1
|
Li S, Yin W, Liu Y, Yang C, Zhai Z, Xie M, Ye Z, Song X. Anisotropic conductive scaffolds for post-infarction cardiac repair. Biomater Sci 2025; 13:542-567. [PMID: 39688676 DOI: 10.1039/d4bm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. Myocardial infarction (MI) remains one of the most common and lethal cardiovascular diseases (CVDs), leading to the deterioration of cardiac function due to myocardial cell necrosis and fibrous scar tissue formation. After MI, the anisotropic structural properties of myocardial tissue are destroyed, and its mechanical and electrical microenvironment also undergoes a series of pathological changes, such as ventricular wall stiffness, abnormal contraction, conduction network disruption, and irregular electrical signal propagation, which may further induce myocardial remodeling and even lead to heart failure. Therefore, bionic reconstruction of the anisotropic structural-mechanical-electrical microenvironment of the infarct area is key to repairing damaged myocardium. This article first summarizes the pathological changes in muscle fibre structure and conductive microenvironment after cardiac injury, and focuses on the classification and preparation methods of anisotropic conductive materials. In addition, the effects of these anisotropic conductive materials on the behavior of cardiac resident cells after myocardial infarction, such as directional growth, maturation, proliferation and migration, and the differentiation fate of stem cells and the possible molecular mechanisms involved are summarized. The design strategies for anisotropic conductive scaffolds for myocardial repair in future clinical research are also discussed, with the aim of providing new insights for researchers in related fields.
Collapse
Affiliation(s)
- Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
2
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
4
|
Cui X, Wu L, Zhang C, Li Z. Implantable Self-Powered Systems for Electrical Stimulation Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412044. [PMID: 39587936 DOI: 10.1002/advs.202412044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
With the integration of bioelectronics and materials science, implantable self-powered systems for electrical stimulation medical devices have emerged as an innovative therapeutic approach, garnering significant attention in medical research. These devices achieve self-powering through integrated energy conversion modules, such as triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), significantly enhancing the portability and long-term efficacy of therapeutic equipment. This review delves into the design strategies and clinical applications of implantable self-powered systems, encompassing the design and optimization of energy harvesting modules, the selection and fabrication of adaptable electrode materials, innovations in systematic design strategies, and the extensive utilization of implantable self-powered systems in biological therapies, including the treatment of neurological disorders, tissue regeneration engineering, drug delivery, and tumor therapy. Through a comprehensive analysis of the latest research progress, technical challenges, and future directions in these areas, this paper aims to provide valuable insights and inspiration for further research and clinical applications of implantable self-powered systems.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Li Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
6
|
Kim YW, Park JM, Park CS, Na H, Kang YW, Lee W, Sun JY. Anisotropically Conductive Hydrogels with Directionally Aligned PEDOT:PSS in a PVA Matrix. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4013-4023. [PMID: 38189267 DOI: 10.1021/acsami.3c16094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrical anisotropy, which is characterized by the efficient transmission of electrical signals in specific directions, is prevalent in both natural and engineered systems. However, traditional anisotropically conductive materials are often rigid and dry, thus limiting their utility in applications aiming for the seamless integration of various technologies with biological tissues. In the present study, we introduce a method for precisely controlling the microstructures of conductive and insulating polymers to create highly anisotropically conductive composite hydrogels. Our methodology involves combining aligned poly(vinyl alcohol) microfibrils, infused poly(3,4-ethylenedioxythiophene) polystyrenesulfonate, and sodium citrate precipitation to form dense, aligned conductive paths. This significantly enhances the electrical conductivity anisotropy (σ∥/σ⊥ ≈ 60.8) within these composite hydrogels.
Collapse
Affiliation(s)
- Yong-Woo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Man Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Seo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeonuk Na
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Woo Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseop Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
8
|
Wu Z, Zhang X, Cai T, Li Y, Guo X, Zhao X, Wu D, Li Z, Zhang L. Transcutaneous auricular vagus nerve stimulation reduces cytokine production in sepsis: An open double-blind, sham-controlled, pilot study. Brain Stimul 2023; 16:507-514. [PMID: 36801260 DOI: 10.1016/j.brs.2023.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Studies have shown that vagus nerve-mediated inflammatory reflex could inhibit cytokine production and inflammation in sepsis animals. OBJECTIVES This study aimed to explore the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) on inflammation and disease severity of sepsis patients. METHODS A randomized, double-blind, sham-controlled pilot study was performed. Twenty sepsis patients were randomly assigned to receive taVNS or sham stimulation for five consecutive days. Stimulation effect was assessed with serum cytokine levels, Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ score, and Sequential Organ Failure Assessment (SOFA) score at baseline and on Day 3, Day 5, and Day 7. RESULTS TaVNS was well tolerated in the study population. Patients receiving taVNS experienced significant reductions in serum TNF-α and IL-1β levels and increases in IL-4 and IL-10 levels. SOFA scores decreased on Day 5 and Day 7 compared with baseline in the taVNS group. However, no changes were found in sham stimulation group. The changes of cytokine from Day 7 to Day 1 were greater with taVNS than sham stimulation. No differences in the APACHE Ⅱ score and SOFA score were observed between the two groups. CONCLUSIONS TaVNS resulted in significantly lower serum pro-inflammatory cytokines and higher serum anti-inflammatory cytokines in sepsis patients.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Xin Zhang
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Tiantian Cai
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Yankun Li
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Xi Guo
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Xiangyang Zhao
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Zhi Li
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266035, PR China.
| | - Luyao Zhang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
9
|
Yu M, Wang C, Cui H, Huang J, Yu Q, Wang P, Huang C, Li G, Zhao Y, Du X, Liu Z. Self-Closing Stretchable Cuff Electrodes for Peripheral Nerve Stimulation and Electromyographic Signal Recording. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7663-7672. [PMID: 36734973 DOI: 10.1021/acsami.2c15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The cuff electrode can be wrapped in the columnar or tubular biological tissue for physiological signal detection or stimulation regulation. The reliable and non-excessive interfaces between the electrode and complex tissue are critical. Here, we propose a self-closing stretchable cuff electrode, which is able to self-close onto the bundles of tissues after dropping water. The curliness is realized by the mechanical stress mismatch between different layers of the elastic substrate. The material of the substrate can be selected to match the modulus of the target tissue to achieve minimal constraint on the tissue. Moreover, the self-closing structure keeps the cuff electrode free from any extra mechanical locking structure. For in vivo testing, both sciatic nerve stimulation to drive muscles and electromyographic signal monitoring around a rat's extensor digitorum longus for 1 month prove that our proposed electrode conforms well to the curved surface of biological tissue.
Collapse
Affiliation(s)
- Mei Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changxian Wang
- School of Mechanics and Construction Engineering, Jinan University, 601 Huangpu Road West, Guangzhou 510632, China
| | - Huanqing Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jianping Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qianhengyuan Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Chao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xuemin Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
10
|
Yang M, Chen P, Qu X, Zhang F, Ning S, Ma L, Yang K, Su Y, Zang J, Jiang W, Yu T, Dong X, Luo Z. Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation. ACS NANO 2023; 17:885-895. [PMID: 36629747 DOI: 10.1021/acsnano.2c04606] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A robust neural interface with intimate electrical coupling between neural electrodes and neural tissues is critical for stable chronic neuromodulation. The development of bioadhesive hydrogel neural electrodes is a potential approach for tightly fixing the neural electrodes on the epineurium surface to construct a robust neural interface. Herein, we construct a photopatternable, antifouling, conductive (∼6 S cm-1), bioadhesive (interfacial toughness ∼100 J m-2), soft, and elastic (∼290% strain, Young's modulus of 7.25 kPa) hydrogel to establish a robust neural interface for bioelectronics. The UV-sensitive zwitterionic monomer can facilitate the formation of an electrostatic-assembled conductive polymer PEDOT:PSS network, and it can be further photo-cross-linked into elastic polymer network. Such a semi-interpenetrating network endows the hydrogel electrodes with good conductivity. Especially, the photopatternable feature enables the facile microfabrication processes of multifunctional hydrogel (MH) interface with a characteristic size of 50 μm. The MH neural electrodes, which show improved performance of impedance, charge storage capacity, and charge injection capability, can produce effective electrical stimulation with high current density (1 mA cm-2) at ultralow voltages (±25 mV). The MH interface could realize high-efficient electrical communication at the chronic neural interface for stable recording and stimulation of a sciatic nerve in the rat model.
Collapse
Affiliation(s)
- Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing211816, China
| | - Fuchi Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Shan Ning
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Li Ma
- School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Kun Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yuming Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jianfeng Zang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan430072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou221116, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
11
|
Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 2022; 110:1327-1339.e6. [PMID: 35139365 DOI: 10.1016/j.neuron.2022.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The nervous and immune systems are closely entwined to maintain the immune balance in health and disease. Here, we showed that LPS can activate suprarenal and celiac ganglia (SrG-CG) neurons and upregulate NPY expression in rats. Single-cell sequencing analysis revealed that knockdown of the NPY gene in SrG-CG altered the proliferation and activation of splenic lymphocytes. In a neuron and splenocyte coculture system and in vivo experiments, neuronal NPY in SrG-CG attenuated the splenic immune response. Notably, we demonstrated that neuronal NPF in Drosophila exerted a conservative immunomodulatory effect. Moreover, numerous SNPs in NPY and its receptors were significantly associated with human autoimmune diseases, which was further supported by the autoimmune disease patients and mouse model experiments. Together, we demonstrated that NPY is an ancient language for nervous-immune system crosstalk and might be utilized to alleviate inflammatory storms during infection and to modulate immune balance in autoimmune diseases.
Collapse
|
12
|
Ramkissoon CM, Güemes A, Vehi J. Overview of therapeutic applications of non-invasive vagus nerve stimulation: a motivation for novel treatments for systemic lupus erythematosus. Bioelectron Med 2021; 7:8. [PMID: 34030736 PMCID: PMC8145832 DOI: 10.1186/s42234-021-00069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.
Collapse
Affiliation(s)
| | - Amparo Güemes
- Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Josep Vehi
- Institut d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
13
|
Zhang L, Wu Z, Zhou J, Lu S, Wang C, Xia Y, Ren H, Tong Z, Ke L, Li W. Electroacupuncture Ameliorates Acute Pancreatitis: A Role for the Vagus Nerve-Mediated Cholinergic Anti-Inflammatory Pathway. Front Mol Biosci 2021; 8:647647. [PMID: 34055878 PMCID: PMC8155617 DOI: 10.3389/fmolb.2021.647647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 01/30/2023] Open
Abstract
Organ failure resulting from excessive inflammation is the leading cause of death in the early phase of acute pancreatitis (AP). The autonomic nervous system was reported to be involved in AP, and the vagus nerve could exert anti-inflammatory effects through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Acupuncture has been widely used in traditional Asian medicine, and recent studies suggested the inflammation modulating effect of electroacupuncture (EA) might be mediated by the autonomic nervous system. In this study, we aimed to investigate the effects of EA in AP animal models. Two independent AP mouse models were used, namely, caerulein hyperstimulation and pancreatic duct ligation. We found that EA at Zusanli acupoint increased vagus nerve activity, suppressed systemic inflammation, and alleviated the histopathological manifestations and leukocyte infiltrations of the pancreas. Induction of AP resulted in a remarkable decrease in the frequency of α7nAchR+ macrophages in the pancreas, while EA counteracted this phenomenon. The anti-inflammatory, pancreatic protective and upregulation of α7nAchR effects of EA were reduced in mice with vagotomy. Moreover, the therapeutic effects of EA were attenuated in mice treated with methyllycaconitine citrate, a selective α7nAChR antagonist. Taken together, EA could modulate inflammation, thereby exerting protective effects in AP. The mechanism may include activating the vagus nerve through the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jing Zhou
- Department of Critical Care Medicine, Jinling Clinical Medical College of Southeast University, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chaofan Wang
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqiu Xia
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyan Ren
- Department of Pathology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Marsal S, Corominas H, de Agustín JJ, Pérez-García C, López-Lasanta M, Borrell H, Reina D, Sanmartí R, Narváez J, Franco-Jarava C, Peterfy C, Narváez JA, Sharma V, Alataris K, Genovese MC, Baker MC. Non-invasive vagus nerve stimulation for rheumatoid arthritis: a proof-of-concept study. THE LANCET. RHEUMATOLOGY 2021; 3:e262-e269. [PMID: 38279410 DOI: 10.1016/s2665-9913(20)30425-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vagus nerve stimulation delivered with an implanted device has been shown to improve rheumatoid arthritis severity. We aimed to investigate the safety and efficacy of non-invasive stimulation of the auricular branch of the vagus nerve for the treatment of patients with moderately to severely active rheumatoid arthritis. METHODS This prospective, multicentre, open-label, single-arm proof-of-concept study enrolled patients aged 18-80 years with active rheumatoid arthritis who had an inadequate response to conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and up to one biological DMARD. Biological DMARDs were stopped at least 4 weeks before enrolment and concomitant use was not allowed during the study. All eligible participants were assigned to use a non-invasive, wearable vagus nerve stimulation device for up to 30 min per day, which delivered pulses of 20 kHz. Follow-up visits occurred at week 1, week 2, week 4, week 8, and week 12 after the baseline visit. The primary endpoint was the mean change in Disease Activity Score of 28 joints with C-reactive protein (DAS28-CRP) at week 12 compared with baseline. Secondary endpoints included the mean change in the Health Assessment Questionnaire-Disability Index (HAQ-DI), the proportion of patients with a minimal clinically important difference of 0·22 on HAQ-DI, the proportion achieving American College of Rheumatology (ACR) 20, ACR50, and ACR70 response, and safety analysis. This study is registered with ClinicalTrials.gov (NCT04116866). FINDINGS Of 35 patients screened for eligibility, 30 (86%) were enrolled at six centres in Spain between Dec 27, 2018, and Oct 24, 2019, of whom 27 (90%) completed the week 12 visit. The mean change in DAS28-CRP at 12 weeks was -1·4 (95%CI -1·9 to -0·9; p<0·0001) from a mean baseline of 5·3 (SD 1·0). 11 (37%) of 30 patients reached DAS28-CRP of 3·2 or less, and seven (23%) patients reached DAS28-CRP of less than 2·6 at week 12. The mean HAQ-DI change was -0·5 (95%CI -0·7 to -0·2; p<0·0001) from a mean baseline of 1·6 (SD 0·7), and 17 (57%) patients reached a minimal clinically important difference of 0·22 or more. ACR20 responses were reached by 16 (53%) patients, ACR50 responses by 10 (33%) patients, and ACR70 by five (17%) patients. Four adverse events were reported, none of which were serious and all of which resolved without intervention. INTERPRETATION Use of the device was well tolerated, and patients had clinically meaningful reductions in DAS28-CRP. This was an uncontrolled, open-label study, and the results must be interpreted in this context. Further evaluation in larger, controlled studies is needed to confirm whether this non-invasive approach might offer an alternative treatment for rheumatoid arthritis. FUNDING Nēsos.
Collapse
Affiliation(s)
- Sara Marsal
- Rheumatology Department, University Hospital Vall d'Hebron, Barcelona, Spain.
| | - Héctor Corominas
- Rheumatology Department, Hospital of the Holy Cross and Saint Paul, Barcelona, Spain
| | | | | | - María López-Lasanta
- Rheumatology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Helena Borrell
- Rheumatology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Delia Reina
- Rheumatology Department, Moisès Broggi Hospital, Barcelona, Spain
| | - Raimón Sanmartí
- Rheumatology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Javier Narváez
- Rheumatology Department, University Hospital of Bellvitge, Barcelona, Spain
| | | | | | | | | | | | - Mark C Genovese
- Gilead Sciences, Foster City, CA, USA; Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Zhang L, Wu Z, Tong Z, Yao Q, Wang Z, Li W. Vagus Nerve Stimulation Decreases Pancreatitis Severity in Mice. Front Immunol 2021; 11:595957. [PMID: 33519809 PMCID: PMC7840568 DOI: 10.3389/fimmu.2020.595957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) is effective in reducing inflammation in various diseases, such as rheumatoid arthritis, colitis and acute kidney injury. The anti-inflammatory effect of vagus nerve in these diseases necessitates the interactions of neural activation and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. In this study, we aimed to investigate the effect of VNS on severity in experimental acute pancreatitis (AP). Methods Two independent AP models were used, which induced in ICR mice with caerulein or pancreatic duct ligation (PDL). Thirty minutes after modeling, the left cervical carotid sheath containing the vagus nerve was electrically stimulated for 2 min. Plasma lipase and amylase activities, TNF-α levels and pancreas histologic damage were evaluated. In caerulein mice, the percentages of α7nAChR+ macrophage in pancreas and spleen were assessed by flow cytometry. Furthermore, splenectomy and adoptive transfer of VNS-conditioned α7nAChR splenocytes were performed in caerulein mice to evaluate the role of spleen in the protective effect of VNS. Results VNS reduced plasma lipase and amylase activities, blunted the concentrations of TNF-α and protected against pancreas histologic damage in two AP models. Survival rates were improved in the PDL model after VNS. In caerulein AP mice, VNS increased the percentages of α7nAChR+ macrophages in pancreas and spleen. Adoptive transfer of VNS-treated α7nAChR splenocytes provided protection against pancreatitis in recipient mice. However, splenectomy did not abolish the protective effect of VNS. Conclusions VNS reduces disease severity and attenuates inflammation in AP mice. This effect is independent of spleen and is probably related to α7nAChR on macrophage.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yao
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Pelot NA, Catherall DC, Thio BJ, Titus ND, Liang ED, Henriquez CS, Grill WM. Excitation properties of computational models of unmyelinated peripheral axons. J Neurophysiol 2021; 125:86-104. [PMID: 33085556 PMCID: PMC8087387 DOI: 10.1152/jn.00315.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Biophysically based computational models of nerve fibers are important tools for designing electrical stimulation therapies, investigating drugs that affect ion channels, and studying diseases that affect neurons. Although peripheral nerves are primarily composed of unmyelinated axons (i.e., C-fibers), most modeling efforts focused on myelinated axons. We implemented the single-compartment model of vagal afferents from Schild et al. (1994) (Schild JH, Clark JW, Hay M, Mendelowitz D, Andresen MC, Kunze DL. J Neurophysiol 71: 2338-2358, 1994) and extended the model into a multicompartment axon, presenting the first cable model of a C-fiber vagal afferent. We also implemented the updated parameters from the Schild and Kunze (1997) model (Schild JH, Kunze DL. J Neurophysiol 78: 3198-3209, 1997). We compared the responses of these novel models with those of three published models of unmyelinated axons (Rattay F, Aberham M. IEEE Trans Biomed Eng 40: 1201-1209, 1993; Sundt D, Gamper N, Jaffe DB. J Neurophysiol 114: 3140-3153, 2015; Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. J Neurophysiol 111: 1721-1735, 2014) and with experimental data from single-fiber recordings. Comparing the two models by Schild et al. (1994, 1997) revealed that differences in rest potential and action potential shape were driven by changes in maximum conductances rather than changes in sodium channel dynamics. Comparing the five model axons, the conduction speeds and strength-duration responses were largely within expected ranges, but none of the models captured the experimental threshold recovery cycle-including a complete absence of late subnormality in the models-and their action potential shapes varied dramatically. The Tigerholm et al. (2014) model best reproduced the experimental data, but these modeling efforts make clear that additional data are needed to parameterize and validate future models of autonomic C-fibers.NEW & NOTEWORTHY Peripheral nerves are primarily composed of unmyelinated axons, and there is growing interest in electrical stimulation of the autonomic nervous system to treat various diseases. We present the first cable model of an unmyelinated vagal nerve fiber and compare its ion channel isoforms and conduction responses with other published models of unmyelinated axons, establishing important tools for advancing modeling of autonomic nerves.
Collapse
Affiliation(s)
- Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - David C Catherall
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Brandon J Thio
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Nathan D Titus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Edward D Liang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Craig S Henriquez
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
17
|
Luo B, Wu Y, Liu SL, Li XY, Zhu HR, Zhang L, Zheng F, Liu XY, Guo LY, Wang L, Song HX, Lv YX, Cheng ZS, Chen SY, Wang JN, Tang JM. Vagus nerve stimulation optimized cardiomyocyte phenotype, sarcomere organization and energy metabolism in infarcted heart through FoxO3A-VEGF signaling. Cell Death Dis 2020; 11:971. [PMID: 33184264 PMCID: PMC7665220 DOI: 10.1038/s41419-020-03142-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Vagus nerve stimulation (VNS) restores autonomic balance, suppresses inflammation action and minimizes cardiomyocyte injury. However, little knowledge is known about the VNS’ role in cardiomyocyte phenotype, sarcomere organization, and energy metabolism of infarcted hearts. VNS in vivo and acetylcholine (ACh) in vitro optimized the levels of α/β-MHC and α-Actinin positive sarcomere organization in cardiomyocytes while reducing F-actin assembly of cardiomyocytes. Consistently, ACh improved glucose uptake while decreasing lipid deposition in myocytes, correlating both with the increase of Glut4 and CPT1α and the decrease of PDK4 in infarcted hearts in vivo and myocytes in vitro, attributing to improvement in both glycolysis by VEGF-A and lipid uptake by VEGF-B in response to Ach. This led to increased ATP levels accompanied by the repaired mitochondrial function and the decreased oxygen consumption. Functionally, VNS improved the left ventricular performance. In contrast, ACh-m/nAChR inhibitor or knockdown of VEGF-A/B by shRNA powerfully abrogated these effects mediated by VNS. On mechanism, ACh decreased the levels of nuclear translocation of FoxO3A in myocytes due to phosphorylation of FoxO3A by activating AKT. FoxO3A overexpression or knockdown could reverse the specific effects of ACh on the expression of VEGF-A/B, α/β-MHC, Glut4, and CPT1α, sarcomere organization, glucose uptake and ATP production. Taken together, VNS optimized cardiomyocytes sarcomere organization and energy metabolism to improve heart function of the infarcted heart during the process of delaying and/or blocking the switch from compensated hypertrophy to decompensated heart failure, which were associated with activation of both P13K/AKT-FoxO3A-VEGF-A/B signaling cascade.
Collapse
Affiliation(s)
- Bin Luo
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Shu-Lin Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Xing-Yuan Li
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Hong-Rui Zhu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China
| | - Lei Zhang
- Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Xiao-Yao Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Lu Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Hong-Xian Song
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Yan-Xia Lv
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Zhong-Shan Cheng
- Applied Bioinformatics Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Jia-Ning Wang
- Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Jun-Ming Tang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China. .,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
| |
Collapse
|
18
|
Ameliorating Effects and Mechanisms of Intra-Operative Vagal Nerve Stimulation on Postoperative Recovery After Sleeve Gastrectomy in Rats. Obes Surg 2020; 30:2980-2987. [DOI: 10.1007/s11695-020-04626-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Liu CH, Yang MH, Zhang GZ, Wang XX, Li B, Li M, Woelfer M, Walter M, Wang L. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. J Neuroinflammation 2020; 17:54. [PMID: 32050990 PMCID: PMC7017619 DOI: 10.1186/s12974-020-01732-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively non-invasive alternative treatment for patients suffering from major depressive disorder (MDD). It has been postulated that acupuncture may achieve its treatment effects on MDD through suppression of vagal nerve inflammatory responses. Our previous research established that taVNS significantly increases amygdala–dorsolateral prefrontal cortex connectivity, which is associated with a reduction in depression severity. However, the relationship between taVNS and the central/peripheral functional state of the immune system, as well as changes in brain neural circuits, have not as yet been elucidated. In the present paper, we outline the anatomic foundation of taVNS and emphasize that it significantly modulates the activity and connectivity of a wide range of neural networks, including the default mode network, executive network, and networks involved in emotional and reward circuits. In addition, we present the inflammatory mechanism of MDD and describe how taVNS inhibits central and peripheral inflammation, which is possibly related to the effectiveness of taVNS in reducing depression severity. Our review suggests a link between the suppression of inflammation and changes in brain regions/circuits post taVNS.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China.
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Guang-Zhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiao-Xu Wang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, 100010, China
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39118, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
20
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
21
|
Luo Z, Weiss DE, Liu Q, Tian B. Biomimetic Approaches Toward Smart Bio-hybrid Systems. NANO RESEARCH 2018; 11:3009-3030. [PMID: 30906509 PMCID: PMC6430233 DOI: 10.1007/s12274-018-2004-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 05/30/2023]
Abstract
Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including those of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances on the fabrication and application of the smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimick the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output will be briefly discussed. We will also go over the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient functions. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.
Collapse
Affiliation(s)
- Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Dara E. Weiss
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Qingyun Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|