1
|
Pricoupenko N, Marsigliesi F, Marcq P, Blanch-Mercader C, Bonnet I. Src kinase slows collective rotation of confined epithelial cell monolayers. SOFT MATTER 2024; 20:9273-9285. [PMID: 39545852 DOI: 10.1039/d4sm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
Collapse
Affiliation(s)
- Nastassia Pricoupenko
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Flavia Marsigliesi
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, F-75005, France
| | - Carles Blanch-Mercader
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Isabelle Bonnet
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| |
Collapse
|
2
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Nat Commun 2023; 14:6548. [PMID: 37848415 PMCID: PMC10582172 DOI: 10.1038/s41467-023-41890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Autophosphorylation controls the transition between discrete functional and conformational states in protein kinases, yet the structural and molecular determinants underlying this fundamental process remain unclear. Here we show that c-terminal Tyr 530 is a de facto c-Src autophosphorylation site with slow time-resolution kinetics and a strong intermolecular component. On the contrary, activation-loop Tyr 419 undergoes faster kinetics and a cis-to-trans phosphorylation switch that controls c-terminal Tyr 530 autophosphorylation, enzyme specificity, and strikingly, c-Src non-catalytic function as a substrate. In line with this, we visualize by X-ray crystallography a snapshot of Tyr 530 intermolecular autophosphorylation. In an asymmetric arrangement of both catalytic domains, a c-terminal palindromic phospho-motif flanking Tyr 530 on the substrate molecule engages the G-loop of the active kinase adopting a position ready for entry into the catalytic cleft. Perturbation of the phospho-motif accounts for c-Src dysfunction as indicated by viral and colorectal cancer (CRC)-associated c-terminal deleted variants. We show that c-terminal residues 531 to 536 are required for c-Src Tyr 530 autophosphorylation, and such a detrimental effect is caused by the substrate molecule inhibiting allosterically the active kinase. Our work reveals a crosstalk between the activation and c-terminal segments that control the allosteric interplay between substrate- and enzyme-acting kinases during autophosphorylation.
Collapse
Affiliation(s)
- Hipólito Nicolás Cuesta-Hernández
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Julia Contreras
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Pablo Soriano-Maldonado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jana Sánchez-Wandelmer
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Wayland Yeung
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Ana Martín-Hurtado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Inés G Muñoz
- Protein Crystallography Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
| | - Natarajan Kannan
- Institute of Bioinformatics, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IMBB) CSIC, 08028, Barcelona, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, IIS Biocruces Bizkaia, Building Biocruces Bizkaia 1, 48903, Cruces, Bizkaia, Spain
| | - Iván Plaza-Menacho
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), C/Melchor Fernández Almagro num. 3, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
de Jesus AA, Chen G, Yang D, Brdicka T, Ruth NM, Bennin D, Cebecauerova D, Malcova H, Freeman H, Martin N, Svojgr K, Passo MH, Bhuyan F, Alehashemi S, Rastegar AT, Uss K, Kardava L, Marrero B, Duric I, Omoyinmi E, Peldova P, Lee CCR, Kleiner DE, Hadigan CM, Hewitt SM, Pittaluga S, Carmona-Rivera C, Calvo KR, Shah N, Balascakova M, Fink DL, Kotalova R, Parackova Z, Peterkova L, Kuzilkova D, Campr V, Sramkova L, Biancotto A, Brooks SR, Manes C, Meffre E, Harper RL, Kuehn H, Kaplan MJ, Brogan P, Rosenzweig SD, Merchant M, Deng Z, Huttenlocher A, Moir SL, Kuhns DB, Boehm M, Skvarova Kramarzova K, Goldbach-Mansky R. Constitutively active Lyn kinase causes a cutaneous small vessel vasculitis and liver fibrosis syndrome. Nat Commun 2023; 14:1502. [PMID: 36932076 PMCID: PMC10022554 DOI: 10.1038/s41467-023-36941-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of β2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.
Collapse
Affiliation(s)
- Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dan Yang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natasha M Ruth
- Medical University of South Carolina, Charleston, SC, USA
| | - David Bennin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dita Cebecauerova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Hana Malcova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - Neil Martin
- Royal Hospital for Children, Glasgow, Scotland
| | - Karel Svojgr
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Murray H Passo
- Medical University of South Carolina, Charleston, SC, USA
| | - Farzana Bhuyan
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andre T Rastegar
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette Marrero
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iris Duric
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ebun Omoyinmi
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Petra Peldova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - David E Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephen M Hewitt
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmelo Carmona-Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Nirali Shah
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Balascakova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Danielle L Fink
- Collaborative Clinical Research Branch/Neutrophil Monitoring Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Radana Kotalova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Zuzana Parackova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Lucie Peterkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Daniela Kuzilkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Vit Campr
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
| | | | - Stephen R Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Rebecca L Harper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyesun Kuehn
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul Brogan
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Melinda Merchant
- AstraZeneca Research Based Biopharmaceutical Company, Waltham, MA, USA
| | - Zuoming Deng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Susan L Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Douglas B Kuhns
- Collaborative Clinical Research Branch/Neutrophil Monitoring Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Yang M, Davis TB, Pflieger L, Nebozhyn MV, Loboda A, Wang H, Schell MJ, Thota R, Pledger WJ, Yeatman TJ. An integrative gene expression signature analysis identifies CMS4 KRAS-mutated colorectal cancers sensitive to combined MEK and SRC targeted therapy. BMC Cancer 2022; 22:256. [PMID: 35272617 PMCID: PMC8908604 DOI: 10.1186/s12885-022-09344-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Over half of colorectal cancers (CRCs) are hard-wired to RAS/RAF/MEK/ERK pathway oncogenic signaling. However, the promise of targeted therapeutic inhibitors, has been tempered by disappointing clinical activity, likely due to complex resistance mechanisms that are not well understood. This study aims to investigate MEK inhibitor-associated resistance signaling and identify subpopulation(s) of CRC patients who may be sensitive to biomarker-driven drug combination(s). METHODS We classified 2250 primary and metastatic human CRC tumors by consensus molecular subtypes (CMS). For each tumor, we generated multiple gene expression signature scores measuring MEK pathway activation, MEKi "bypass" resistance, SRC activation, dasatinib sensitivity, EMT, PC1, Hu-Lgr5-ISC, Hu-EphB2-ISC, Hu-Late TA, Hu-Proliferation, and WNT activity. We carried out correlation, survival and other bioinformatic analyses. Validation analyses were performed in two independent publicly available CRC tumor datasets (n = 585 and n = 677) and a CRC cell line dataset (n = 154). RESULTS Here we report a central role of SRC in mediating "bypass"-resistance to MEK inhibition (MEKi), primarily in cancer stem cells (CSCs). Our integrated and comprehensive gene expression signature analyses in 2250 CRC tumors reveal that MEKi-resistance is strikingly-correlated with SRC activation (Spearman P < 10-320), which is similarly associated with EMT (epithelial to mesenchymal transition), regional metastasis and disease recurrence with poor prognosis. Deeper analysis shows that both MEKi-resistance and SRC activation are preferentially associated with a mesenchymal CSC phenotype. This association is validated in additional independent CRC tumor and cell lines datasets. The CMS classification analysis demonstrates the strikingly-distinct associations of CMS1-4 subtypes with the MEKi-resistance and SRC activation. Importantly, MEKi + SRCi sensitivities are predicted to occur predominantly in the KRAS mutant, mesenchymal CSC-like CMS4 CRCs. CONCLUSIONS Large human tumor gene expression datasets representing CRC heterogeneity can provide deep biological insights heretofore not possible with cell line models, suggesting novel repurposed drug combinations. We identified SRC as a common targetable node--an Achilles' heel--in MEKi-targeted therapy-associated resistance in mesenchymal stem-like CRCs, which may help development of a biomarker-driven drug combination (MEKi + SRCi) to treat problematic subpopulations of CRC.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Thomas B Davis
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Lance Pflieger
- Precision Genomics Translational Science Center, Intermountain Healthcare, 5026 South State Street, Murray, UT, 84107, USA
| | - Michael V Nebozhyn
- Sharp and Dohme, 770 Sumneytown Pike, Building 53, West Point, P.O. Box 4, Merck, PA, 19486, USA
| | - Andrey Loboda
- Sharp and Dohme, 770 Sumneytown Pike, Building 53, West Point, P.O. Box 4, Merck, PA, 19486, USA
| | - Heiman Wang
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ramya Thota
- Oncology Clinical Program, Intermountain Healthcare, 5026 South State Street, Murray, UT, 84107, USA
| | - W Jack Pledger
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
- Huntsman Cancer Institute, University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA
| | - Timothy J Yeatman
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Huntsman Cancer Institute, University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Yang MZ, Zhang BB, Huang JC, Bai XY, Liang ZQ, Yi X, Xu N, Huang YJ, Jiao AJ. Network Pharmacology Reveals Polyphyllin II as One Hit of Nano Chinese Medicine Monomers against Nasopharyngeal Carcinoma. Bioinorg Chem Appl 2021; 2021:9959634. [PMID: 34007265 PMCID: PMC8102105 DOI: 10.1155/2021/9959634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor in southern China, and nano Traditional Chinese Medicine (TCM) represents great potential to cancer therapy. To predict the potential targets and mechanism of polyphyllin II against NPC and explore its possibility for the future nano-pharmaceutics of Chinese medicine monomers, network pharmacology was included in the present study. Totally, ninety-four common potential targets for NPC and polyphyllin II were discovered. Gene Ontology (GO) function enrichment analysis showed that biological processes and functions mainly concentrated on apoptotic process, protein phosphorylation, cytosol, protein binding, and ATP binding. In addition, the anti-NPC effects of polyphyllin II mainly involved in the pathways related to cancer, especially in the PI3K-Akt signaling indicated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The "drug-target-disease" network diagram indicated that the key genes were SRC, MAPK1, MAPK14, and AKT1. Taken together, this study revealed the potential drug targets and underlying mechanisms of polyphyllin II against NPC through modern network pharmacology, which provided a certain theoretical basis for the future nano TCM research.
Collapse
Affiliation(s)
- Meng-Zhe Yang
- Graduate School of Guangxi Medical University, Nanning, China
| | - Bei-Bei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Jian-Chun Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xian-Yu Bai
- Graduate School of Guangxi Medical University, Nanning, China
| | - Zhen-Qiang Liang
- Department of Otolaryngology-Head and Neck Surgery, Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Yi
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ning Xu
- Department of Neurology, The First People's Hospital of Nanning, Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan-Jiao Huang
- Life Science Institute, Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ai-Jun Jiao
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer. J Pers Med 2021; 11:jpm11040262. [PMID: 33916261 PMCID: PMC8066297 DOI: 10.3390/jpm11040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, β-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.
Collapse
|
10
|
Chüeh AC, Advani G, Foroutan M, Smith J, Ng N, Nandurkar H, Lio DS, Zhu HJ, Chong YP, Verkade H, Fujita DJ, Bjorge J, Basheer F, Lim JP, Luk I, Dhillon A, Sakthianandeswaren A, Mouradov D, Sieber O, Hollande F, Mariadason JM, Cheng HC. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene 2021; 40:3015-3029. [PMID: 33767439 DOI: 10.1038/s41388-021-01755-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Hyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue. Investigation of the mechanism by which CHK/MATK expression is down-regulated in CRC cells uncovered hypermethylation of the CHK/MATK promoter in CRC cell lines and primary tumours. Promoter methylation of CHK/MATK was also observed in several other tumour types. Consistent with epigenetic silencing of CHK/MATK, genetic deletion or pharmacological inhibition of DNA methyltransferases increased CHK/MATK mRNA expression in CHK/MATK-methylated colon cancer cell lines. SFKs were hyperactivated in CHK/MATK-methylated CRC cells despite expressing enzymatically active CSK, suggesting loss of CHK/MATK contributes to SFK hyperactivation. Re-expression of CHK/MATK in CRC cell lines led to reduction in SFK activity via a non-catalytic mechanism, a reduction in anchorage-independent growth, cell proliferation and migration in vitro, and a reduction in tumour growth and metastasis in a zebrafish embryo xenotransplantation model in vivo, collectively identifying CHK/MATK as a novel putative tumour suppressor gene in CRC. Furthermore, our discovery that CHK/MATK hypermethylation occurs in the majority of tumours warrants its further investigation as a diagnostic marker of CRC.
Collapse
Affiliation(s)
- Anderly C Chüeh
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, Victoria, Australia.
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Gahana Advani
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Momeneh Foroutan
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Jai Smith
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Nadia Ng
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Prahran, Victoria, Australia
| | - Daisy S Lio
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Yuh-Ping Chong
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Heather Verkade
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Donald J Fujita
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey Bjorge
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Faiza Basheer
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jet Phey Lim
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Ian Luk
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
| | - Amardeep Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anuratha Sakthianandeswaren
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Dmitri Mouradov
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Oliver Sieber
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Lee SH, Kim JM, Lee DG, Lee J, Park JG, Han TS, Cho HS, Cho YL, Bae KH, Park YJ, Lee SJ, Lee MS, Huh YM, Jo DY, Yun HJ, Jeon HJ, Kim N, Joo M, Kim JS, Lee HJ, Min JK. Loss of desmoglein-2 promotes gallbladder carcinoma progression and resistance to EGFR-targeted therapy through Src kinase activation. Cell Death Differ 2021; 28:968-984. [PMID: 32989241 PMCID: PMC7937683 DOI: 10.1038/s41418-020-00628-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Gallbladder carcinoma (GBC) exhibits poor prognosis due to local recurrence, metastasis, and resistance to targeted therapies. Using clinicopathological analyses of GBC patients along with molecular in vitro and tumor in vivo analysis of GBC cells, we showed that reduction of Dsg2 expression was highly associated with higher T stage, more perineural, and lymphatic invasion. Dsg2-depleted GBC cells exhibited significantly enhanced proliferation, migration, and invasiveness in vitro and tumor growth and metastasis in vivo through Src-mediated signaling activation. Interestingly, Dsg2 binding inhibited Src activation, whereas its loss activated cSrc-mediated EGFR plasma membrane clearance and cytoplasmic localization, which was associated with acquired EGFR-targeted therapy resistance and decreased overall survival. Inhibition of Src activity by dasatinib enhanced therapeutic response to anti-EGFR therapy. Dsg2 status can help stratify predicted patient response to anti-EGFR therapy and Src inhibition could be a promising strategy to improve the clinical efficacy of EGFR-targeted therapy.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Soo Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moo-Seung Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Min Huh
- Department of Biochemistry & Molecular Biology and Department of Radiology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Deog Yeon Jo
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Heung Jin Jeon
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Nayoung Kim
- Department of Biomedical Science and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Mina Joo
- Department of Biomedical Science and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Hyo Jin Lee
- Department of Internal Medicine, Cancer Research Institute and Infection Control Convergence Research Center, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
13
|
Wang D, Gao J, Zhao C, Li S, Zhang D, Hou X, Zhuang X, Liu Q, Luo Y. Cyclin G2 Inhibits Oral Squamous Cell Carcinoma Growth and Metastasis by Binding to IGFBP3 and Regulating the FAK-SRC-STAT Signaling Pathway. Front Oncol 2020; 10:560572. [PMID: 33240810 PMCID: PMC7677509 DOI: 10.3389/fonc.2020.560572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
The cell cycle protein cyclin G2 is considered a tumor suppressor. However, its regulatory effects and potential mechanisms in oral cancers are not well understood. This study aimed to investigate the effect of cyclin G2 on oral squamous cell carcinoma (OSCC). The data from 80 patients with OSCC were utilized to predict the abnormal expression of cyclin G2. The proliferation and metastasis were determined by a cell counting Kit-8 assay, flow cytometry, a wound-healing assay, and a cell invasion assay. The expression of key proteins and genes associated with the cyclin G2 signaling pathways was determined by western blotting and real-time PCR, respectively. The orthotopic nude mice model was established by a mouth injection of SCC9 cells overexpressing cyclin G2. We showed that the low level of cyclin G2 in OSCC, which is negatively correlated with clinical staging, was a negative prognostic factor for the disease. We also found that cyclin G2 inhibited the proliferation, metastasis, and blocked the cell cycle at G1/S of OSCC cells, suggesting that cyclin G2 has an inhibitory effect in OSCC. Mechanistically, cyclin G2 inhibited the growth and metastasis of OSCC by binding to insulin-like growth factor binding protein 3 (IGFBP3) and regulating the focal adhesion kinase (FAK) -SRC-STAT signal transduction pathway. Cyclin G2 competed with integrin to bind to IGFBP3; the binding between integrin and IGFBP3 was reduced after cyclin G2 overexpression, thereby inhibiting the phosphorylation of FAK and SRC. These results showed that cyclin G2 inhibited the progression of OSCC by interacting with IGFBP3 and that it may be a new target for OSCC treatment.
Collapse
Affiliation(s)
- Danning Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Sen Li
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Di Zhang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaoyu Hou
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Xinbin Zhuang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
14
|
De Kock L, Freson K. The (Patho)Biology of SRC Kinase in Platelets and Megakaryocytes. ACTA ACUST UNITED AC 2020; 56:medicina56120633. [PMID: 33255186 PMCID: PMC7759910 DOI: 10.3390/medicina56120633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Proto-oncogene tyrosine-protein kinase SRC (SRC), as other members of the SRC family kinases (SFK), plays an important role in regulating signal transduction by different cell surface receptors after changes in the cellular environment. Here, we reviewed the role of SRC in platelets and megakaryocytes (MK). In platelets, inactive closed SRC is coupled to the β subunit of integrin αIIbβ3 while upon fibrinogen binding during platelet activation, αIIbβ3-mediated outside-in signaling is initiated by activation of SRC. Active open SRC now further stimulates many downstream effectors via tyrosine phosphorylation of enzymes, adaptors, and especially cytoskeletal components. Functional platelet studies using SRC knockout mice or broad spectrum SFK inhibitors pointed out that SRC mediates their spreading on fibrinogen. On the other hand, an activating pathological SRC missense variant E527K in humans that causes bleeding inhibits collagen-induced platelet activation while stimulating platelet spreading. The role of SRC in megakaryopoiesis is much less studied. SRC knockout mice have a normal platelet count though studies with SFK inhibitors point out that SRC could interfere with MK polyploidization and proplatelet formation but these inhibitors are not specific. Patients with the SRC E527K variant have thrombocytopenia due to hyperactive SRC that inhibits proplatelet formation after increased spreading of MK on fibrinogen and enhanced formation of podosomes. Studies in humans have contributed significantly to our understanding of SRC signaling in platelets and MK.
Collapse
|
15
|
Zhu X, Zhang Y, Bai Y, Gu X, Chen G, Sun L, Wang Y, Qiao X, Ma Q, Zhu T, Bu J, Xue J, Liu C. HCK can serve as novel prognostic biomarker and therapeutic target for Breast Cancer patients. Int J Med Sci 2020; 17:2773-2789. [PMID: 33162805 PMCID: PMC7645343 DOI: 10.7150/ijms.43161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
The role of HCK expression in the prognosis of breast cancer patients is unclear. Thus, this study aimed to explore the clinical implications of HCK expression in breast cancer. We assessed HCK expression and genetic variations in breast cancer using Oncomine, GEPIA, UALCAN, and cBioPortal databases. Then, immunochemistry was used to analyze HCK expression in breast cancer specimens, non-cancer tissues and metastatic cancer tissues. Consequently, we evaluated the effect of HCK expression on survival outcomes set as disease-free survival (DFS) and overall survival (OS). Finally, STRING, Coexpedia, and TISIDB database were explored to identify the molecular functions and regulation pathways of HCK. We found that breast cancer tissues have more HCK mRNA transcripts than non-cancer tissues. Patients with HCK expression had significantly shorter DFS and OS. The ratio of HCK expression was higher in cancer tissues than in non-cancer tissues. These results from STRING database, FunRich software, and TISIDB database showed that HCK was involved in mediating multiple biological processes including immune response-regulating signaling pathway, cell growth and maintenance through multiple signaling pathways including epithelial to mesenchymal transition, PI3K/AKT signaling pathway, and focal adhesion. Overall, HCK may be an oncogene in the development of breast cancer and thus may as a novel biomarker and therapeutic target for breast cancer.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/blood
- Breast Neoplasms/diagnosis
- Breast Neoplasms/mortality
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/blood
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/therapy
- Cell Line, Tumor
- Chemotherapy, Adjuvant/methods
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Focal Adhesions/drug effects
- Focal Adhesions/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Immunochemistry
- Mastectomy
- Middle Aged
- Molecular Targeted Therapy/methods
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Phosphatidylinositol 3-Kinases
- Prognosis
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-hck/antagonists & inhibitors
- Proto-Oncogene Proteins c-hck/blood
- Proto-Oncogene Proteins c-hck/genetics
- Risk Assessment/methods
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Xudong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yixiao Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yang Bai
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Yulun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Xinbo Qiao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Tong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| |
Collapse
|
16
|
Ono M, Takeshima M, Nishi A, Higuchi T, Nakano S. Genistein Suppresses v-Src-Driven Proliferative Activity by Arresting the Cell-Cycle at G2/M through Increasing p21 Level in Src-Activated Human Gallbladder Carcinoma cells. Nutr Cancer 2020; 73:1471-1479. [DOI: 10.1080/01635581.2020.1797835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Misaki Ono
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Mikako Takeshima
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Asuka Nishi
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Takako Higuchi
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shuji Nakano
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| |
Collapse
|
17
|
Src Family Tyrosine Kinases in Intestinal Homeostasis, Regeneration and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082014. [PMID: 32717909 PMCID: PMC7464719 DOI: 10.3390/cancers12082014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/11/2023] Open
Abstract
Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.
Collapse
|
18
|
Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers (Basel) 2020; 12:E1489. [PMID: 32517369 PMCID: PMC7352780 DOI: 10.3390/cancers12061489] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene c-Src is a non-receptor tyrosine kinase playing a key role in many cellular pathways, including cell survival, migration and proliferation. c-Src de-regulation has been observed in several cancer types, making it an appealing target for drug discovery efforts. Recent evidence emphasizes its crucial role not only in promoting oncogenic traits, but also in the acquisition and maintenance of cancer resistance to various chemotherapeutic or molecular target drugs. c-Src modulates epidermal growth factor receptor (EGFR) activation and amplifies its downstream oncogenic signals. In this review, we report several studies supporting c-Src kinase role in the intricate mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs). We further highlighted pre- and clinical progresses of combined treatment strategies made in recent years. Several pre-clinical data have encouraged the use of c-Src inhibitors in combination with EGFR inhibitors. However, clinical trials provided controversial outcomes in some cancer types. Despite c-Src inhibitors showed good tolerability in cancer patients, no incontrovertible and consistent clinical responses were recorded, supporting the idea that a better selection of patients is needed to improve clinical outcome. Currently, the identification of biological markers predictive of therapy response and the accurate molecular screening of cancer patients aimed to gain most clinical benefits become decisive and mandatory.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| |
Collapse
|
19
|
Shen J, Li L, Howlett NG, Cohen PS, Sun G. Application of a Biphasic Mathematical Model of Cancer Cell Drug Response for Formulating Potent and Synergistic Targeted Drug Combinations to Triple Negative Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12051087. [PMID: 32349331 PMCID: PMC7281712 DOI: 10.3390/cancers12051087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023] Open
Abstract
Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Niall G. Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
20
|
Danson S, Mulvey MR, Turner L, Horsman J, Escott KJ, Coleman RE, Ahmedzai SH, Bennett MI, Andrew D. An exploratory randomized-controlled trial of the efficacy of the Src-kinase inhibitor saracatinib as a novel analgesic for cancer-induced bone pain. J Bone Oncol 2019; 19:100261. [PMID: 31667062 PMCID: PMC6812043 DOI: 10.1016/j.jbo.2019.100261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/04/2023] Open
Abstract
Pain is a major symptom of bone metastases from advanced cancer and represents a clinical challenge to treat effectively. Basic neurobiology in preclinical animal models implicates enhanced sensory processing in the central nervous system, acting through N-methyl-D-aspartate (NMDA) glutamate receptors, as an important mechanism underpinning persistent pain. The non-receptor tyrosine kinase Src is thought to act as a hub for regulating NMDA receptor activity and the orally available Src inhibitor saracatinib has shown promise as a potential analgesic in recent animal studies. Here we tested the efficacy of saracatinib as a novel analgesic in an exploratory phase II randomized controlled trial on cancer patients with painful bone metastases. Twelve patients completed the study, with 6 receiving saracatinib 125 mg/day for 28 days and 6 receiving placebo. Pharmacokinetic measurements confirmed appropriate plasma levels of drug in the saracatinib-treated group and Src inhibition was achieved clinically by a significant reduction in the bone resorption biomarker serum cross-linked C-terminal telopeptide of type I collagen. Differences between the saracatinib and placebo groups self-reported pain scores, measured using the short form of the Brief Pain Inventory, were not clinically significant after 4 weeks of treatment. There was also no change in consumption of maintenance analgesia in the saracatinib-treated group and no improvement in Quality-of-Life scores. The data were insufficient to demonstrate saracatinib has efficacy as analgesic, although it may have a role as an anti-bone resorptive agent.
Collapse
Affiliation(s)
- Sarah Danson
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - Matthew R Mulvey
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, UK
| | - Lesley Turner
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - Janet Horsman
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - KJane Escott
- Emerging Innovations Unit, BioPharmaceuticals R & D, AstraZeneca, Cambridge, UK
| | - Robert E Coleman
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | | | - Michael I Bennett
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, UK
| | - David Andrew
- School of Clinical Dentistry, University of Sheffield, UK
| |
Collapse
|
21
|
Wang HC, Huo YN, Lee WS. Folic acid prevents the progesterone-promoted proliferation and migration in breast cancer cell lines. Eur J Nutr 2019; 59:2333-2344. [PMID: 31502059 DOI: 10.1007/s00394-019-02077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE We previously demonstrated that progesterone (P4) interacted with folic acid (FA) and abolished the FA-reduced endothelial cell proliferation and migration. These findings led us to investigate whether FA can interfere with the P4-promoted breast cancer cell proliferation and migration. METHODS We conducted MTT and wound healing assay to evaluate cell proliferation and migration, respectively. Western blot analysis and immunoprecipitation were performed to examine the protein expression and protein-protein interaction, respectively. RESULTS We demonstrated that P4 promoted proliferation and migration of breast cancer cell lines (T47D, MCF-7, BT474, and BT483). However, co-treatment with P4 and FA together abolished these promotion effects. Treatment with P4 alone increased the formation of PR-cSrc complex and the phosphorylation of cSrc at tyrosine 416 (Tyr416). However, co-treatment with P4 and FA together increased the formations of cSrc-p140Cap, cSrc-Csk, and cSrc-p-Csk complex, and the phosphorylation of cSrc at tyrosine 527 (Tyr527). Co-treatment with P4 and FA together also abolished the activation of cSrc-mediated signaling pathways involved in the P4-promoted breast cancer cell proliferation and migration. CONCLUSIONS Co-treatment with FA and P4 together abolished the P4-promoted breast cancer cell proliferation and migration through decreasing the formation of PR-cSrc complex and increasing the formations of cSrc-p140Cap and cSrc-Csk complex, subsequently activating Csk, which in turn suppressed the phosphorylation of cSrc at Tyr416 and increased the phosphorylation of cSrc at Tyr527, hence inactivating the cSrc-mediated signaling pathways. The findings from this study might provide a new strategy for preventing the P4-promoted breast cancer progress.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
23
|
EGFR-c-Src-Mediated HDAC3 Phosphorylation Exacerbates Invasion of Breast Cancer Cells. Cells 2019; 8:cells8080930. [PMID: 31430896 PMCID: PMC6721651 DOI: 10.3390/cells8080930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 01/09/2023] Open
Abstract
Breast cancer is one of the leading causes of morbidity and mortality among women. Epidermal growth factor receptor (EGFR) and proto-oncogene tyrosine-protein kinase Src (c-Src) are critical components of the signaling pathways that are associated with breast cancer. However, the regulatory mechanism of histone deacetylase 3 (HDAC3) in these pathways remains unclear. Using the Net Phos 3.1 program for the analysis of kinase consensus motifs, we found two c-Src-mediated putative phosphorylation sites, tyrosine (Tyr, Y)-328 and Y331 on HDAC3, and generated a phospho-specific HDAC3 antibody against these sites. c-Src-mediated phosphorylation was observed in the cells expressing wild-type HDAC3 (HDAC3WT), but not in cells overexpressing phosphorylation-defective HDAC3 (HDAC3Y328/331A). Phosphorylated HDAC3 showed relatively higher deacetylase activity, and PP2, which is a c-Src inhibitor, blocked HDAC3 phosphorylation and reduced its enzymatic activity. EGF treatment resulted in HDAC3 phosphorylation in both MDA-MB-231 and EGFR-overexpressing MCF7 (MCF7-EGFR) cells, but not in MCF7 cells. Total internal reflection fluorescence analysis showed that HDAC3 was recruited to the plasma membrane following EGF stimulation. HDAC3 inhibition with either c-Src knockdown or PP2 treatment significantly ameliorated the invasiveness of breast cancer cells. Altogether, our findings reveal an EGF signaling cascade involving EGFR, c-Src, and HDAC3 in breast cancer cells.
Collapse
|
24
|
Agius MP, Ko KS, Johnson TK, Kwarcinski FE, Phadke S, Lachacz EJ, Soellner MB. Selective Proteolysis to Study the Global Conformation and Regulatory Mechanisms of c-Src Kinase. ACS Chem Biol 2019; 14:1556-1563. [PMID: 31287657 PMCID: PMC7254491 DOI: 10.1021/acschembio.9b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Collapse
Affiliation(s)
- Michael P. Agius
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Kristin S. Ko
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Sameer Phadke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eric J. Lachacz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthew B. Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
De Kock L, Thys C, Downes K, Duarte D, Megy K, Van Geet C, Freson K. De novo variant in tyrosine kinase SRC causes thrombocytopenia: case report of a second family. Platelets 2019; 30:931-934. [PMID: 31204551 DOI: 10.1080/09537104.2019.1628197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A germline heterozygous gain-of-function p.E527K variant in tyrosine kinase SRC was previously found to cause thrombocytopenia, myelofibrosis, bleeding, bone pathologies, premature edentulism and mild facial dysmorphia in nine patients of a single pedigree. Because of this variant, SRC loses its self-inhibitory capacity, causing constitutively active SRC expression in platelets. These patients have fewer and heterogeneous-sized platelets that are hyporeactive to collagen. We now report a 5-year-old girl with syndromic thrombocytopenia due to the same SRC-E527K variant that occurs de novo. A bone marrow biopsy, blood smear analysis, platelet aggregations, flow cytometric analysis of P-selectin, SRC expression and tyrosine phosphorylation studies were performed to confirm the similarities between the two families. This study strengthens our previous finding that hyperactive SRC kinase results in mild platelet dysfunction and thrombocytopenia with hypogranular platelets and further expands the clinical description of this syndrome to improve early recognition.
Collapse
Affiliation(s)
- Lore De Kock
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium
| | - Kate Downes
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus , Cambridge , UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus , Cambridge , UK
| | - Daniel Duarte
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus , Cambridge , UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus , Cambridge , UK
| | - Karyn Megy
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus , Cambridge , UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus , Cambridge , UK
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium
| |
Collapse
|
26
|
Zhu L, Cho E, Zhao G, Roh MR, Zheng Z. The Pathogenic Effect of Cortactin Tyrosine Phosphorylation in Cutaneous Squamous Cell Carcinoma. In Vivo 2019; 33:393-400. [PMID: 30804117 DOI: 10.21873/invivo.11486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Cortactin (CTTN) has been considered a promising molecular prognostic factor in various types of cancers. In this study, we aimed to investigate the role of CTTN in the pathogenesis of cutaneous squamous cell carcinoma (CSCC). MATERIALS AND METHODS CTTN and phospho-CTTN (p-CTTN) expression was determined in 10 healthy controls and 38 CSCC tissue samples by immunohistochemistry. The influence of CTTN on the biological behavior of CSCC cells was also investigated. RESULTS p-CTTN expression was significantly increased in CSCC than control samples. In contrast, no significant difference in CTTN expression was found between control and CSCC tissues. Moreover, a significant association was found between recurrence-free survival with p-CTTN expression, but not with CTTN expression. Furthermore, the proliferative, migratory, and invasive abilities of CSCC cells were significantly decreased by CTTN-siRNA transfection. CONCLUSION CTTN phosphorylation is strongly associated with CSCC pathogenesis and may serve as a molecular biomarker of CSCC.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Eunae Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Guohua Zhao
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Mi Ryung Roh
- Department of Dermatology, Severance Hospital, Seoul, Republic of Korea
| | - Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China .,Department of Dermatology, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
27
|
Gaule P, Mukherjee N, Corkery B, Eustace AJ, Gately K, Roche S, O'Connor R, O'Byrne KJ, Walsh N, Duffy MJ, Crown J, O'Donovan N. Dasatinib Treatment Increases Sensitivity to c-Met Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2019; 11:E548. [PMID: 30999598 PMCID: PMC6520724 DOI: 10.3390/cancers11040548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 11/27/2022] Open
Abstract
In pre-clinical studies, triple-negative breast cancer (TNBC) cells have demonstrated sensitivity to the multi-targeted kinase inhibitor dasatinib; however, clinical trials with single-agent dasatinib showed limited efficacy in unselected populations of breast cancer, including TNBC. To study potential mechanisms of resistance to dasatinib in TNBC, we established a cell line model of acquired dasatinib resistance (231-DasB). Following an approximately three-month exposure to incrementally increasing concentrations of dasatinib (200 nM to 500 nM) dasatinib, 231-DasB cells were resistant to the agent with a dasatinib IC50 value greater than 5 μM compared to 0.04 ± 0.001 µM in the parental MDA-MB-231 cells. 231-DasB cells also showed resistance (2.2-fold) to the Src kinase inhibitor PD180970. Treatment of 231-DasB cells with dasatinib did not inhibit phosphorylation of Src kinase. The 231-DasB cells also had significantly increased levels of p-Met compared to the parental MDA-MB-231 cells, as measured by luminex, and resistant cells demonstrated a significant increase in sensitivity to the c-Met inhibitor, CpdA, with an IC50 value of 1.4 ± 0.5 µM compared to an IC50 of 6.8 ± 0.2 µM in the parental MDA-MB-231 cells. Treatment with CpdA decreased p-Met and p-Src in both 231-DasB and MDA-MB-231 cells. Combined treatment with dasatinib and CpdA significantly inhibited the growth of MDA-MB-231 parental cells and prevented the emergence of dasatinib resistance. If these in vitro findings can be extrapolated to human cancer treatment, combined treatment with dasatinib and a c-Met inhibitor may block the development of acquired resistance and improve response rates to dasatinib treatment in TNBC.
Collapse
Affiliation(s)
- Patricia Gaule
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Nupur Mukherjee
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Brendan Corkery
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Alex J Eustace
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Kathy Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Ireland.
| | - Sandra Roche
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Robert O'Connor
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Kenneth J O'Byrne
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba QLD 4059, Australia.
| | - Naomi Walsh
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| | - Michael J Duffy
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.
| | - John Crown
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland.
| | - Norma O'Donovan
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland.
| |
Collapse
|
28
|
Zhang Y, Zhang Z, Wang D, Xu J, Li Y, Wang H, Li J, Mo S, Zhang Y, Lin Y, Fan X, Li E, Huang J, Fan H, Yi Y. Multidimensional Integration Analysis of Autophagy-related Modules in Colorectal Cancer. LETT ORG CHEM 2019; 16:340-346. [DOI: 10.2174/1570178615666180914113224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract occurring in the colon, which mainly divided into adenocarcinoma, mucinous adenocarcinoma, and undifferentiated carcinoma. However, autophagy is related to the occurrence and development of various kinds of human diseases such as cancer. There is little research on the relationship between CRC and autophagy. Hence, we performed multidimensional integration analysis to systematically explore potential relationship between autophagy and CRC. Based on gene expression datasets of colon adenocarcinoma (COAD) and protein-protein interactions (PPIs), we first identified 12 autophagy-related modules in COAD using WGCNA. Then, 9 module pairs which with significantly crosstalk were deciphered, a total of 6 functional modules. Autophagy-related genes in these modules were closely related with CRC, emphasizing that the important role of autophagy-related genes in CRC, including PPP2CA and EIF4E, etc. In addition to, by integrating transcription factor (TF)-target and RNA-associated interactions, a regulation network was constructed, in which 42 TFs (including SMAD3 and TP53, etc.) and 20 miRNAs (including miR-20 and miR-30a, etc.) were identified as pivot regulators. Pivot TFs were mainly involved in cell cycle, cell proliferation and pathways in cancer. And pivot miRNAs were demonstrated associated with CRC. It suggests that these pivot regulators might be have an effect on the development of CRC by regulating autophagy. In a word, our results suggested that multidimensional integration strategy provides a novel approach to discover potential relationships between autophagy and CRC, and further improves our understanding of autophagy and tumor in human.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zheng Zhang
- Department of Physical Education, Nanjing Audit University, Nanjing, China
| | - Dong Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianzhen Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yanhui Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shaowen Mo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunqing Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuzhao Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Src in endosomal membranes promotes exosome secretion and tumor progression. Sci Rep 2019; 9:3265. [PMID: 30824759 PMCID: PMC6397170 DOI: 10.1038/s41598-019-39882-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
c-Src is a membrane-associated tyrosine kinase that has key roles in the signaling transduction that controls cell growth, adhesion, and migration. In the early stage of carcinogenesis, c-Src is activated under the plasma membrane and transduces oncogenic signals. Here we show that c-Src localized to the endosomal membrane has unique functions in c-Src-transformed cells. Our results indicate that activated c-Src in the endosomal membrane promoted the secretion of exosomes, in which c-Src was encapsulated. In addition, the ESCRT-interacting molecule, Alix was identified as a c-Src-interacting protein in exosomes. We revealed that the interaction between the SH3 domain of c-Src and the proline-rich region of Alix activates ESCRT-mediated intra-luminal vesicle (ILV) formation, resulting in the upregulation of exosome secretion in c-Src-transformed cells. We observed also a correlation between malignant phenotypes and Alix-dependent aberrant exosome secretion in Src-upregulated cancer cells. Collectively, our findings provide a unique mechanism for the upregulation of exosomes in cancer cells, as well as new insights into the significance of exosome secretion in cancer progression.
Collapse
|
30
|
Thutkawkorapin J, Lindblom A, Tham E. Exome sequencing in 51 early onset non-familial CRC cases. Mol Genet Genomic Med 2019; 7:e605. [PMID: 30809968 PMCID: PMC6503031 DOI: 10.1002/mgg3.605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) cases with an age of onset <40 years suggests a germline genetic cause. In total, 51 simplex cases were included to test the hypothesis of CRC as a mendelian trait caused by either heterozygous autosomal dominant or bi‐allelic autosomal recessive pathogenic variants. Methods The cohort was whole exome sequenced (WES) at 100× coverage. Both a dominant‐ and recessive model were used for searching predisposing genetic factors. In addition, we assayed recessive variants of potential moderate risk that were enriched in our young‐onset CRC cohort. Variants were filtered using a candidate cancer gene list or by selecting variants more likely to be pathogenic based on variant type (e.g., loss‐of‐function) or allele frequency. Results We identified one pathogenic variant in PTEN in a patient subsequently confirmed to have a hereditary hamartoma tumor syndrome (Cowden syndrome) and one patient with a pathogenic heterozygous variant in PMS2 that was originally not identified by WES due to low quality reads resulting from pseudogenes. In addition, we identified three heterozygous candidate missense variants in known cancer susceptibility genes (BMPR1A,BRIP1, and SRC), three truncating variants in possibly novel cancer genes (CLSPN,SEC24B, SSH2) and four candidate missense variants in ACACA, NR2C2, INPP4A, and DIDO1. We also identify five possible autosomal recessive candidate genes: ATP10B,PKHD1,UGGT2,MYH13,TFF3. Conclusion Two clear pathogenic variants were identified in patients that had not been identified clinically. Thus, the chance of detecting a hereditary cancer syndrome in patients with CRC at young age but without family history is 2/51 (4%) and therefore the clinical benefit of genetic testing in this patient group is low. Of note, using stringent filtering, we have identified a total of ten candidate heterozygous variants and five possibly biallelic autosomal recessive candidate genes that warrant further study.
Collapse
Affiliation(s)
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Shimada Y, Muneoka Y, Nagahashi M, Ichikawa H, Tajima Y, Hirose Y, Ando T, Nakano M, Sakata J, Kameyama H, Takii Y, Ling Y, Okuda S, Takabe K, Wakai T. BRAF V600E and SRC mutations as molecular markers for predicting prognosis and conversion surgery in Stage IV colorectal cancer. Sci Rep 2019; 9:2466. [PMID: 30792536 PMCID: PMC6384937 DOI: 10.1038/s41598-019-39328-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
Comprehensive genomic sequencing (CGS) enables us to detect numerous genetic alterations in a single assay. We aimed to identify molecular markers for predicting prognosis and conversion surgery in Stage IV colorectal cancer (CRC) using CGS. One-hundred eleven patients with Stage IV CRC who underwent primary tumor resection were analyzed. We retrospectively investigated genetic alterations using CGS of a 415-gene panel. Clinicopathological variables and genetic alterations were analyzed to identify independent prognostic factors of overall survival (OS). Forty-five of 111 patients had R0 resection; of these, 11 patients underwent conversion surgery. Univariate and multivariate analyses identified histopathological grade 3, R0 resection, BRAF V600E mutation, and SRC mutation as independent prognostic factors for OS (P = 0.041, P = 0.013, P = 0.005, and P = 0.023, respectively). BRAF V600E and SRC mutations were mutually exclusive, and SRC mutation was significantly associated with left-sided tumor and liver metastasis compared to BRAF V600E mutation (P = 0.016 and P = 0.025, respectively). Eleven of the 74 initially unresectable patients underwent conversion surgery for R0 resection, yet none harbored BRAF V600E or SRC mutations. BRAF V600E and SRC mutations are important molecular markers which can predict prognosis and conversion surgery in Stage IV CRC.
Collapse
Affiliation(s)
- Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yusuke Muneoka
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takuya Ando
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masato Nakano
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hitoshi Kameyama
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumasa Takii
- Department of Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Breast Surgery, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
32
|
Li L, Cui Y, Shen J, Dobson H, Sun G. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leuk Res 2019; 78:12-20. [PMID: 30660961 DOI: 10.1016/j.leukres.2019.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of fast growing cancers of myeloid progenitor cells, for which effective treatments are still lacking. Identification of signaling inhibitors that block their proliferation could reveal the proliferative mechanism of a given leukemia cell, and provide small molecule drugs for targeted therapy for AML. In this study, kinase inhibitors that block the majority of cancer signaling pathways are evaluated for their inhibition of two AML cell lines of the M5 subtypes, CTV-1 and THP-1. While THP-1 cells do not respond to any of these inhibitors, CTV-1 cells are potently inhibited by dasatinib, bosutinib, crizotinib, A-770041, and WH-4-23, all potent inhibitors for Lck, a Src family kinase. CTV-1 cells contain a kinase activity that phosphorylates an Lck-specific peptide substrate in an Lck inhibitor-sensitive manner. Furthermore, the Lck gene is over-expressed in CTV-1, and it contains four mutations, two of which are located in regions critical for Lck negative regulation, and are confirmed to activate Lck. Collectively, these results provide strong evidence that mutated and overexpressed Lck is driving CTV-1 proliferation. While Lck activation and overexpression is rare in AML, this study provides a potential therapeutic strategy for treating patients with a similar oncogenic mechanism.
Collapse
Affiliation(s)
- Li Li
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Yixin Cui
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Jinyan Shen
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Hannah Dobson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gongqin Sun
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
33
|
Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, Mukhopadhyay S, Arasteh M, Lawley TD, Dougan G, Bassett A, Karlsen TH, Kaser A, Kaneider NC. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal 2019; 12:12/562/eaau9048. [PMID: 30600262 DOI: 10.1126/scisignal.aau9048] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca2+ to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.
Collapse
Affiliation(s)
- Georg Schneditz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Joshua E Elias
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ester Pagano
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - M Zaeem Cader
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kathleen Long
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | | | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicole C Kaneider
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
34
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
35
|
Forget A, Martignetti L, Puget S, Calzone L, Brabetz S, Picard D, Montagud A, Liva S, Sta A, Dingli F, Arras G, Rivera J, Loew D, Besnard A, Lacombe J, Pagès M, Varlet P, Dufour C, Yu H, Mercier AL, Indersie E, Chivet A, Leboucher S, Sieber L, Beccaria K, Gombert M, Meyer FD, Qin N, Bartl J, Chavez L, Okonechnikov K, Sharma T, Thatikonda V, Bourdeaut F, Pouponnot C, Ramaswamy V, Korshunov A, Borkhardt A, Reifenberger G, Poullet P, Taylor MD, Kool M, Pfister SM, Kawauchi D, Barillot E, Remke M, Ayrault O. Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell 2018; 34:379-395.e7. [PMID: 30205043 DOI: 10.1016/j.ccell.2018.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/12/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.
Collapse
Affiliation(s)
- Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.
| | - Loredana Martignetti
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker University Hospital, University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Laurence Calzone
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Sebastian Brabetz
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Arnau Montagud
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Stéphane Liva
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Alexandre Sta
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Florent Dingli
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Guillaume Arras
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Jaime Rivera
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Damarys Loew
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Aurore Besnard
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Joëlle Lacombe
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Mélanie Pagès
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Rue Edouard Vaillant, 94805 Villejuif, France
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Audrey L Mercier
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Emilie Indersie
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Anaïs Chivet
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Sophie Leboucher
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Institut Curie, Centre de Recherche, Plateforme d'Histologie, Orsay 91405, France
| | - Laura Sieber
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery, Necker University Hospital, University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frauke D Meyer
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Jasmin Bartl
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Lukas Chavez
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Venu Thatikonda
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Franck Bourdeaut
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Celio Pouponnot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children and Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Poullet
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Departments of Surgery, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France.
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.
| |
Collapse
|
36
|
Kulkarni P, Solomon TL, He Y, Chen Y, Bryan PN, Orban J. Structural metamorphism and polymorphism in proteins on the brink of thermodynamic stability. Protein Sci 2018; 27:1557-1567. [PMID: 30144197 PMCID: PMC6194243 DOI: 10.1002/pro.3458] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
The classical view of the structure-function paradigm advanced by Anfinsen in the 1960s is that a protein's function is inextricably linked to its three-dimensional structure and is encrypted in its amino acid sequence. However, it is now known that a significant fraction of the proteome consists of intrinsically disordered proteins (IDPs). These proteins populate a polymorphic ensemble of conformations rather than a unique structure but are still capable of performing biological functions. At the boundary, between well-ordered and inherently disordered states are proteins that are on the brink of stability, either weakly stable ordered systems or disordered but on the verge of being stable. In such marginal states, even relatively minor changes can significantly alter the energy landscape, leading to large-scale conformational remodeling. Some proteins on the edge of stability are metamorphic, with the capacity to switch from one fold topology to another in response to an environmental trigger (e.g., pH, temperature/salt, redox). Many IDPs, on the other hand, are marginally unstable such that small perturbations (e.g., phosphorylation, ligands) tip the balance over to a range of ordered, partially ordered, or even more disordered states. In general, the structural transitions described by metamorphic fold switches and polymorphic IDPs possess a number of common features including low or diminished stability, large-scale conformational changes, critical disordered regions, latent or attenuated binding sites, and expansion of function. We suggest that these transitions are, therefore, conceptually and mechanistically analogous, representing adjacent regions in the continuum of order/disorder transitions.
Collapse
Affiliation(s)
- Prakash Kulkarni
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Tsega L. Solomon
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Yanan He
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Yihong Chen
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Philip N. Bryan
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - John Orban
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
37
|
Poon CLC, Brumby AM, Richardson HE. Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci 2018; 19:ijms19061585. [PMID: 29861494 PMCID: PMC6032059 DOI: 10.3390/ijms19061585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony M Brumby
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Helena E Richardson
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
38
|
Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Proc Natl Acad Sci U S A 2018; 115:E4245-E4254. [PMID: 29654145 DOI: 10.1073/pnas.1714866115] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The discovery that endoplasmic reticulum (ER) luminal chaperones such as GRP78/BiP can escape to the cell surface upon ER stress where they regulate cell signaling, proliferation, apoptosis, and immunity represents a paradigm shift. Toward deciphering the mechanisms, we report here that, upon ER stress, IRE1α binds to and triggers tyrosine kinase SRC activation, leading to ASAP1 phosphorylation and Golgi accumulation of ASAP1 and Arf1-GTP, resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. At the cell surface, GRP78 binds to and acts in concert with a glycosylphosphatidylinositol-anchored protein, CD109, in blocking TGF-β signaling by promoting the routing of the TGF-β receptor to the caveolae, thereby disrupting its binding to and activation of Smad2. Collectively, we uncover a SRC-mediated signaling cascade that leads to the relocalization of ER chaperones to the cell surface and a mechanism whereby GRP78 counteracts the tumor-suppressor effect of TGF-β.
Collapse
|
39
|
Liang TJ, Wang HX, Zheng YY, Cao YQ, Wu X, Zhou X, Dong SX. APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget 2018; 8:46468-46479. [PMID: 28515349 PMCID: PMC5542282 DOI: 10.18632/oncotarget.17576] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
Adenomatous polyposis coli (APC) promoter hypermethylation has been frequently observed in colorectal cancer (CRC). The association between APC promoter methylation and clinicopathological significance in CRC is under investigation. We performed a meta-analysis to quantitatively evaluate the significance of APC methylation in CRC. The study included a total of 24 articles and 2025 CRC patients. The frequency of APC promoter hypermethylation was significantly higher in colorectal adenoma than in normal colorectal tissue, OR was 5.76, 95% CI, 2.45-13.56; p<0.0001, I2=0%. APC promoter more frequently hypermethylated in CRC stage I compared to normal colorectal tissue, OR was 13.42, 95% CI, 3.66-49.20; p<0.0001, I2=31%. The risk of incidence of CRC was significantly correlated to APC promoter hypermethylation, pooled OR was 9.80, 95%CI, 6.07-15.81; p<0.00001, I2=43%. APC methylation was not associated with grade, stage of CRC as well as tumor location, patients’ gender, and smoking behavior. The results indicate that APC promoter hypermethylation is an early event in carcinogenesis of CRC, could be a valuable diagnostic marker for early-stage CRC. APC methylation is not significantly associated with overall survival in patients with CRC. APC is a potential drug target for development of personalized treatment.
Collapse
Affiliation(s)
- Tie-Jun Liang
- Department of Digestive Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hong-Xu Wang
- Department of General Surgery, Jiyang People's Hospital, Jiyang, Shandong, China
| | - Yan-Yan Zheng
- Department of Medical Imaging, Jiyang People's Hospital, Jiyang, Shandong, China
| | - Ying-Qing Cao
- Department of Anus & Intestine Surgery, Taian City Central Hospital, Taian, Shandong, China
| | - Xiaoyu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Xiao Dong
- Department of Gastrointestinal Surgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
40
|
Inamura K. Colorectal Cancers: An Update on Their Molecular Pathology. Cancers (Basel) 2018; 10:cancers10010026. [PMID: 29361689 PMCID: PMC5789376 DOI: 10.3390/cancers10010026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancers (CRCs) are the third leading cause of cancer-related mortality worldwide. Rather than being a single, uniform disease type, accumulating evidence suggests that CRCs comprise a group of molecularly heterogeneous diseases that are characterized by a range of genomic and epigenomic alterations. This heterogeneity slows the development of molecular-targeted therapy as a form of precision medicine. Recent data regarding comprehensive molecular characterizations and molecular pathological examinations of CRCs have increased our understanding of the genomic and epigenomic landscapes of CRCs, which has enabled CRCs to be reclassified into biologically and clinically meaningful subtypes. The increased knowledge of the molecular pathological epidemiology of CRCs has permitted their evolution from a vaguely understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes, a development that will allow the implementation of personalized therapies and better management of patients with CRC. This review provides a perspective regarding recent developments in our knowledge of the molecular and epidemiological landscapes of CRCs, including results of comprehensive molecular characterizations obtained from high-throughput analyses and the latest developments regarding their molecular pathologies, immunological biomarkers, and associated gut microbiome. Advances in our understanding of potential personalized therapies for molecularly specific subtypes are also reviewed.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
41
|
Tsao AS, Lin H, Carter BW, Lee JJ, Rice D, Vaporcyan A, Swisher S, Mehran R, Heymach J, Nilsson M, Fan Y, Nunez M, Diao L, Wang J, Fujimoto J, Wistuba II, Hong WK. Biomarker-Integrated Neoadjuvant Dasatinib Trial in Resectable Malignant Pleural Mesothelioma. J Thorac Oncol 2017; 13:246-257. [PMID: 29313814 DOI: 10.1016/j.jtho.2017.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Window of opportunity trials in malignant pleural mesothelioma (MPM) are challenging but can yield important translational information about a novel agent. METHODS We treated patients with MPM (N = 24) with 4 weeks of oral dasatinib followed by surgery with or without radiotherapy and then an optional 2 years of maintenance dasatinib. The primary end point was biomarker modulation of phosphorylated (p) SrcTyr419. RESULTS For all patients, the median progression-free survival (PFS) was 7.5 months and the median overall survival was 19.1 months. No significant responses were seen after 4 weeks of dasatinib therapy; however, modulation of median p-SrcTyr419 immunohistochemistry (IHC) scores was seen: the median pretreatment score was 70 (interquartile range 37.5-110), and the median posttreatment score was 41.9 (interquartile range 4.2-60) (p = 0.004). A decrease in p-SrcTyr419 levels after dasatinib correlated with improved median PFS (6.9 months versus 0.94 months [p = 0.03]), suggesting that p-SrcTyr419 is a viable pharmacodynamic biomarker for dasatinib in MPM. Platelet-derived growth factor receptor (PDGFR) pathway analysis correlated high PDGFR beta [PDGFRB) level (in the cytoplasm [hazard ratio] (HR) = 2.54, p = 0.05], stroma [HR = 2.79, p = 0.03], and nucleus [HR = 6.79, p = 0.023]) with a shorter PFS. Low (less than the median) cytoplasmic p-PDGFR alpha IHC levels were predictive of a decrease in positron emission tomography/computed tomography standard uptake values levels after dasatinib therapy (p = 0.04), whereas higher-than-median IHC scores of PDGFRB (cytoplasmic [HR = 2.8, p = 0.03] and nuclear [HR = 6.795, p = 0.02]) were correlated with rising standard uptake values levels. CONCLUSIONS In conclusion, there was no significant efficacy signal, and dasatinib monotherapy will not continue to be studied in MPM. However, our study demonstrated that PDGFR subtypes (platelet-derived growth factor receptor alpha and PDGFRB) may have differential roles in prognosis and resistance to antiangiogenic tyrosine kinase inhibitors and are important potential therapeutic targets that require further investigation.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| | - Heather Lin
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Brett W Carter
- Department of Diagnostic Radiology Thoracic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ara Vaporcyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Steven Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - John Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Maria Nunez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
42
|
Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal 2017; 15:29. [PMID: 28784162 PMCID: PMC5547543 DOI: 10.1186/s12964-017-0186-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. METHODS We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. RESULTS Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. CONCLUSIONS SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells.
Collapse
Affiliation(s)
- Gahana Advani
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ya Chee Lim
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Catimel
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Nadia L. Y. Ng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Anderly C. Chüeh
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mai Tran
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heather Verkade
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3052 Australia
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Ching-Seng Ang
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Michael Griffin
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heung-Chin Cheng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
43
|
Srivastava K, Pickard A, McDade S, McCance DJ. p63 drives invasion in keratinocytes expressing HPV16 E6/E7 genes through regulation of Src-FAK signalling. Oncotarget 2017; 8:16202-16219. [PMID: 26001294 PMCID: PMC5369957 DOI: 10.18632/oncotarget.3892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023] Open
Abstract
Using microarray information from oro-pharyngeal data sets and results from primary human foreskin keratinocytes (HFK) expressing Human Papilloma Virus (HPV)-16 E6/E7 proteins, we show that p63 expression regulates signalling molecules which initiate cell migration such as Src and focal adhesion kinase (FAK) and induce invasion in 3D-organotypic rafts; a phenotype that can be reversed by depletion of p63. Knockdown of Src or FAK in the invasive cells restored focal adhesion protein paxillin at cell periphery and impaired the cell migration. In addition, specific inhibition of FAK (PF573228) or Src (dasatinib) activities mitigated invasion and attenuated the expression/activity of matrix metalloproteinase 14 (MMP14), a pivotal MMP in the MMP activation cascade. Expression of constitutively active Src in non-invasive HFK expressing E6/E7 proteins upregulated the activity of c-Jun and MMP14, and induced invasion in rafts. Depletion of Src, FAK or AKT in the invasive cells normalised the expression/activity of c-Jun and MMP14, thus implicating the Src-FAK/AKT/AP-1 signalling in MMP14-mediated extra-cellular matrix remodelling. Up-regulation of Src, AP-1, MMP14 and p63 expression was confirmed in oro-pharyngeal cancer. Since p63 transcriptionally regulated expression of many of the genes in this signalling pathway, it suggests that it has a central role in cancer progression.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Simon McDade
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Dennis J McCance
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK.,Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
44
|
Poh AR, Love CG, Masson F, Preaudet A, Tsui C, Whitehead L, Monard S, Khakham Y, Burstroem L, Lessene G, Sieber O, Lowell C, Putoczki TL, O'Donoghue RJJ, Ernst M. Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression. Cancer Cell 2017; 31:563-575.e5. [PMID: 28399411 PMCID: PMC5479329 DOI: 10.1016/j.ccell.2017.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/08/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
Abstract
Aberrant activation of the SRC family kinase hematopoietic cell kinase (HCK) triggers hematological malignancies as a tumor cell-intrinsic oncogene. Here we find that high HCK levels correlate with reduced survival of colorectal cancer patients. Likewise, increased Hck activity in mice promotes the growth of endogenous colonic malignancies and of human colorectal cancer cell xenografts. Furthermore, tumor-associated macrophages of the corresponding tumors show a pronounced alternatively activated endotype, which occurs independently of mature lymphocytes or of Stat6-dependent Th2 cytokine signaling. Accordingly, pharmacological inhibition or genetic reduction of Hck activity suppresses alternative activation of tumor-associated macrophages and the growth of colon cancer xenografts. Thus, Hck may serve as a promising therapeutic target for solid malignancies.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Christopher G Love
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Frederick Masson
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cary Tsui
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Simon Monard
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yelena Khakham
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lotta Burstroem
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Oliver Sieber
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Colorectal Surgery, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Clifford Lowell
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Tracy L Putoczki
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
45
|
Korf BR, Mikhail FM. Overview of Genetic Diagnosis in Cancer. ACTA ACUST UNITED AC 2017; 93:10.1.1-10.1.9. [DOI: 10.1002/cphg.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bruce R. Korf
- Department of Genetics University of Alabama at Birmingham Birmingham Alabama
| | - Fady M. Mikhail
- Department of Genetics University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
46
|
Walter D, Döring C, Feldhahn M, Battke F, Hartmann S, Winkelmann R, Schneider M, Bankov K, Schnitzbauer A, Zeuzem S, Hansmann ML, Peveling-Oberhag J. Intratumoral heterogeneity of intrahepatic cholangiocarcinoma. Oncotarget 2017; 8:14957-14968. [PMID: 28146430 PMCID: PMC5362457 DOI: 10.18632/oncotarget.14844] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
No personalized therapy regimens could demonstrate a benefit in survival of intrahepatic cholangiocarcinoma (iCCA). Since genetic heterogeneity might influence single biopsy based targeted therapy or the outcome of clinical trials, aim of the present study was to investigate intratumoral heterogeneity of iCCA by whole exome sequencing. Therefore, samples from tumor center and tumor periphery of large iCCA lesions as well as a control from healthy liver tissue were obtained from four patients and whole exome sequencing was performed. Mutations that occurred only in the tumor center or periphery were defined as private, whereas mutations present in both samples were regarded as common. A mean of 3 non-synonymous private mutations (range 0-14) per sample compared to 33,3 common mutations per sample (range 24-41) was identified. Mean percentage of non-synonymous private mutations per sample was 12% (range 0-58). In all samples of patient 1-3 as well as the central sample of patient 4 ≤ 10% private mutations were found, whereas 58% of private mutations were identified in the peripheral sample of patient 4. In this sample a private mutation in the DNA mismatch repair protein MSH6 could be identified most likely causing the high amount of private mutations. No substantial intratumoral heterogeneity was found in copy number variation analysis. In conclusion, iCCA show a small but distinct intratumoral heterogeneity. Somatic mutations in mismatch repair proteins might contribute significantly to increased spatial tumor burden and thereby may influence clinical management.
Collapse
Affiliation(s)
- Dirk Walter
- Department of Internal Medicine I, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | | | | | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Markus Schneider
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Katrin Bankov
- Department of Internal Medicine I, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Andreas Schnitzbauer
- Department of General and Visceral Surgery, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Martin Leo Hansmann
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Jan Peveling-Oberhag
- Department of Internal Medicine I, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
- Dr. Senckenberg Institute of Pathology, Johann Wolfgang Goethe-University Hospital, 60590 Frankfurt, Germany
- Department for Gastroenterology, Hepatology and Endocrinology, Robert-Bosch Hospital, 70376 Stuttgart, Germany
| |
Collapse
|
47
|
Espada J, Martín-Pérez J. An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:83-122. [DOI: 10.1016/bs.ircmb.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Mon NN, Senga T, Ito S. Interleukin-1β activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett 2016; 13:955-960. [PMID: 28356984 DOI: 10.3892/ol.2016.5521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1β (IL-1b) is a pleiotropic cytokine that is important in tumor progression and invasion. Matrix metalloproteinase-9 (MMP-9), which is a secreted matrix-degrading enzyme, is one of the key regulators of tumor invasion and metastasis. The current report indicated that IL-1b promotes MMP-9 production and cell invasion in non-metastatic MCF-7 breast cancer cells. IL-1b activated focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src). Moreover, inhibiting the Src/FAK pathway reduced the IL-1b-induced production of MMP-9 and cell invasion. To investigate the functional role of FAK in MMP-9 production cell lines expressing mutant FAK in FAK knock-out mouse fibroblasts were generated. In wild-type FAK-expressing cells, MMP-9 production was induced by IL-1b stimulation. By contrast, IL-1b-induced MMP-9 production was abrogated in FAK knock-out, FAK Y397F, FAK Y925F, and kinase dead mutant-expressing cells. Therefore the results of the current study indicate that FAK and Src kinases are activated by IL-1b and play a critical role in MMP-9 production and tumor cell invasion.
Collapse
Affiliation(s)
- Naing Naing Mon
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Satoko Ito
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
49
|
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. J Virol 2016; 91:JVI.01925-16. [PMID: 27795443 DOI: 10.1128/jvi.01925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. IMPORTANCE Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1.
Collapse
|
50
|
Sobani ZA, Sawant A, Jafri M, Correa AK, Sahin IH. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer. World J Clin Oncol 2016; 7:340-351. [PMID: 27777877 PMCID: PMC5056326 DOI: 10.5306/wjco.v7.i5.340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/14/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade.
Collapse
|