1
|
Miton CM, Tokuriki N. Insertions and Deletions (Indels): A Missing Piece of the Protein Engineering Jigsaw. Biochemistry 2023; 62:148-157. [PMID: 35830609 DOI: 10.1021/acs.biochem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, protein engineers have studied nature and borrowed its tricks to accelerate protein evolution in the test tube. While there have been considerable advances, our ability to generate new proteins in the laboratory is seemingly limited. One explanation for these shortcomings may be that insertions and deletions (indels), which frequently arise in nature, are largely overlooked during protein engineering campaigns. The profound effect of indels on protein structures, by way of drastic backbone alterations, could be perceived as "saltation" events that bring about significant phenotypic changes in a single mutational step. Should we leverage these effects to accelerate protein engineering and gain access to unexplored regions of adaptive landscapes? In this Perspective, we describe the role played by indels in the functional diversification of proteins in nature and discuss their untapped potential for protein engineering, despite their often-destabilizing nature. We hope to spark a renewed interest in indels, emphasizing that their wider study and use may prove insightful and shape the future of protein engineering by unlocking unique functional changes that substitutions alone could never achieve.
Collapse
Affiliation(s)
- Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 BC, Canada
| |
Collapse
|
2
|
Savino S, Desmet T, Franceus J. Insertions and deletions in protein evolution and engineering. Biotechnol Adv 2022; 60:108010. [PMID: 35738511 DOI: 10.1016/j.biotechadv.2022.108010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects. This review highlights the evolutionary importance and biotechnological relevance of insertions and deletions (indels). We provide a comprehensive overview of approaches that can be employed to include indels in random, (semi)-rational or computational protein engineering pipelines. Furthermore, we discuss the tolerance to indels at the structural level, address how domain indels can link the function of unrelated proteins, and feature studies that illustrate the surprising and intriguing potential of frameshift mutations.
Collapse
Affiliation(s)
- Simone Savino
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium..
| |
Collapse
|
3
|
Tizei PAG, Harris E, Withanage S, Renders M, Pinheiro VB. A novel framework for engineering protein loops exploring length and compositional variation. Sci Rep 2021; 11:9134. [PMID: 33911147 PMCID: PMC8080606 DOI: 10.1038/s41598-021-88708-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Insertions and deletions (indels) are known to affect function, biophysical properties and substrate specificity of enzymes, and they play a central role in evolution. Despite such clear significance, this class of mutation remains an underexploited tool in protein engineering with few available platforms capable of systematically generating and analysing libraries of varying sequence composition and length. We present a novel DNA assembly platform (InDel assembly), based on cycles of endonuclease restriction digestion and ligation of standardised dsDNA building blocks, that can generate libraries exploring both composition and sequence length variation. In addition, we developed a framework to analyse the output of selection from InDel-generated libraries, combining next generation sequencing and alignment-free strategies for sequence analysis. We demonstrate the approach by engineering the well-characterized TEM-1 β-lactamase Ω-loop, involved in substrate specificity, identifying multiple novel extended spectrum β-lactamases with loops of modified length and composition-areas of the sequence space not previously explored. Together, the InDel assembly and analysis platforms provide an efficient route to engineer protein loops or linkers where sequence length and composition are both essential functional parameters.
Collapse
Affiliation(s)
- Pedro A. G. Tizei
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Emma Harris
- grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK
| | - Shamal Withanage
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Marleen Renders
- grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Vitor B. Pinheiro
- grid.83440.3b0000000121901201Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT UK ,grid.4464.20000 0001 2161 2573Department of Biological Sciences, University of London, Malet Street, Birkbeck, WC1E 7HX UK ,grid.415751.3KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Cheng YN, Qiu S, Cheng F, Weng CY, Wang YJ, Zheng YG. Enhancing Catalytic Efficiency of an Actinoplanes utahensis Echinocandin B Deacylase through Random Mutagenesis and Site-Directed Mutagenesis. Appl Biochem Biotechnol 2019; 190:1257-1270. [PMID: 31741208 DOI: 10.1007/s12010-019-03170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Echinocandin B deacylase (EBDA), from Actinoplanes utahensis ZJB-08196, is capable of cleaving the linoleoyl group from echinocandin B (ECB), forming the echinocandin B nucleus (ECBN), which is a key precursor of semisynthetic antifungal antibiotics. In the present study, molecular evolution of AuEBDA by random mutagenesis combined with site-directed mutagenesis (SDM) and screening was performed. Random mutagenesis on the wild-type (WT) AuEBDA generated two beneficial substitutions of G287Q, R527V. The "best" variant AuEBDA-G287Q/R527V was obtained by combining G287Q with R527V through SDM, which was most active at 35 °C, pH 7.5, with Km and vmax values of 0.68 mM and 395.26 U/mg, respectively. Mutation of G287Q/R527V markedly increased the catalytic efficiency kcat/Km by 290% compared with the WT-AuEBDA.
Collapse
Affiliation(s)
- Ying-Nan Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
An efficient thermostabilization strategy based on self-assembling amphipathic peptides for fusion tags. Enzyme Microb Technol 2019; 121:68-77. [DOI: 10.1016/j.enzmictec.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022]
|
6
|
Lynch M. Phylogenetic divergence of cell biological features. eLife 2018; 7:34820. [PMID: 29927740 PMCID: PMC6013259 DOI: 10.7554/elife.34820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Abstract
Enzyme stabilization is important for many biomedical or industrial application of enzymes (i.e., cell-free biotransformations and biosensors). In many applications, the goal is to provide extended active lifetime at normal environmental conditions with traditional substrates at low concentrations in buffered solutions. However, as enzymes are used for more and more applications, there is a desire to use them in extreme environmental conditions (i.e., high temperatures), in high substrate concentration or high ionic strength, and in nontraditional solvent systems. This chapter introduces the topic enzyme stabilization and the methods used for enzyme stabilization including enzyme immobilization.
Collapse
Affiliation(s)
- Michael J Moehlenbrock
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO, 63103, USA
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science and Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Surkont J, Diekmann Y, Ryder PV, Pereira-Leal JB. Coiled-coil length: Size does matter. Proteins 2015; 83:2162-9. [PMID: 26387794 DOI: 10.1002/prot.24932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022]
Abstract
Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints.
Collapse
Affiliation(s)
| | - Yoan Diekmann
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| | - Pearl V Ryder
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543.,Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.,Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543
| |
Collapse
|
9
|
Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K. Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J Biotechnol 2014; 187:139-46. [PMID: 25093937 DOI: 10.1016/j.jbiotec.2014.07.446] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 11/15/2022]
Abstract
Mutant xylanases, G41 and G53, were generated by random mutagenesis of Thermomyces lanuginosus xylanase DSM 5826 (xynA) in a previous study. Incubation at 90 min showed that G41 had 75% activity at 80 °C and G53 had 93% activity at pH 10. In order to create xylanase variants possessing both thermal and alkaline stability in a single enzyme, G41 and G53 served as templates for DNA shuffling using the StEP recombination method. One of the resulting StEP recombinants, S340, retained 54% stability at 80 °C and 60% stability at pH 10 with three resulting amino acid mutations. Another StEP recombinant, S325, displayed 85% stability at 80 °C and 60% stability at pH 10 and DNA sequencing showed that it inherited mutations from both parents. All thermostable variants displayed an increase in arginine content with poor enzyme activity. Thus, the StEP recombination method successfully recombined mutations into two xylanases that were more robust than their parent counterparts. Additionally, the 3D-models of the wild type T. lanuginosus xynA (xyl_ext) and its variants, G41 and S325, were predicted using I-TASSER and then subjected to molecular dynamics (MD) simulations at 300 K for a deeper understanding of their structural features. The results from the predicted 3D models show clearly the presence of α-helical regions in the N-terminal residues of the xyl_ext, G41 and S325. Moreover, the MD analysis suggests that the presence of additional residues (1-31) and point mutation induces slight structural changes with the stability of the protein being evenly distributed over the whole structure.
Collapse
Affiliation(s)
- Dawn Elizabeth Stephens
- Department of Biotechnology and Food Technology, ML Sultan Campus, Durban University of Technology, Durban, South Africa.
| | - Faez Iqbal Khan
- Department of Biotechnology and Food Technology, ML Sultan Campus, Durban University of Technology, Durban, South Africa; Department of Chemistry, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Parvesh Singh
- Department of Chemistry, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Steve Biko Campus, Durban University of Technology, Durban, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, ML Sultan Campus, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, ML Sultan Campus, Durban University of Technology, Durban, South Africa
| |
Collapse
|
10
|
Spickermann D, Kara S, Barackov I, Hollmann F, Schwaneberg U, Duenkelmann P, Leggewie C. Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Kaltenbach M, Tokuriki N. Dynamics and constraints of enzyme evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:468-87. [DOI: 10.1002/jez.b.22562] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Miriam Kaltenbach
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
12
|
C-terminal flanking peptide stabilized the catalytic domain of a recombinant Bacillus subtilis endo-β-1, 4-glucanase. Protein J 2013; 32:246-52. [PMID: 23543074 DOI: 10.1007/s10930-013-9483-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three proteins, Egl330, Egl326 and Egl325, which covered the catalytic domain of a Bacillus subtilis endo-β-l, 4-glucanase were expressed in Escherichia coli and purified. Egl325 was a mutant of Egl330 with the peptide sequence Arg-Glu-Asn-Ile-Arg deleted in the C-terminus and Egl326 was another mutant of Egl330 with the peptide sequence Glu-Asn-Ile-Arg deleted in the C-terminus. These three proteins displayed same optimal reaction pH and temperature. However, the thermal stability and pH stability of Egl326 and Egl325 were diminished compared to Egl330. Results of ultra violet scanning, circular dichroism and Trp fluorescence spectrometry showed that the absence of the short peptide at the C-terminus of Egl330 resulted in the destabilization of the catalytic domain through affecting the folding of the protein.
Collapse
|
13
|
Lu X, Liu S, Zhang D, Zhou X, Wang M, Liu Y, Wu J, Du G, Chen J. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 2013; 97:9419-27. [DOI: 10.1007/s00253-013-4751-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/20/2013] [Accepted: 01/31/2013] [Indexed: 11/24/2022]
|
14
|
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2012; 33:365-78. [DOI: 10.3109/07388551.2012.716810] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Allen BL, Johnson JD, Walker JP. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species. NANOTECHNOLOGY 2012; 23:294009. [PMID: 22743846 DOI: 10.1088/0957-4484/23/29/294009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).
Collapse
Affiliation(s)
- Brett L Allen
- FLIR Systems, Inc., 2240 William Pitt Way, Pittsburgh, PA 15238, USA.
| | | | | |
Collapse
|
16
|
Abstract
Enzyme stabilization is important for any biomedical or industrial application of enzymes. In many applications, the goal is to provide extended active lifetime at normal environmental conditions with traditional substrates at low concentrations in buffered solutions. However, as enzymes are used for more and more applications, there is a desire to use them in extreme environmental conditions (i.e., high temperatures), in high substrate concentration, and in nontraditional solvent systems. This chapter introduces the topic of enzyme stabilization and the methods used for enzyme stabilization including enzyme immobilization.
Collapse
|
17
|
Takano K, Okamoto T, Okada J, Tanaka SI, Angkawidjaja C, Koga Y, Kanaya S. Stabilization by fusion to the C-terminus of hyperthermophile Sulfolobus tokodaii RNase HI: a possibility of protein stabilization tag. PLoS One 2011; 6:e16226. [PMID: 21283826 PMCID: PMC3023800 DOI: 10.1371/journal.pone.0016226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022] Open
Abstract
RNase HI from the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) is stabilized by its C-terminal residues. In this work, the stabilization effect of the Sto-RNase HI C-terminal residues was investigated in detail by thermodynamic measurements of the stability of variants lacking the disulfide bond (C58/145A), or the six C-terminal residues (ΔC6) and by structural analysis of ΔC6. The results showed that the C-terminal does not affect overall structure and stabilization is caused by local interactions of the C-terminal, suggesting that the C-terminal residues could be used as a “stabilization tag.” The Sto-RNase HI C-terminal residues (-IGCIILT) were introduced as a tag on three proteins. Each chimeric protein was more stable than its wild-type protein. These results suggested the possibility of a simple stabilization technique using a stabilization tag such as Sto-RNase HI C-terminal residues.
Collapse
Affiliation(s)
- Kazufumi Takano
- Department of Material and Life Science, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Niu D, Zhou XX, Yuan TY, Lin ZW, Ruan H, Li WF. Effect of the C-terminal domains and terminal residues of catalytic domain on enzymatic activity and thermostability of lichenase from Clostridium thermocellum. Biotechnol Lett 2010; 32:963-7. [DOI: 10.1007/s10529-010-0241-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/19/2010] [Indexed: 11/29/2022]
|
19
|
Çakar ZP. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol J 2009; 4:992-1002. [DOI: 10.1002/biot.200800332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Stephens DE, Singh S, Permaul K. Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol Lett 2009; 293:42-7. [PMID: 19220468 DOI: 10.1111/j.1574-6968.2009.01519.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Random mutagenesis was used to improve the alkaline and thermal stability of the xylanase (XynA) from Thermomyces lanuginosus. Error-prone PCR reactions were carried out; the PCR products were cloned into Escherichia coli and a library of 960 clones was selected on xylan-containing agar plates. The crude filtrates of positive xylanase producers were screened at 80 degrees C and tested separately at pH 10 for alkaline tolerance. The native XynA lost 80% activity after 90 min at 80 degrees C and lost 70% activity at pH 10. Conversely, the most thermostable variant, G41, retained 75% activity after 90 min at 80 degrees C and the best alkali-stable variant, G53, retained 93% activity at pH 10. Sequence analysis revealed four amino acid substitutions in G41 and a single substitution in G53. These variants, therefore, have improved thermal and alkaline stability and are ideal candidates for DNA shuffling experiments to produce a robust xylanase for industrial application.
Collapse
Affiliation(s)
- Dawn Elizabeth Stephens
- Department of Biotechnology and Food Technology, ML Sultan Campus, Durban University of Technology, Durban, South Africa
| | | | | |
Collapse
|
21
|
Otaki JM, Gotoh T, Yamamoto H. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design. BIOTECHNOLOGY ANNUAL REVIEW 2008; 14:109-41. [PMID: 18606361 DOI: 10.1016/s1387-2656(08)00004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional structure of a protein molecule is primarily determined by its amino acid sequence, and thus the elucidation of general rules embedded in amino acid sequences is of great importance in protein science and engineering. To extract valuable information from sequences, we propose an analytical method in which a protein sequence is considered to be constructed by serial superimpositions of short amino acid sequences of n amino acid sets, especially triplets (3-aa sets). Using the comprehensive nonredundant protein database, we first examined "availability" of all possible combinatorial sets of 8,000 triplet species. Availability score was mathematically defined as an indicator for the relative "preference" or "avoidance" for a given short constituent sequence to be used in protein chain. Availability scores of real proteins were clearly biased against those of randomly generated proteins. We found many triplet species that occurred in the database more than expected or less than expected. Such bias was extended to longer sets, and we found that some species of pentats (5-aa sets) that occurred reasonably frequently in the randomly generated protein population did not occur at all in any real proteins known today. Availability score was dependent on species, potentially serving as a phylogenetic indicator. Furthermore, we suggest possibilities of various biotechnological applications of characteristic short sequences such as human-specific and pathogen-specific short sequences obtained from availability analysis. Availability score was also dependent on secondary structures, potentially serving as a structural indicator. Availability analysis on triplets may be combined with a comprehensive data collection on the varphi and psi peptide-bond angles of the amino acid at the center of each triplet, i.e., a collection of Ramachandran plots for each triplet. These triplet characters, together with other physicochemical data, will provide us with basic information between protein sequence and structure, by which structure prediction and engineering may be greatly facilitated. Availability analysis may also be useful in identifying word processing units in amino acid sequences based on an analogy to natural languages. Together with other approaches, availability analysis will elucidate general rules hidden in the primary sequences and eventually contributes to rebuilding the paradigm of protein science.
Collapse
Affiliation(s)
- Joji M Otaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | |
Collapse
|
22
|
Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 2007; 45:7745-51. [PMID: 17075931 DOI: 10.1002/anie.200602795] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim/Ruhr, Germany.
| | | | | |
Collapse
|
23
|
Tang L, Liu H. A comparative molecular dynamics study of thermophilic and mesophilic ribonuclease HI enzymes. J Biomol Struct Dyn 2007; 24:379-92. [PMID: 17206853 DOI: 10.1080/07391102.2007.10507127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We studied a pair of homologous thermophilic and mesophilic ribonuclease HI enzymes by molecular dynamics simulations. Each protein was subjected to three 5 ns simulations in explicit water at both 310 K and 340 K. The thermophilic enzyme showed larger overall positional fluctuations at both temperatures, while only the mesophilic enzyme at the higher temperature showed significant instability. When the temperature is changed, the relative flexibility of different local segments on the two proteins changed differently. Principal component analysis showed that the simulations of the two proteins explored largely overlapping regions in the conformational space. However, at 340 K, the collective structure variations of the thermophilic protein are different from those of the mesophilic protein. Our results, although not in accordance with the view that hyperthermostability of proteins may originate from their conformational rigidity, are consistent with several recent experimental and simulation studies which showed that thermophilic proteins may be conformationally more flexible than their mesophilic counterparts. The decorrelation between conformational rigidity and hyperthermostability may be attributed to the temperature dependence and long range nature of electrostatic interactions that play more important roles in the structural stability of thermophilic proteins.
Collapse
Affiliation(s)
- Ling Tang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui 230027, P. R. China
| | | |
Collapse
|
24
|
Abstract
A possible origin of novel coding sequences is the removal of stop codons, leading to the inclusion of 3' untranslated regions (3' UTRs) within genes. We classified changes in the position of stop codons in closely related Saccharomyces species and in a mouse/rat comparison as either additions to or subtractions from coding regions. In both cases, the position of stop codons is highly labile, with more subtractions than additions found. The subtraction bias may be balanced by the input of new coding regions through gene duplication. Saccharomyces shows less stop codon lability than rodents, probably due to greater selective constraint. A higher proportion of 3' UTR incorporation events preserve frame in Saccharomyces. This higher proportion is consistent with the action of the [PSI(+)] prion as an evolutionary capacitor to facilitate 3' UTR incorporation in yeast.
Collapse
Affiliation(s)
| | | | - Joanna Masel
- Dpt. Ecology & Evolutionary Biology, University of
Arizona
| |
Collapse
|
25
|
Stephens DE, Rumbold K, Permaul K, Prior BA, Singh S. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J Biotechnol 2007; 127:348-54. [PMID: 16893583 DOI: 10.1016/j.jbiotec.2006.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 06/12/2006] [Accepted: 06/23/2006] [Indexed: 11/24/2022]
Abstract
The thermostability of the endo-beta-1,4-xylanase from Thermomyces lanuginosus (xynA) was improved by directed evolution using error-prone PCR. Transformants expressing the variant xylanases were first selected on 0.4% Remazol Brilliant Blue-xylan and then exposed to 80 degrees C. Whereas the wild type XynA lost 90% activity after 10 min at 80 degrees C, five mutants displayed both higher stabilities and activities than XynA. Four mutants were subjected to further mutagenesis to improve the stability and activity of the xylanase. Subsequent screening revealed three mutants with enhanced thermostability. Mutant 2B7-10 retained 71% of its activity after treatment at 80 degrees C for 60 min and had a half-life of 215 min at 70 degrees C, which is higher than that attained by XynA. Sequence analysis of second generation mutants revealed that mutations were not concentrated in any particular region of the protein and exhibited much variation. The best mutant obtained from this study was variant 2B7-10, which had a single substitution (Y58F) in beta-sheet A of the protein, which is the hydrophilic, solvent-accessible outer surface of the enzyme. Most of the mutants obtained in this study displayed a compromise between stability and activity, the only exception being mutant 2B7-10. This variant showed increased activity and thermostability.
Collapse
Affiliation(s)
- Dawn Elizabeth Stephens
- Department of Biotechnology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | | | | | | | | |
Collapse
|
26
|
Reetz MT, Carballeira JD, Vogel A. Iterative Saturation Mutagenesis on the Basis of B Factors as a Strategy for Increasing Protein Thermostability. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602795] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Matsuura T, Yomo T. In vitro evolution of proteins. J Biosci Bioeng 2006; 101:449-56. [PMID: 16935245 DOI: 10.1263/jbb.101.449] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 05/08/2006] [Indexed: 11/17/2022]
Abstract
Consecutive rounds of diversification and selection of the fittest is believed to be the main driving force for the evolution of life. For the evolution of life to proceed, all living cells are surrounded by a lipid bilayer that separates their own genes from the external environment and from those of other organisms. In this way, the genetic information of an individual is replicated on the basis of their phenotype; thus the enrichment of the fittest will occur. Hence, evolution is based on linkage between genotype and phenotype owing to the surrounding of the genetic material with a barrier. The linkage between genotype and phenotype is also known to be essential for the directed evolution of proteins. Indeed, systems for molecular evolution, including phage display, ribosome display, and in vitro compartmentalization, all satisfy this requirement in different ways. These systems have been shown to be powerful tools for high-throughput screening for the functions of proteins, screening as many as <10(12) molecules in 1 d. These selection systems in combination with various gene libraries yield proteins with improved or altered biophysical properties, and may even allow the generation of proteins with novel functions.
Collapse
Affiliation(s)
- Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
28
|
O’Loughlin T, Matsumura I. HIV protease-activated molecular switches based on beta-glucuronidase and alkaline phosphatase. Comb Chem High Throughput Screen 2006; 9:313-20. [PMID: 16724922 PMCID: PMC2012946 DOI: 10.2174/138620706776843219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our long-term goal is to direct the evolution of novel protease variants. To this end we have engineered a new type of protease-activated reporter enzyme. Many protease-activated enzymes evolved in nature, but the introduction of novel regulatory mechanisms into normally unregulated enzymes poses a difficult design challenge. Random Elongation Mutagenesis [1] was used to fuse the p6 peptide, which is recognized and cleaved by HIV protease, and twelve random sequence amino acids to the C-termini of beta-glucuronidase (GUS) and alkaline phosphatase (AP). The resulting GUS-p6-(NNN)12 and AP-p6-(NNN)12 libraries were expressed in E. coli and screened for clones that were inactivated by the C-terminal extension (tail). The inactivated clones were co-expressed with HIV protease, and those that were re-activated were isolated. The AP and GUS activities of the most responsive clones were each >3.5-fold higher when co-expressed with HIV protease, and this activation is correlated with in vivo proteolysis. It should be possible to generalize this strategy to different reporter enzymes, different target proteases, and perhaps to other types of protein-modifying enzymes.
Collapse
Affiliation(s)
| | - I. Matsumura
- *Address correspondence to this author at the Department of Biochemistry, Center for Fundamental and Molecular Evolution, Emory University School of Medicine, Rollins Research Center, Room 4119, 1510 Clifton Road, Atlanta, GA 30322, USA; Tel: (404) 727-5625; Fax: (404) 727-3452; E-mail:
| |
Collapse
|
29
|
Chappie JS, Cànaves JM, Han GW, Rife CL, Xu Q, Stevens RC. The structure of a eukaryotic nicotinic acid phosphoribosyltransferase reveals structural heterogeneity among type II PRTases. Structure 2005; 13:1385-96. [PMID: 16154095 DOI: 10.1016/j.str.2005.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/18/2005] [Accepted: 05/18/2005] [Indexed: 11/16/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for cellular redox reactions and can act as an important substrate in numerous biological processes. As a result, nature has evolved multiple biosynthetic pathways to meet this high chemical demand. In Saccharomyces cerevisiae, the NAD salvage pathway relies on the activity of nicotinic acid phosphoribosyltransferase (NAPRTase), a member of the phosphoribosyltransferase (PRTase) superfamily. Here, we report the structure of a eukaryotic (yeast) NAPRTase at 1.75 A resolution (locus name: YOR209C, gene name: NPT1). The structure reveals a two-domain fold that resembles the architecture of quinolinic acid phosphoribosyltransferases (QAPRTases), but with completely different dispositions that provide evidence for structural heterogeneity among the Type II PRTases. The identification of a third domain in NAPRTases provides a structural basis and possible mechanism for the functional modulation of this family of enzymes by ATP.
Collapse
Affiliation(s)
- Joshua S Chappie
- The Joint Center for Structural Genomics, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257-68. [PMID: 16211069 DOI: 10.1038/nbt1127] [Citation(s) in RCA: 529] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM. Programmable assembly of nanoarchitectures using genetically engineered viruses. NANO LETTERS 2005; 5:1429-34. [PMID: 16178252 DOI: 10.1021/nl050795d] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biological systems possess inherent molecular recognition and self-assembly capabilities and are attractive templates for constructing complex material structures with molecular precision. Here we report the assembly of various nanoachitectures including nanoparticle arrays, hetero-nanoparticle architectures, and nanowires utilizing highly engineered M13 bacteriophage as templates. The genome of M13 phage can be rationally engineered to produce viral particles with distinct substrate-specific peptides expressed on the filamentous capsid and the ends, providing a generic template for programmable assembly of complex nanostructures. Phage clones with gold-binding motifs on the capsid and streptavidin-binding motifs at one end are created and used to assemble Au and CdSe nanocrytals into ordered one-dimensional arrays and more complex geometries. Initial studies show such nanoparticle arrays can further function as templates to nucleate highly conductive nanowires that are important for addressing/interconnecting individual nanostructures.
Collapse
Affiliation(s)
- Yu Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Arai M, Maki K, Takahashi H, Iwakura M. Testing the relationship between foldability and the early folding events of dihydrofolate reductase from Escherichia coli. J Mol Biol 2003; 328:273-88. [PMID: 12684013 DOI: 10.1016/s0022-2836(03)00212-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A "folding element" is a contiguous peptide segment crucial for a protein to be foldable and is a new concept that could assist in our understanding of the protein-folding problem. It is known that the presence of the complete set of folding elements of dihydrofolate reductase (DHFR) from Escherichia coli is essential for the protein to be foldable. Since almost all of the amino acid residues known to be involved in the early folding events of DHFR are located within the folding elements, a close relationship between the folding elements and early folding events is hypothesized. In order to test this hypothesis, we have investigated whether or not the early folding events are preserved in circular permutants and topological mutants of DHFR, in which the order of the folding elements is changed but the complete set of folding elements is present. The stopped-flow circular dichroism (CD) measurements show that the CD spectra at the early stages of folding are similar among the mutants and the wild-type DHFR, indicating that the presence of the complete set of folding elements is sufficient to preserve the early folding events. We have further examined whether or not sequence perturbation on the folding elements by a single amino acid substitution affects the early folding events of DHFR. The results show that the amino acid substitutions inside of the folding elements can affect the burst-phase CD spectra, whereas the substitutions outside do not. Taken together, these results indicate that the above hypothesis is true, suggesting a close relationship between the foldability of a protein and the early folding events. We propose that the folding elements interact with each other and coalesce to form a productive intermediate(s) early in the folding, and these early folding events are important for a protein to be foldable.
Collapse
Affiliation(s)
- Munehito Arai
- Protein Design Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibakari 305-8566, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
The current theory of protein evolution is that all contemporary proteins are derived from an ancestral subset. However, each new sequenced genome exhibits many genes with no detectable homologues in other species, leading to the paradoxical picture of a universal ancestor with more genes than any of its progeny. Standard explanations indicate that fast evolving genes might disappear into the 'twilight zone' of sequence similarity. Regardless of the size of the original ancestral subset, its origin and the potential mechanisms of its subsequent enlargement are rarely addressed. Sequencing of Rickettsia conorii genome recently led to the discovery of three families of repeat-mobile elements frequently inserted into the middle of protein coding genes. Although not yet identified in other species of bacteria, this discovery has provided the first clear evidence for the de novo creation of long protein segments (up to 50 amino acid residues) by repeat insertion. Based on previous results and theories on the coding potential of palindromic elements, we speculate that their insertion and mobility might have played a significant role in the early stages of protein evolution.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Information Génétique et Structurale, CNRS-AVENTIS UMR 1889, Institut de Biologie Structurale et Microbiologie, Marseille, France.
| | | |
Collapse
|
35
|
Pedersen JS, Otzen DE, Kristensen P. Directed evolution of barnase stability using proteolytic selection. J Mol Biol 2002; 323:115-23. [PMID: 12368103 DOI: 10.1016/s0022-2836(02)00891-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the construction of a phage-displayed repertoire of mutants of the ribonuclease barnase from Bacillus amyloliquefaciens. The construction was guided by the natural variability between two closely related ribonucleases, barnase and binase from Bacillus intermedius. This repertoire was selected using a proteolytic selection method, allowing sorting of the library according to the resistance of the mutants toward proteolysis. Susceptibility toward proteolysis has been correlated with flexibility and unfolding, and is thus expected to yield mutants with increased thermal stability. Enrichment of barnase mutants with specific combinations of amino acid residues at four of the randomised positions was observed. Three of these enriched amino acid residues are present in neither barnase nor binase. For some of the mutations, the improvement in proteolytic stability does not lead to a pronounced improvement in thermodynamic stability, indicating that the factors governing the proteolytic stability in some cases may be different from those governing the thermodynamic stability, e.g. propensity to local unfolding.The results obtained add important knowledge to a novel use of phage display technology for selection of thermodynamically stable proteins. Only by carefully establishing the parameters that can be adjusted, and recognising the influence this will have on the outcome of selection, will it be possible to realise the powerful technique of proteolytic selection.
Collapse
Affiliation(s)
- Jesper S Pedersen
- University of Aarhus, Department of Molecular and Structural Biology, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | | | | |
Collapse
|
36
|
Abstract
In an attempt to understand protein evolution, we address the issues ofhow much variety in the sequences is needed to prompt the evolution ofan enzyme from random polypeptides and how does cellular interactionaffect the dynamics of molecular evolution to allow genetic diversity inpopulation. The experimental evolution of phage-displayed randompolypeptides of about 140 amino acid residues panned with transition stateanalogue for an esterase reaction showed that even with a population sizeas small as ten, not only could significant varieties be found but also therandom polypeptides in each of the generation had great promise towardsdeveloping into functional proteins. Hence, it is evident that the enzymeevolution is prompted even within a small local area of the static landscapeof the sequence space. Considering that interaction among living cells is aninevitable event in natural evolution, its role was investigated through threeconsecutive rounds of random mutagenesis on the glutamine synthetasegene and chemostat culture of the transformed Escherichia colicellscontaining the mutated genes. The molecular phylogeny and populationdynamics show the coexistence of some mutants having different level ofglutamine synthetase at each generation. In addition, it was confirmed thatcellular interaction via the medium influences the stability of the coexistenceand bring forth fitness change to the coexisting members of the population,thereby, leading to a dynamical landscape. Based on experimental resultsreflecting the extent of interaction among members in population, here, Iproposed that protein evolution could change its mode from theoptimization on static landscape to diversification on dynamicallandscape.
Collapse
|
37
|
Fexby S, Bülow L. Improved partitioning in aqueous two-phase system of tyrosine-tagged recombinant lactate dehydrogenase. Protein Expr Purif 2002; 25:263-9. [PMID: 12135559 DOI: 10.1016/s1046-5928(02)00008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The partitioning of Bacillus stearothermophilus lactate dehydrogenase (LDH) in an aqueous two-phase system was studied. Particularly, the influence of tyrosine tags on the partitioning was evaluated. The hydrophobic effect, caused by the addition of tyrosine residues, was determined in a system based on dextran and the thermoseparating ethylene oxide-propylene oxide random copolymer (EO30PO70). Five different LDH variants were constructed with N-terminal tags containing tyrosines (Y3 and Y6), tyrosines and prolines (Y3P2 and Y6P2), and only prolines (P2). LDH fused with tags containing tyrosines increased the partitioning coefficient, and the more tyrosines added to the protein, the larger improvement in partitioning. When prolines were added between the tyrosine-rich tag and the protein, a further increased partitioning was obtained. The enhanced partitioning was attributed to the rigid structure of the proline, which in turn led to an increase in the exposure of the tag to the surroundings. The best tyrosine tag, Y6P2, increased the partition coefficient four times and additionally, a higher thermostability was observed.
Collapse
Affiliation(s)
- Sara Fexby
- Department of Pure and Applied Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | | |
Collapse
|
38
|
Yamauchi A, Nakashima T, Tokuriki N, Hosokawa M, Nogami H, Arioka S, Urabe I, Yomo T. Evolvability of random polypeptides through functional selection within a small library. Protein Eng Des Sel 2002; 15:619-26. [PMID: 12200545 DOI: 10.1093/protein/15.7.619] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A directed evolution with phage-displayed random polypeptides of about 140 amino acid residues was followed until the sixth generation under a selection based on affinity to a transition state analog for an esterase reaction. The experimental design deliberately limits the observation to only 10 clones per generation. The first generation consists of three soluble random polypeptides and seven arbitrarily chosen clones from a previously constructed library. The clone showing the highest affinity in a generation was selected and subjected to random mutagenesis to generate variants for the next generation. Even within only 10 arbitrarily chosen polypeptides in each of the generations, there are enough variants in accord to capacity of binding affinity. In addition, the binding capacity of the selected polypeptides showed a gradual continuous increase over the generation. Furthermore, the purified selected random polypeptides exhibited a gradual but significant increase in esterase activity. The ease of the functional development within a small sequence variety implies that enzyme evolution is prompted even within a small population of random polypeptides.
Collapse
Affiliation(s)
- Asao Yamauchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita Shi, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Acellular haemoglobin (Hb) has intrinsic toxicity to the tissues since harmful reactive oxygen species are readily produced during auto-oxidation of Hb. On the other hand, Hb is known to have peroxidase-like activity monovalently oxidizing various peroxidase substrates. Thus, monovalently oxidized organic free radical species may be produced. This may relay the radical reactions leading to the production of reactive oxygen species such as superoxide. Such substrates possibly generating superoxide, include aromatic monoamines such as neurotransmitters and their precursors rich in neural a tissues. Based on our knowledge on the reactivity of haemoproteins against phenolics and aromatic monoamines, we proposed a hindered danger in use of Hb as a reperfusion agent. Clinical use of recently developing Hb-based blood substitutes must be reconsidered.
Collapse
Affiliation(s)
- T Kawano
- Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
40
|
Fridjonsson O, Watzlawick H, Mattes R. Thermoadaptation of alpha-galactosidase AgaB1 in Thermus thermophilus. J Bacteriol 2002; 184:3385-91. [PMID: 12029056 PMCID: PMC135109 DOI: 10.1128/jb.184.12.3385-3391.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionary potential of a thermostable alpha-galactosidase, with regard to improved catalytic activity at high temperatures, was investigated by employing an in vivo selection system based on thermophilic bacteria. For this purpose, hybrid alpha-galactosidase genes of agaA and agaB from Bacillus stearothermophilus KVE39, designated agaA1 and agaB1, were cloned into an autonomously replicating Thermus vector and introduced into Thermus thermophilus OF1053GD (DeltaagaT) by transformation. This selector strain is unable to metabolize melibiose (alpha-galactoside) without recombinant alpha-galactosidases, because the native alpha-galactosidase gene, agaT, has been deleted. Growth conditions were established under which the strain was able to utilize melibiose as a single carbohydrate source when harboring a plasmid-encoded agaA1 gene but unable when harboring a plasmid-encoded agaB1 gene. With incubation of the agaB1 plasmid-harboring strain under selective pressure at a restrictive temperature (67 degrees C) in a minimal melibiose medium, spontaneous mutants as well as N-methyl-N'-nitro-N-nitrosoguanidine-induced mutants able to grow on the selective medium were isolated. The mutant alpha-galactosidase genes were amplified by PCR, cloned in Escherichia coli, and sequenced. A single-base substitution that replaces glutamic acid residue 355 with glycine or valine was found in the mutant agaB1 genes. The mutant enzymes displayed the optimum hydrolyzing activity at higher temperatures together with improved catalytic capacity compared to the wild-type enzyme and furthermore showed an enhanced thermal stability. To our knowledge, this is the first report of an in vivo evolution of glycoside-hydrolyzing enzyme and selection within a thermophilic host cell.
Collapse
Affiliation(s)
- Olafur Fridjonsson
- Institut für Industrielle Genetik, Universität Stuttgart, 70569 Stuttgart, Germany.
| | | | | |
Collapse
|
41
|
Flores H, Ellington AD. Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. J Mol Biol 2002; 315:325-37. [PMID: 11786015 DOI: 10.1006/jmbi.2001.5223] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reporter enzyme beta-glucuronidase was mutagenized and evolved for thermostability. After four cycles of screening the best variant was more active than the wild-type enzyme, and retained function at 70 degrees C, whereas the wild-type enzyme lost function at 65 degrees C. Variants derived from sequential mutagenesis were shuffled together, and re-screened for thermostability. The best variants retained activities at even higher temperatures (80 degrees C), but had specific activities that were now less than that of the wild-type enzyme. The mutations clustered near the tetramer interface of the enzyme, and many of the evolved variants showed much greater resistance to quaternary structure disruption at high temperatures, which is also a characteristic of naturally thermostable enzymes. Together, these results suggest a pathway for the evolution of thermostability in which enzymes initially become stable at high temperatures without loss of activity at low temperatures, while further evolution leads to enzymes that have kinetic parameters that are optimized for high temperatures.
Collapse
Affiliation(s)
- Humberto Flores
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology ICMB a4800/MBB 3.424, University of Texas at Austin, 26th and Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
42
|
Miyamoto Y, Teramoto N, Imanishi Y, Ito Y. In vitro adaptation of a ligase ribozyme for activity under a low-pH condition. Biotechnol Bioeng 2001; 75:590-6. [PMID: 11745135 DOI: 10.1002/bit.10033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A ligase ribozyme accelerating a ligation reaction with oligonucleotide under a low-pH condition was selected by in vitro adaptation. A ribozyme active at pH 7 was randomly mutated, and the resultant RNA library was subjected to in vitro adaptation under a low-pH reaction condition. At pH 4, the adapted RNAs reacted with the oligonucleotide substrates about 200 times faster than the original ribozyme. When the ribozyme was cloned and sequenced, 10 of the 30 clones sequenced had identical sequences. The differences in sequence from the original ribozyme were found at four positions in the middle region and at the 3' end. A few sequential differences dominated the activity of the ribozyme under the extreme condition. The adapted ribozyme had one repeating sequence that was critical for the activity.
Collapse
Affiliation(s)
- Y Miyamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | |
Collapse
|
43
|
Phucharoen K, Takenaka Y, Shinozawa T. Molecular cloning and sequence analysis of the manganese catalase gene from Thermoleophilum album NM. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:413-7. [PMID: 11913789 DOI: 10.3109/10425170109084467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The manganese catalase gene (mnct) from Thermoleophilum album NM, a thermophilic bacterium, was cloned and its nucleotide sequence was analyzed. The gene consists of 885 bp (65.4% GC content) encoding 294 amino acids with a molecular mass of 32,500 Da. The deduced amino acid sequence shows similarities to those of Thermus species strain YS 8-13 (a thermophilic bacterium) and Bacillus halodurans (an alkaliphilic bacterium) with 61 and 54% identities, respectively.
Collapse
Affiliation(s)
- K Phucharoen
- Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu, Gunma, Japan
| | | | | |
Collapse
|
44
|
Affiliation(s)
- A Gershenson
- Division of Chemistry & Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
45
|
Kim GJ, Cheon YH, Park MS, Park HS, Kim HS. Generation of protein lineages with new sequence spaces by functional salvage screen. PROTEIN ENGINEERING 2001; 14:647-54. [PMID: 11707610 DOI: 10.1093/protein/14.9.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is first constructed by genetically disrupting a predetermined region(s) of the protein and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from Escherichia coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E.coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional properties. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.
Collapse
Affiliation(s)
- G J Kim
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Paldal-gu, Suwon, 442-749, Korea
| | | | | | | | | |
Collapse
|
46
|
Liu JH, Tsai CF, Liu JW, Cheng KJ, Cheng CL. The catalytic domain of a Piromyces rhizinflata cellulase expressed in Escherichia coli was stabilized by the linker peptide of the enzyme. Enzyme Microb Technol 2001; 28:582-589. [PMID: 11339938 DOI: 10.1016/s0141-0229(00)00349-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Analysis of a carboxymethyl-cellulase clone isolated from the cDNA library of the ruminal fungus, Piromyces rhizinflata 2301, revealed that the clone encoded a polypeptide containing a cellulase catalytic domain, designated CelAcd. CelAcd was flanked by a 28-amino acid linker peptide at the N-terminus and linked to a dockerin domain by a 7-amino acid linker at the C-terminus. CelAcd showed homology with the family 5 of glycosyl hydrolases. CelAcd plus the linker peptides at both termini (designated CelcdN'C') was expressed in Escherichia coli and the purified enzyme was characterized. The feature of particular interest of CelcdN'C' was its bifunctional endo- and exo-glucanase activity, demonstrated by its ability to hydrolyse carboxymethyl cellulose (CMC) and pNP-beta-D-cellobioside. Furthermore, CelcdN'C' exhibited relatively high ability to degrade both microcrystalline Avicel and filter paper. CelcdN'C' also showed activity against barley beta-glucan, Lichenin and oat spelt xylan. The optimal activity conditions for CelcdN'C' with CMC as the substrate were pH 5.5 and 50 degrees C. Fifty percent of the enzyme activity was lost when CelcdN'C' was treated at 55 degrees C for 10 min. CelcdN'C' retained more than 10% enzyme activity after being heated under 90 degrees C for 10 min. Deletion of the N-terminal flanking linker of CelcdN'C' (the resulting protein was designated CelcdC') did not alter the enzymatic function of the catalytic domain. However, the thermal stability of CelcdC' was dramatically reduced. We conclude that the N-terminal flanking linker of CelAcd stabilizes the enzyme protein.
Collapse
Affiliation(s)
- J -H. Liu
- Institute of BioAgricultural Sciences, Academia Sinica, 115, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Jermutus L, Tessier M, Pasamontes L, van Loon AP, Lehmann M. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. J Biotechnol 2001; 85:15-24. [PMID: 11164958 DOI: 10.1016/s0168-1656(00)00373-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thermostability is a key feature for commercially attractive variants of the fungal enzyme phytase. In an initial set of experiments, we restored ionic interactions and hydrogen bonds on the surface of Aspergillus terreus phytase, which are present in the homologous but more thermostable enzyme from A. niger. Since these mutations turned out to be neutral, we replaced-in the same region and based on the crystal structure of A. niger phytase-entire secondary structure elements. The replacement of one alpha-helix on the surface of A. terreus phytase by the corresponding stretch of A. niger phytase resulted in an enzyme with improved thermostability and unaltered enzymatic activity. Surprisingly, the thermostability of this hybrid protein was very similar to that of A. niger phytase, although the fusion protein contained only a 31 amino acid stretch of the more stable parent enzyme. This report provides evidence that structure-based chimeric enzymes can be used to exploit the evolutionary information within a sequence alignment. We propose this method as an alternative to directed enzyme evolution if due to expression constraints the screening of large mutant populations is not feasible.
Collapse
Affiliation(s)
- L Jermutus
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, 4070, Basel, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Effects of amino acid substitution on the physicochemical properties of artificial proteins with random sequences. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80219-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Hirano N, Haruki M, Morikawa M, Kanaya S. Enhancement of the enzymatic activity of ribonuclease HI from Thermus thermophilus HB8 with a suppressor mutation method. Biochemistry 2000; 39:13285-94. [PMID: 11052682 DOI: 10.1021/bi0015008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A genetic method for isolating a mutant enzyme of ribonuclease HI (RNase HI) from Thermus thermophilus HB8 with enhanced activity at moderate temperatures was developed. T. thermophilus RNase HI has an ability to complement the RNase H-dependent temperature-sensitive (ts) growth phenotype of Escherichia coli MIC3001. However, this complementation ability was greatly reduced by replacing Asp(134), which is one of the active site residues, with His, probably due to a reduction in the catalytic activity. Random mutagenesis of the gene encoding the resultant D134H enzyme, followed by screening for second-site revertants, allowed us to isolate three single mutations (Ala(12) --> Ser, Lys(75) --> Met, and Ala(77) --> Pro) that restore the normal complementation ability to the D134H enzyme. These mutations were individually or simultaneously introduced into the wild-type enzyme, and the kinetic parameters of the resultant mutant enzymes for the hydrolysis of a DNA-RNA-DNA/DNA substrate were determined at 30 degrees C. Each mutation increased the k(cat)/K(m) value of the wild-type enzyme by 2.1-4.8-fold. The effects of the mutations on the enzymatic activity were roughly cumulative, and the combination of these three mutations increased the k(cat)/K(m) value of the wild-type enzyme by 40-fold (5.5-fold in k(cat)). Measurement of thermal stability of the mutant enzymes with circular dichroism spectroscopy in the presence of 1 M guanidine hydrochloride and 1 mM dithiothreitol showed that the T(m) value of the triple mutant enzyme, in which all three mutations were combined, was comparable to that of the wild-type enzyme (75.0 vs 77.4 degrees C). These results demonstrate that the activity of a thermophilic enzyme can be improved without a cost of protein stability.
Collapse
Affiliation(s)
- N Hirano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
50
|
Iffland A, Tafelmeyer P, Saudan C, Johnsson K. Directed molecular evolution of cytochrome c peroxidase. Biochemistry 2000; 39:10790-8. [PMID: 10978164 DOI: 10.1021/bi001121e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c peroxidase (CCP) from Saccharomyces cerevisiae was subjected to directed molecular evolution to generate mutants with increased activity against the classical peroxidase substrate guaiacol, thus changing the substrate specificity of CCP from the protein cytochrome c to a small organic molecule. After three rounds of DNA shuffling and screening, mutants were isolated which possessed a 300-fold increased activity against guaiacol and an up to 1000-fold increased specificity for this substrate relative to that for the natural substrate. In all of the selected mutants, the distal arginine (Arg48), which is fully conserved in the superfamily of peroxidases, was mutated to histidine, showing that this mutation plays a key role in the significant increase in activity against phenolic substrates. The results suggest that, in addition to stabilizing the reactive intermediate compound I, the distal arginine plays an important role as a gatekeeper in the active site of CCP, controlling the access to the ferryl oxygen and the distal histidine. Other isolated mutations increase the general reactivity of the peroxidase or increase the intracellular concentration of the active holo form, allowing their selection under the employed screening conditions. The results illustrate the ability of directed molecular evolution technologies to deliver solutions to biochemical problems that would not be readily predicted by rational design.
Collapse
Affiliation(s)
- A Iffland
- Institut de Chimie Organique and Institut de Chimie Minerale et Analytique, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|