel every possible factor leading to the formation of different amyloid strains. Here we report on the formation of two types of insulin amyloid-like fibrils with distinct infrared spectroscopic features grown under slightly different pH conditions. Similar to prion strains, both insulin fibril types are able to self-propagate their conformational template under conditions, favoring spontaneous formation of different type fibrils. The low-pH-induced insulin amyloid strain is structurally very similar to previously reported strains formed either in the presence of 20% ethanol, or by modification of the amino acid sequence of insulin. A deeper analysis of literature data in the context of our current findings suggests a shift of the monomer-dimer equilibrium of insulin as a possible factor controlling the formation of different strains.
Collapse
|
20
|
Sneideris T, Milto K, Smirnovas V. Polymorphism of amyloid-like fibrils can be defined by the concentration of seeds. PeerJ 2015; 3:e1207. [PMID: 26355941 PMCID: PMC4563235 DOI: 10.7717/peerj.1207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022] Open
Abstract
Prions are infectious proteins where the same protein may express distinct strains. The strains are enciphered by different misfolded conformations. Strain-like phenomena have also been reported in a number of other amyloid-forming proteins. One of the features of amyloid strains is the ability to self-propagate, maintaining a constant set of physical properties despite being propagated under conditions different from those that allowed initial formation of the strain. Here we report a cross-seeding experiment using strains formed under different conditions. Using high concentrations of seeds results in rapid elongation and new fibrils preserve the properties of the seeding fibrils. At low seed concentrations, secondary nucleation plays the major role and new fibrils gain properties predicted by the environment rather than the structure of the seeds. Our findings could explain conformational switching between amyloid strains observed in a wide variety of in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Tomas Sneideris
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Katažyna Milto
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University, Institute of Biotechnology, Vilnius, Lithuania
| |
Collapse
|
21
|
Xiao X, Cali I, Yuan J, Cracco L, Curtiss P, Zeng L, Abouelsaad M, Gazgalis D, Wang GX, Kong Q, Fujioka H, Puoti G, Zou WQ. Synthetic Aβ peptides acquire prion-like properties in the brain. Oncotarget 2015; 6:642-50. [PMID: 25460507 PMCID: PMC4359245 DOI: 10.18632/oncotarget.2819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 02/05/2023] Open
Abstract
In transmission studies with Alzheimer's disease (AD) animal models, the formation of Aβ plaques is proposed to be initiated by seeding the inoculated amyloid β (Aβ) peptides in the brain. Like the misfolded scrapie prion protein (PrPSc) in prion diseases, Aβ in AD shows a certain degree of resistance to protease digestion while the biochemical basis for protease resistance of Aβ remains poorly understood. Using in vitro assays, histoblotting, and electron microscopy, we characterize the biochemical and morphological features of synthetic Aβ peptides and Aβ isolated from AD brain tissues. Consistent with previous observations, monomeric and oligomeric Aβ species extracted from AD brains are insoluble in detergent buffers and resistant to digestions with proteinase K (PK). Histoblotting of AD brain tissue sections exhibits an increased Aβ immunoreactivity after digestion with PK. In contrast, synthetic Aβ40 and Aβ42 are soluble in detergent buffers and fully digested by PK. Electron microscopy of Aβ40 and Aβ42 synthetic peptides shows that both species of Aβ form mature fibrils. Those generated from Aβ40 are longer but less numerous than those made of Aβ42. When spiked into human brain homogenates, both Aβ40 and Aβ42 acquire insolubility in detergent and resistance to PK. Our study favors the hypothesis that the human brain may contain cofactor(s) that confers the synthetic Aβ peptides PrPSc-like physicochemical properties.
Collapse
Affiliation(s)
- Xiangzhu Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ignazio Cali
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura Cracco
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul Curtiss
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Liang Zeng
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| | - Mai Abouelsaad
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dimitris Gazgalis
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gong-Xian Wang
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hisashi Fujioka
- Department of Pharmacology and EM Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gianfranco Puoti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
- National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| |
Collapse
|
22
|
Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 2015; 16:109-20. [PMID: 25588378 DOI: 10.1038/nrn3887] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The progression of many neurodegenerative diseases is thought to be driven by the template-directed misfolding, seeded aggregation and cell-cell transmission of characteristic disease-related proteins, leading to the sequential dissemination of pathological protein aggregates. Recent evidence strongly suggests that the anatomical connections made by neurons - in addition to the intrinsic characteristics of neurons, such as morphology and gene expression profile - determine whether they are vulnerable to degeneration in these disorders. Notably, this common pathogenic principle opens up opportunities for pursuing novel targets for therapeutic interventions for these neurodegenerative disorders. We review recent evidence that supports the notion of neuron-neuron protein propagation, with a focus on neuropathological and positron emission tomography imaging studies in humans.
Collapse
|
23
|
Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang AH. Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer's disease. RSC Adv 2015. [DOI: 10.1039/c5ra19094k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early diagnosis of Alzheimer's disease (AD) is an attractive strategy to increase the survival rate of patients.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
24
|
Ibrahim T, McLaurin J. Protein seeding in Alzheimer’s disease and Parkinson’s disease: Similarities and differences. World J Neurol 2014; 4:23-35. [DOI: 10.5316/wjn.v4.i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide (Aβ) and alpha-synuclein (α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding effects by both Aβ and α-syn, they emphasize the need for future studies to thoroughly characterize “seeds” as well as analyze changes in the nervous system in response to exogenous insults.
Collapse
|