1
|
Rabiee N, Rabiee M. MXene-based aptasensors: a perspective on recent advances. NANOSCALE 2024; 16:22128-22141. [PMID: 39533857 DOI: 10.1039/d4nr03984j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advancements in science and technology have significantly enhanced public health by integrating novel materials and early diagnostic methods. A key focus is on MXenes, a class of materials known for their distinctive morphology and exceptional stability in diverse environments. MXenes possess notable structural engineering capabilities, enabling their design and synthesis into various forms tailored for specific applications. Their surface can be functionalized with different groups to enable chemical binding and physical attachment to various molecules, while variations in layer thickness and elemental composition influence their electrical conductivity and stability. This perspective article examines recent structural innovations in MXenes, particularly their application in biosensors. We highlight the role of aptamer surface decorations, which offer specific and selective binding for detecting a broad spectrum of analytes, thus underscoring MXenes' potential in advancing diagnostic technologies and improving public health.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Structural Insights into Protein-Aptamer Recognitions Emerged from Experimental and Computational Studies. Int J Mol Sci 2023; 24:16318. [PMID: 38003510 PMCID: PMC10671752 DOI: 10.3390/ijms242216318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy;
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, 80131 Naples, Italy;
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
3
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. Optimization of an aptamer against Prorocentrum minimum - A common harmful algae by truncation and G-quadruplex-forming mutation. ENVIRONMENTAL RESEARCH 2023; 220:115099. [PMID: 36563978 DOI: 10.1016/j.envres.2022.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) caused by Prorocentrum minimum have seriously posed economic losses and ecological disasters. To reduce these losses, aptamers are used as a new molecular probe to establish rapid methods. Herein, to improve the affinity and application of aptamers in the detection of harmful algae, the optimization was performed on the previously reported aptamers against P. minimum. First, a total of seven candidate aptamers, including three truncated aptamers (TA1, TA2 and TA3) and four mutant aptamers (MA1, MA2, MA3 and MA4), were obtained by truncation and G-quadruplex (GQ)-forming mutation. Next, the specificity and affinity test by flow cytometry revealed that except for TA1 and TA2, all of the candidate aptamers are specific with the equilibrium dissociation constant of (40.4 ± 5.5) nM for TA3, (63.3 ± 24.0) nM for MA1, (71.7 ± 14.6) nM for MA2, (365.9 ± 74.4) nM for MA3, and (21.1 ± 0.5) nM for MA4, respectively. The circular dichroism analysis of the mutant aptamers demonstrated that the GQ structures formed by MA1/MA2, MA3 and MA4 were antiparallel, mixed parallel and parallel, respectively. The affinity of aptamers with various GQ is in the order of parallel structure > antiparallel structure > mixed parallel structure. In addition, to further improve binding ability, the binding conditions of MA4 were optimized as follows: binding time, 60 min; binding temperature, 37 °C; pH of the binding buffer, 7.5; and Na+/Mg2+ concentration in the binding buffer, 100 mM/0.5 mM. The binding examination by fluorescence microscopy showed that MA4 had a stronger binding ability to P. minimum than the original aptamer. Taken together, this study not only obtained an aptamer with higher affinity than the original aptamer, which laid a good foundation for subsequent application, but also may provide a feasible reference method for aptamer optimization.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| |
Collapse
|
4
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
5
|
Structural Biology for the Molecular Insight between Aptamers and Target Proteins. Int J Mol Sci 2021; 22:ijms22084093. [PMID: 33920991 PMCID: PMC8071422 DOI: 10.3390/ijms22084093] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are promising therapeutic and diagnostic agents for various diseases due to their high affinity and specificity against target proteins. Structural determination in combination with multiple biochemical and biophysical methods could help to explore the interacting mechanism between aptamers and their targets. Regrettably, structural studies for aptamer–target interactions are still the bottleneck in this field, which are facing various difficulties. In this review, we first reviewed the methods for resolving structures of aptamer–protein complexes and for analyzing the interactions between aptamers and target proteins. We summarized the general features of the interacting nucleotides and residues involved in the interactions between aptamers and proteins. Challenges and perspectives in current methodologies were discussed. Approaches for determining the binding affinity between aptamers and target proteins as well as modification strategies for stabilizing the binding affinity of aptamers to target proteins were also reviewed. The review could help to understand how aptamers interact with their targets and how alterations such as chemical modifications in the structures affect the affinity and function of aptamers, which could facilitate the optimization and translation of aptamers-based theranostics.
Collapse
|
6
|
Baulin E, Metelev V, Bogdanov A. Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes. Nucleic Acids Res 2020; 48:8675-8685. [PMID: 32687167 PMCID: PMC7470943 DOI: 10.1093/nar/gkaa610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
Along with nucleobase pairing, base-base stacking interactions are one of the two main types of strong non-covalent interactions that define the unique secondary and tertiary structure of RNA. In this paper we studied two subfamilies of nucleobase-inserted stacking structures: (i) with any base intercalated between neighboring nucleotide residues (base-intercalated element, BIE, i + 1); (ii) with any base wedged into a hydrophobic cavity formed by heterocyclic bases of two nucleotides which are one nucleotide apart in sequence (base-wedged element, BWE, i + 2). We have exploited the growing database of natively folded RNA structures in Protein Data Bank to analyze the distribution and structural role of these motifs in RNA. We found that these structural elements initially found in yeast tRNAPhe are quite widespread among the tertiary structures of various RNAs. These motifs perform diverse roles in RNA 3D structure formation and its maintenance. They contribute to the folding of RNA bulges and loops and participate in long-range interactions of single-stranded stretches within RNA macromolecules. Furthermore, both base-intercalated and base-wedged motifs participate directly or indirectly in the formation of RNA functional centers, which interact with various ligands, antibiotics and proteins.
Collapse
Affiliation(s)
- Eugene Baulin
- Laboratory of Applied Mathematics, Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Valeriy Metelev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexey Bogdanov
- To whom correspondence should be addressed. Tel: +7 495 9393143; Fax: +7 495 9393181;
| |
Collapse
|
7
|
Xu J, Cai Y, Jiang B, Li X, Jin H, Liu W, Kong Z, Hong J, Sealy JE, Iqbal M, Li Y. An optimized aptamer-binding viral tegument protein VP8 inhibits the production of Bovine Herpesvirus-1 through blocking nucleocytoplasmic shuttling. Int J Biol Macromol 2019; 140:1226-1238. [PMID: 31445153 DOI: 10.1016/j.ijbiomac.2019.08.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a major pathogen of infectious bovine rhinotracheitis in bovine. Previously, we generated the aptamer IBRV A4 using systemic evolution of ligands by exponential enrichment. This aptamer inhibited infectivity of BoHV-1 by blocking viral particle absorption onto cell membranes. In this study, we found that the major tegument protein VP8 of BoHV-1 was involved in inhibition of infectious virus production by IBRV A4. We improved the affinity of IBRV A4 for VP8 by optimizing aptamer's structure and repeat conformation. An optimized aptamer, IBRV A4.7, was constructed with quadruple binding sites and a new stem-loop structure, which had a stronger binding affinity for VP8 or BoHV-1 than raw aptamer IBRV A4. IBRV A4.7 bound to VP8 with a dissociation constant (Kd) value of 0.2054 ± 0.03948 nM and bound to BoHV-1 with a Kd value of 0.3637 ± 0.05452 nM. Crucially, IBRV A4.7 had improved antiviral activity compared to IBRV A4, with a half-maximal inhibitory concentration of 1.16 ± 0.042 μM. Our results also revealed IBRV A4.7 inhibited BoHV-1 production in MDBK cells through blocking nucleocytoplasmic shuttling of viral VP8 in BoHV-1-infected MDBK cells. In conclusion, the aptamer IBRV A4.7 may have potency in preventing outbreaks in herds due to reactivation of latency.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Yunhong Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Xiaoyang Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Zimeng Kong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Jiabing Hong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Joshua E Sealy
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Munir Iqbal
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China.
| |
Collapse
|
8
|
Sakamoto K, Hayashi A. Synthetic Tyrosine tRNA Molecules with Noncanonical Secondary Structures. Int J Mol Sci 2018; 20:ijms20010092. [PMID: 30587834 PMCID: PMC6337575 DOI: 10.3390/ijms20010092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
The L-shape form of tRNA is maintained by tertiary interactions occurring in the core. Base changes in this domain can cause structural defects and impair tRNA activity. Here, we report on a method to safely engineer structural variations in this domain utilizing the noncanonical scaffold of tRNAPyl. First, we constructed a naïve hybrid between archaeal tRNAPyl and tRNATyr, which consisted of the acceptor and T stems of tRNATyr and the other parts of tRNAPyl. This hybrid tRNA efficiently translated the UAG codon to 3-iodotyrosine in Escherichia coli cells, when paired with a variant of the archaeal tyrosyl-tRNA synthetase. The amber suppression efficiency was slightly lower than that of the “bench-mark” archaeal tRNATyr suppressor assuming the canonical structure. After a series of modifications to this hybrid tRNA, we obtained two artificial types of tRNATyr: ZtRNA had an augmented D (auD) helix in a noncanonical form and the D and T loops bound by the standard tertiary base pairs, and YtRNA had a canonical auD helix and non-standard interloop interactions. It was then suggested that the ZtRNA scaffold could also support the glycylation and glutaminylation of tRNA. The synthetic diversity of tRNA would help create new tRNA–aminoacyl-tRNA synthetase pairs for reprogramming the genetic code.
Collapse
Affiliation(s)
- Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Akiko Hayashi
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
9
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|
10
|
Antczak M, Zok T, Osowiecki M, Popenda M, Adamiak RW, Szachniuk M. RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures. BMC Bioinformatics 2018; 19:304. [PMID: 30134831 PMCID: PMC6106928 DOI: 10.1186/s12859-018-2317-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Computational RNA 3D structure prediction and modeling are rising as complementary approaches to high-resolution experimental techniques for structure determination. They often apply to substitute or complement them. Recently, researchers' interests have directed towards in silico methods to fit, remodel and refine RNA tertiary structure models. Their power lies in a problem-specific exploration of RNA conformational space and efficient optimization procedures. The aim is to improve the accuracy of models obtained either computationally or experimentally. RESULTS Here, we present RNAfitme, a versatile webserver tool for remodeling of nucleobase- and nucleoside residue conformations in the fixed-backbone RNA 3D structures. Our approach makes use of dedicated libraries that define RNA conformational space. They have been built upon torsional angle characteristics of PDB-deposited RNA structures. RNAfitme can be applied to reconstruct full-atom model of RNA from its backbone; remodel user-selected nucleobase/nucleoside residues in a given RNA structure; predict RNA 3D structure based on the sequence and the template of a homologous molecule of the same size; refine RNA 3D model by reducing steric clashes indicated during structure quality assessment. RNAfitme is a publicly available tool with an intuitive interface. It is freely accessible at http://rnafitme.cs.put.poznan.pl/ CONCLUSIONS: RNAfitme has been applied in various RNA 3D remodeling scenarios for several types of input data. Computational experiments proved its efficiency, accuracy, and usefulness in the processing of RNAs of any size. Fidelity of RNAfitme predictions has been thoroughly tested for RNA 3D structures determined experimentally and modeled in silico.
Collapse
Affiliation(s)
- Maciej Antczak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Poznan Supercomputing and Networking Center, Jana Pawla II 10, 61-139, Poznan, Poland
| | - Maciej Osowiecki
- Department of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland. .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
11
|
Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. SENSORS 2018; 18:s18072367. [PMID: 30037056 PMCID: PMC6068809 DOI: 10.3390/s18072367] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
Aptasensors have a great potential for environmental monitoring, particularly for real-time on-site detection of aquatic toxins produced by marine and freshwater microorganisms (cyanobacteria, dinoflagellates, and diatoms), with several advantages over other biosensors that are worth considering. Freshwater monitoring is of vital importance for public health, in numerous human activities, and animal welfare, since these toxins may cause fatal intoxications. Similarly, in marine waters, very effective monitoring programs have been put in place in many countries to detect when toxins exceed established regulatory levels and accordingly enforce shellfish harvesting closures. Recent advances in the fields of aptamer selection, nanomaterials and communication technologies, offer a vast array of possibilities to develop new imaginative strategies to create improved, ultrasensitive, reliable and real-time devices, featuring unique characteristics to produce and amplify the signal. So far, not many strategies have been used to detect aquatic toxins, mostly limited to the optic and electrochemical sensors, the majority applied to detect microcystin-LR using a target-induced switching mode. The limits of detection of these aptasensors have been decreasing from the nM to the fM order of magnitude in the past 20 years. Aspects related to sensor components, performance, aptamers sequences, matrices analyzed and future perspectives, are considered and discussed.
Collapse
|
12
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
13
|
Post-SELEX optimization of aptamers. Anal Bioanal Chem 2016; 408:4567-73. [PMID: 27173394 DOI: 10.1007/s00216-016-9556-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022]
Abstract
Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.
Collapse
|
14
|
Gelinas AD, Davies DR, Janjic N. Embracing proteins: structural themes in aptamer-protein complexes. Curr Opin Struct Biol 2016; 36:122-32. [PMID: 26919170 DOI: 10.1016/j.sbi.2016.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/17/2023]
Abstract
Understanding the structural rules that govern specific, high-affinity binding characteristic of aptamer-protein interactions is important in view of the increasing use of aptamers across many applications. From the modest number of 16 aptamer-protein structures currently available, trends are emerging. The flexible phosphodiester backbone allows folding into precise three-dimensional structures using known nucleic acid motifs as scaffolds that orient specific functional groups for target recognition. Still, completely novel motifs essential for structure and function are found in modified aptamers with diversity-enhancing side chains. Aptamers and antibodies, two classes of macromolecules used as affinity reagents with entirely different backbones and composition, recognize protein epitopes of similar size and with comparably high shape complementarity.
Collapse
Affiliation(s)
- Amy D Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States
| | - Douglas R Davies
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, United States.
| |
Collapse
|
15
|
Abdallah EY, Smith CA. Diverse mutants of HIV RRE IIB recognize wild-type Rev ARM or Rev ARM R35G-N40V. J Mol Recognit 2015; 28:710-21. [PMID: 26130028 DOI: 10.1002/jmr.2485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/07/2015] [Accepted: 05/23/2015] [Indexed: 01/22/2023]
Abstract
The binding of human immunodeficiency virus Rev protein via its arginine-rich motif (ARM) to an internal loop in the Rev-response element region IIB (RRE IIB) is necessary for viral replication. Many variant RNAs and ARMs that bind Rev and RRE IIB have been found. Despite the essential role of Rev asparagine 40 in recognition, the Rev ARM double-mutant R35G-N40V functions well in a Rev-RRE IIB reporter assay, indicating R35G-N40V uses a distinct recognition strategy. To examine how RRE IIB may evolve specificity to wild-type Rev ARM and R35G-N40V, 10 RRE IIB libraries, each completely randomized in overlapping regions, were screened with wild-type Rev ARM and R35G-N40V using a reporter system based on bacteriophage λ N antitermination. Consistent with previous studies, a core element of RRE IIB did not vary, and substitutions occurred at conserved residues only in the presence of other substitutions. Notably, the groove-widening, non-canonical base-pair G48:G71 was mutable to U48:G71 without strong loss of binding to wild-type Rev ARM, suggesting U48:G71 performs the same role by adopting the nearly isosteric, reverse wobble base pair. Originating from RRE IIB, as few as one or two substitutions are sufficient to confer specificity to wild-type Rev or Rev R35G-N40. The diversity of RRE IIB mutants that maintain binding to wild-type Rev ARM and R35G-N40V supports neutral theories of evolution and illustrates paths by which viral RNA-protein interactions can evolve new specificities. Rev-RRE offers an excellent model with which to study the fine structure of how specificity evolves.
Collapse
Affiliation(s)
- Emane Y Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Colin A Smith
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Zheng X, Hu B, Gao SX, Liu DJ, Sun MJ, Jiao BH, Wang LH. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon 2015; 101:41-7. [PMID: 25937337 DOI: 10.1016/j.toxicon.2015.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Saxitoxin (STX), a member of the family of paralytic shellfish poisoning toxins, poses toxicological and ecotoxicological risks. To develop an analytical recognition element for STX, a DNA aptamer (APT(STX1)) was previously discovered via an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) by Handy et al. Our study focused on generating an improved aptamer based on APT(STX1) through rational site-directed mutation and truncation. In this study, we generated the aptamer, M-30f, with a 30-fold higher affinity for STX compared with APT(STX1). The Kd value for M-30f was 133 nM, which was calculated by Bio-Layer Interferometry. After optimization, we detected and compared the interaction of STX with aptamers (APT(STX1) or M-30f) through several techniques (ELISA, cell bioassay, and mouse bioassay). Both aptamers' STX-binding ability was demonstrated in all three methods. Moreover, M-30f performs better than its parent sequence with higher suppressive activity against STX. As a molecular recognition element, M-30f has good prospects for practical application.
Collapse
Affiliation(s)
- X Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - B Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China; Center of Marine Biolical Medicine, College of Marine Military Medicine, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - S X Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - D J Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China; Center of Marine Biolical Medicine, College of Marine Military Medicine, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - M J Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - B H Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China; Center of Marine Biolical Medicine, College of Marine Military Medicine, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China
| | - L H Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, No. 800, Xiangyin Rd., Shanghai 200433, People's Republic of China.
| |
Collapse
|
17
|
Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e201. [PMID: 25291143 PMCID: PMC4217074 DOI: 10.1038/mtna.2014.49] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022]
Abstract
Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics.
Collapse
|
18
|
Convergent evolution of two different random RNAs for specific interaction with methionyl-tRNA synthetase. Biochem Biophys Res Commun 2013; 432:281-6. [PMID: 23399565 DOI: 10.1016/j.bbrc.2013.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) recognize a specific sequence or structural characteristics of their cognate tRNAs. To contribute to the understanding how these recognition sites were selected, we generated two different RNA libraries containing either 42mer or 70mer random sequence and used them to select RNA aptamers that specifically bound to methionyl-tRNA synthetase (MRS) of Mycobacterium tuberculosis. The aptamer pools selected from the two RNA libraries showed strong binding affinity and selectivity to M. tuberculosis MRS compared to that of the homologous Escherichia coli MRS. The RNA aptamers selected from the two completely unrelated RNA pools shared the octamer sequence including CAU and the anticodon sequence of tRNA(Met). The secondary structure prediction suggested that the octamer motif in the selected aptamers would form a loop similar to the anticodon loop of tRNA(Met). The results suggest that the RNA loop containing CAU triplet could selected as a major recognition site for MRS during evolution more or less regarding, and also showed that species-specific ARS inhibitors can be obtained by in vitro evolution.
Collapse
|
19
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
20
|
Heat maps for intramolecular communication in an RNP enzyme encoding glutamine. Structure 2011; 19:386-96. [PMID: 21397189 DOI: 10.1016/j.str.2010.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023]
Abstract
Allosteric signaling within large ribonucleoproteins modulates both catalytic function and biological specificity, but the spatial extent and quantitative magnitudes of long-distance free-energy couplings have yet to be well characterized. Here, we employ pre-steady-state kinetics to generate a comprehensive mapping of intramolecular communication in the glutaminyl-tRNA synthetase:tRNA(Gln) complex. Alanine substitution at 29 positions across the protein-RNA interface reveals distinct coupling amplitudes for glutamine binding and aminoacyl-tRNA formation on the enzyme, respectively, implying the existence of multiple signaling pathways. Structural models suggest that long-range signal propagation from the tRNA anticodon is dynamically driven, whereas shorter pathways are mediated by induced-fit rearrangements. Seven protein contacts with the distal tRNA vertical arm each weaken glutamine binding affinity across distances up to 40 Å, demonstrating that negative allosteric coupling plays a key role in enforcing the selective RNA-amino acid pairing at the heart of the genetic code.
Collapse
|
21
|
Pietropaolo A, Parrinello M. A quantitative measure of chirality inside nucleic acid databank. Chirality 2011; 23:534-42. [PMID: 21618614 DOI: 10.1002/chir.20961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/24/2011] [Indexed: 11/11/2022]
Abstract
We show the capability of a chirality index (Pietropaolo et al., Proteins 2008;70:667-677) to investigate nucleic acid structures because of its high sensitivity to helical conformations. By analyzing selected structures of DNA and RNA, we have found that sequences rich in cytosine and guanine have a tendency to left-handed chirality, in contrast to regions rich in adenine or thymine which show strong negative, right-handed, chirality values. We also analyze RNA structures, where specific loops and hairpin motifs are characterized by a well-defined chirality value. We find that in nucleosome the chirality is exalted, whereas in ribosome it is reduced. Our results illustrate the sensitivity of this descriptor for nucleic acid conformations.
Collapse
Affiliation(s)
- Adriana Pietropaolo
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zürich, USI Campus, Lugano, Switzerland.
| | | |
Collapse
|
22
|
Casina VC, Lobashevsky AA, McKinney WE, Brown CL, Alexander RW. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site. Biochemistry 2011; 50:763-9. [PMID: 21175197 DOI: 10.1021/bi101375d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic domains of class I aminoacyl-tRNA synthetases are built around a conserved Rossmann nucleotide binding fold, with additional polypeptide domains responsible for tRNA binding or hydrolytic editing of misacylated substrates. Structural comparisons identified a conserved motif bridging the catalytic and anticodon binding domains of class Ia and Ib enzymes. This stem contact fold (SCF) has been proposed to globally orient each enzyme's cognate tRNA by interacting with the inner corner of the L-shaped tRNA. Despite the structural similarity of the SCF among class Ia/Ib enzymes, the sequence conservation is low. We replaced amino acids of the MetRS SCF with portions of the structurally similar glutaminyl-tRNA synthetase (GlnRS) motif or with alanine residues. Chimeric variants retained significant tRNA methionylation activity, indicating that structural integrity of the helix-turn-strand-helix motif contributes more to tRNA aminoacylation than does amino acid identity. In contrast, chimeras were significantly reduced in methionyl adenylate synthesis, suggesting a role for the SCF in formation of a structured active site domain. A highly conserved aspartic acid within the MetRS SCF is proposed to make an electrostatic interaction with an active site lysine; these residues were replaced with alanines or conservative substitutions. Both methionyl adenylate formation and methionine transfer were impaired, and activity was not significantly recovered by making the compensatory double substitution.
Collapse
Affiliation(s)
- Veronica C Casina
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109-7486, United States
| | | | | | | | | |
Collapse
|
23
|
Jaric J, Bilokapic S, Lesjak S, Crnkovic A, Ban N, Weygand-Durasevic I. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition. J Biol Chem 2009; 284:30643-51. [PMID: 19734148 DOI: 10.1074/jbc.m109.044099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seryl-tRNA synthetase (SerRS) from methanogenic archaeon Methanosarcina barkeri, contains an idiosyncratic N-terminal domain, composed of an antiparallel beta-sheet capped by a helical bundle, connected to the catalytic core by a short linker peptide. It is very different from the coiled-coil tRNA binding domain in bacterial-type SerRS. Because the crystal structure of the methanogenic-type SerRSxtRNA complex has not been obtained, a docking model was produced, which indicated that highly conserved helices H2 and H3 of the N-terminal domain may be important for recognition of the extra arm of tRNA(Ser). Based on structural information and the docking model, we have mutated various positions within the N-terminal region and probed their involvement in tRNA binding and serylation. Total loss of activity and inability of the R76A variant to form the complex with cognate tRNA identifies Arg(76) located in helix H2 as a crucial tRNA-interacting residue. Alteration of Lys(79) positioned in helix H2 and Arg(94) in the loop between helix H2 and beta-strand A4 have a pronounced effect on SerRSxtRNA(Ser) complex formation and dissociation constants (K(D)) determined by surface plasmon resonance. The replacement of residues Arg(38) (located in the loop between helix H1 and beta-strand A2), Lys(141) and Asn(142) (from H3), and Arg(143) (between H3 and H4) moderately affect both the serylation activity and the K(D) values. Furthermore, we have obtained a striking correlation between these results and in vivo effects of these mutations by quantifying the efficiency of suppression of bacterial amber mutations, after coexpression of the genes for M. barkeri suppressor tRNA(Ser) and a set of mMbSerRS variants in Escherichia coli.
Collapse
Affiliation(s)
- Jelena Jaric
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K(M) of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA(Gln) by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA(Gln) by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA(Gln) complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.
Collapse
|
25
|
Reiter NJ, Maher LJ, Butcher SE. DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer. Nucleic Acids Res 2007; 36:1227-36. [PMID: 18160411 PMCID: PMC2275087 DOI: 10.1093/nar/gkm1141] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Biochemistry, University of Wisconsin-Madison, Rochester, MN, USA
| | | | | |
Collapse
|
26
|
Study on an electrochemical biosensor for thrombin recognition based on aptamers and nano particles. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11426-007-0062-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Herring S, Ambrogelly A, Polycarpo CR, Söll D. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res 2007; 35:1270-8. [PMID: 17267409 PMCID: PMC1851642 DOI: 10.1093/nar/gkl1151] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNAPyl. The genes for tRNAPyl (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense. The activation and aminoacylation properties of D. hafniense PylRS and the nature of the tRNAPyl identity elements were determined by measuring the ability of 24 mutant tRNAPyl species to be aminoacylated with the pyrrolysine analog N-ε-cyclopentyloxycarbonyl-l-lysine. The discriminator base G73 and the first base pair (G1·C72) in the acceptor stem were found to be major identity elements. Footprinting analysis showed that PylRS binds tRNAPyl predominantly along the phosphate backbone of the T-loop, the D-stem and the acceptor stem. Significant contacts with the anticodon arm were not observed. The tRNAPyl structure contains the highly conserved T-loop contact U54·A58 and position 57 is conserved as a purine, but the canonical T- to D-loop contact between positions 18 and 56 was not present. Unlike most tRNAs, the tRNAPyl anticodon was shown not to be important for recognition by bacterial PylRS.
Collapse
Affiliation(s)
- Stephanie Herring
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Alexandre Ambrogelly
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Carla R. Polycarpo
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Departments of Molecular Biophysics and Biochemistry and Chemistry Yale University, New Haven, CT 06520-8114, USA
- *To whom Correspondence should be addressed. Tel: +1 203 432 6200; Fax: +1 203 432 6202;
| |
Collapse
|
28
|
Yamasaki S, Nakamura S, Terada T, Shimizu K. Mechanism of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop. Biophys J 2006; 92:192-200. [PMID: 17028132 PMCID: PMC1697856 DOI: 10.1529/biophysj.106.093351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) distinguish their cognate tRNAs from many other kinds of tRNAs, despite the very similar tertiary structures of tRNAs. Many researchers have supported the view that this recognition is achieved by intermolecular interactions between tRNA and ARS. However, one of the aptamers of Escherichia coli glutamine specific tRNA, var-AGGU, has a higher affinity to ARS than the wild-type, although the sequence difference only lies in the variable loop located on the opposite side of the binding interface with ARS. To understand the reason for the difference in affinity, we did molecular dynamics simulations on tRNAs and their complexes with ARS. We calculated the enthalpic and entropic contributions to the binding free energy with the molecular mechanics-Poisson-Boltzmann/surface area method and found that the entropic difference plays an important role in the difference in binding free energies. During the molecular dynamics simulations, dynamic rearrangements of hydrogen bonds occurred in the tertiary core region of the wild-type tRNA, whereas they were not observed in the free var-AGGU simulation. Since the internal mobility was suppressed upon complex formation with ARS, the entropy loss in the wild-type was larger than that of the aptamer. We therefore concluded that the sequence difference in the variable loop caused the difference in the internal mobility of the tertiary core region tRNAs and led to the difference in the affinity to ARS through the entropy term.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Oliva R, Cavallo L, Tramontano A. Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res 2006; 34:865-79. [PMID: 16461956 PMCID: PMC1361619 DOI: 10.1093/nar/gkj491] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.
Collapse
Affiliation(s)
- Romina Oliva
- Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, I-00165 Rome, Italy.
| | | | | |
Collapse
|
30
|
Auffinger P, Bielecki L, Westhof E. Anion binding to nucleic acids. Structure 2004; 12:379-88. [PMID: 15016354 DOI: 10.1016/j.str.2004.02.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 12/01/2003] [Accepted: 12/07/2003] [Indexed: 11/20/2022]
Abstract
Nucleic acids are generally considered as efficient cation binders. Therefore, the likelihood that negatively charged ions might intrude their first hydration shell is rarely considered. Here, we show on the basis of (i) a survey of the Nucleic Acid Database, (ii) several structures extracted from the Cambridge Structural Database, and (iii) molecular dynamics simulations, that the nucleotide electropositive edges involving mainly amino, imino, and hydroxyl groups can cast specific anion binding sites. These binding sites constitute also good locations for the binding of the negatively charged groups of the Asp and Glu residues or the nucleic acid phosphate groups. Furthermore, it is observed in several instances that anions, like water molecules and cations, do mediate protein/nucleic acid interactions. Thus, anions as well as negatively charged groups are directly involved in specific recognition and folding phenomena involving polyanionic nucleic acids.
Collapse
Affiliation(s)
- Pascal Auffinger
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisations et Simulations des Acides Nucléiques, UPR 9002, 15, rue René Descartes, 67084 Strasbourg Cedex, France.
| | | | | |
Collapse
|
31
|
Doyon FR, Zagryadskaya EI, Chen J, Steinberg SV. Specific and non-specific purine trap in the T-loop of normal and suppressor tRNAs. J Mol Biol 2004; 343:55-69. [PMID: 15381420 DOI: 10.1016/j.jmb.2004.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022]
Abstract
To elucidate the general constraints imposed on the structure of the D and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions in these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that most of them contain combination U54-A58 allowing the formation of the standard reverse-Hoogsteen base-pair 54-58 in the T-loop. With only one exception, all these clones fall into two groups, each characterized by a distinct sequence pattern. Analysis of these two groups has allowed us to suggest two different types of nucleotide arrangement in the DT region. The first type, the so-called specific purine trap, is found in 12 individual tRNA clones and represents a generalized version of the standard D-T loop interaction. It consists of purine 18 sandwiched between the reverse-Hoogsteen base-pair U54-A58 and purine 57. The identity of purine 18 is restricted by the specific base-pairing with nucleotide 55. Depending on whether nucleotide 55 is U or G, purine 18 should be, respectively, G or A. The second structural type, the so-called non-specific purine trap, corresponds to the nucleotide sequence pattern found in 16 individual tRNA clones and is described here for the first time. It consists of purine 18 sandwiched between two reverse-Hoogsteen base-pairs U54-A58 and A55-C57 and, unlike the specific purine trap, requires the T-loop to contain an extra eighth nucleotide. Since purine 18 does not form a base-pair in the non-specific purine trap, both purines, G18 and A18, fit to the structure equally well. The important role of both the specific and non-specific purine traps in the formation of the tRNA L-shape is discussed.
Collapse
Affiliation(s)
- Félix R Doyon
- Département de Biochimie, Université de Montréal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
32
|
Uter NT, Perona JJ. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. Proc Natl Acad Sci U S A 2004; 101:14396-401. [PMID: 15452355 PMCID: PMC521953 DOI: 10.1073/pnas.0404017101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-steady-state kinetic studies of Escherichia coli glutaminyl-tRNA synthetase conclusively demonstrate the existence of long-distance pathways of communication through the protein-RNA complex. Measurements of aminoacyl-tRNA synthesis reveal a rapid burst of product formation followed by a slower linear increase corresponding to k(cat). Thus, a step after chemistry but before regeneration of active enzyme is rate-limiting for synthesis of Gln-tRNA(Gln). Single-turnover kinetics validates these observations, confirming that the rate of the chemical step for tRNA aminoacylation (k(chem)) exceeds the steady-state rate by nearly 10-fold. The concentration dependence of the single-turnover reaction further reveals that the glutamine K(d) is significantly higher than the steady-state K(m) value. The separation of binding from catalytic events by transient kinetics now allows precise interpretation of how alterations in tRNA structure affect the aminoacylation reaction. Mutation of U35 in the tRNA anticodon loop decreases k(chem) by 30-fold and weakens glutamine binding affinity by 20-fold, demonstrating that the active-site configuration depends on enzyme-tRNA contacts some 40 A distant. By contrast, mutation of the adjacent G36 has very small effects on k(chem) and K(d) for glutamine. Together with x-ray crystallographic data, these findings allow a comparative evaluation of alternative long-range signaling pathways and lay the groundwork for systematic exploration of how induced-fit conformational transitions may control substrate selection in this model enzyme-RNA complex.
Collapse
Affiliation(s)
- Nathan T Uter
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
33
|
Zagryadskaya EI, Kotlova N, Steinberg SV. Key elements in maintenance of the tRNA L-shape. J Mol Biol 2004; 340:435-44. [PMID: 15210345 DOI: 10.1016/j.jmb.2004.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/28/2004] [Accepted: 05/01/2004] [Indexed: 11/29/2022]
Abstract
Based on in vivo selection of effective suppressor tRNAs from two different combinatorial gene libraries in which several nucleotides in the D and T-loops were randomized, we show that the position of the reverse-Hoogsteen base-pair in the T-loop, normally formed between nucleotides 54-58, co-varies with the length of the D-domain. When the D-domain has the normal length, the position of the reverse-Hoogsteen base-pair in the T-loop is always such that it allocates two unpaired nucleotides 59-60 for the bulge that fills the space between the D and T-domains. However, when the D-domain becomes shorter, the position of the reverse-Hoogsteen base-pair changes in the way that more nucleotides are now allocated to the T-loop bulge, so that the total length of the D-domain and of the bulge remains the same. Such compensation guarantees that in all tRNAs, the D and T-domains are always juxtaposed in the standard way. It also demonstrates the major role of the two T-loop elements, the bulge and the reverse-Hoogsteen base-pair, in the formation of the canonical tRNA L-shape.
Collapse
Affiliation(s)
- Ekaterina I Zagryadskaya
- Université de Montréal, Département de Biochimie, C.P. 6128, succursale Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | | | | |
Collapse
|
34
|
Trincao J, Johnson RE, Wolfle WT, Escalante CR, Prakash S, Prakash L, Aggarwal AK. Dpo4 is hindered in extending a G.T mismatch by a reverse wobble. Nat Struct Mol Biol 2004; 11:457-62. [PMID: 15077104 DOI: 10.1038/nsmb755] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 02/27/2004] [Indexed: 11/09/2022]
Abstract
The ability or inability of a DNA polymerase to extend a mispair directly affects the establishment of genomic mutations. We report here kinetic analyses of the ability of Dpo4, a Y-family polymerase from Sulfolobus solfataricus, to extend from all mispairs opposite a template G or T. Dpo4 is equally inefficient at extending these mispairs, which include, surprisingly, a G.T mispair expected to conform closely to Watson-Crick geometry. To elucidate the basis of this, we solved the structure of Dpo4 bound to G.T-mispaired primer template in the presence of an incoming nucleotide. As a control, we also determined the structure of Dpo4 bound to a matched A-T base pair at the primer terminus. The structures offer a basis for the low efficiency of Dpo4 in extending a G.T mispair: a reverse wobble that deflects the primer 3'-OH away from the incoming nucleotide.
Collapse
Affiliation(s)
- Jose Trincao
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee D, McClain WH. Aptamer redesigned tRNA is nonfunctional and degraded in cells. RNA (NEW YORK, N.Y.) 2004; 10:7-11. [PMID: 14681579 PMCID: PMC1370512 DOI: 10.1261/rna.5165804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/22/2003] [Indexed: 05/24/2023]
Abstract
An RNA aptamer derived from tRNA(Gln) isolated in vitro and a rationally redesigned tRNA(Gln) were used to address the relationship between structure and function of tRNA(Gln) aminoacylation in Escherichia coli. Two mutant tRNA(Gln) sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNA(Gln) in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNA(Gln) knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro.
Collapse
Affiliation(s)
- Dennis Lee
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1569, USA
| | | |
Collapse
|
36
|
Zagryadskaya EI, Doyon FR, Steinberg SV. Importance of the reverse Hoogsteen base pair 54-58 for tRNA function. Nucleic Acids Res 2003; 31:3946-53. [PMID: 12853610 PMCID: PMC165963 DOI: 10.1093/nar/gkg448] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To elucidate the general constraints imposed on the structure of the D- and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions of these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that among the randomized nucleotides, the most conservative are nucleotides 54 and 58 in the T-loop. In most cases, they make the combination U54-A58, which allows the formation of the normal reverse Hoogsteen base pair. Surprisingly, other clones have either the combination G54-A58 or G54-G58. However, molecular modeling shows that these purine-purine base pairs can very closely mimic the reverse Hoogsteen base pair U-A and thus can replace it in the T-loop of a functional tRNA. This places the reverse Hoogsteen base pair 54-58 as one of the most important structural aspects of tRNA functionality. We suggest that the major role of this base pair is to preserve the conformation of dinucleotide 59-60 and, through this, to maintain the general architecture of the tRNA L-form.
Collapse
MESH Headings
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Blotting, Northern
- Escherichia coli/genetics
- Lac Operon/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- Suppression, Genetic
- beta-Galactosidase/metabolism
Collapse
|
37
|
Bullock TL, Uter N, Nissan TA, Perona JJ. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 2003; 328:395-408. [PMID: 12691748 DOI: 10.1016/s0022-2836(03)00305-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2.5 A crystal structure of Escherichia coli glutaminyl-tRNA synthetase in a quaternary complex with tRNA(Gln), an ATP analog and glutamate reveals that the non-cognate amino acid adopts a distinct binding mode within the active site cleft. In contrast to the binding of cognate glutamine, one oxygen of the charged glutamate carboxylate group makes a direct ion-pair interaction with the strictly conserved Arg30 residue located in the first half of the dinucleotide fold domain. The nucleophilic alpha-carboxylate moiety of glutamate is mispositioned with respect to both the ATP alpha-phosphate and terminal tRNA ribose groups, suggesting that a component of amino acid discrimination resides at the catalytic step of the reaction. Further, the other side-chain carboxylate oxygen of glutamate is found in a position identical to that previously proposed to be occupied by the NH(2) group of the cognate glutamine substrate. At this position, the glutamate oxygen accepts hydrogen bonds from the hydroxyl moiety of Tyr211 and a water molecule. These findings demonstrate that amino acid specificity by GlnRS cannot arise from hydrogen bonds donated by the cognate glutamine amide to these same moieties, as previously suggested. Instead, Arg30 functions as a negative determinant to drive binding of non-cognate glutamate into a non-productive orientation. The poorly differentiated cognate amino acid-binding site in GlnRS may be a consequence of the late emergence of this enzyme from the eukaryotic lineage of glutamyl-tRNA synthetases.
Collapse
Affiliation(s)
- Timothy L Bullock
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | | | |
Collapse
|
38
|
Nakamura S, Ikeguchi M, Shimizu K. Dynamical analysis of tRNAGln–GlnRS complex using normal mode calculation. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00425-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Abstract
The lonepair triloop (LPTL) is an RNA structural motif that contains a single ("lone") base-pair capped by a hairpin loop containing three nucleotides. The two nucleotides immediately outside of this motif (5' and 3' to the lonepair) are not base-paired to one another, restricting the length of this helix to a single base-pair. Four examples of this motif, along with three tentative examples, were initially identified in the 16S and 23S rRNAs with covariation analysis. An evaluation of the recently determined crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits revealed the authenticity for all of these proposed interactions and identified 16 more LPTLs in the 5S, 16S and 23S rRNAs. This motif is found in the T loop in the tRNA crystal structures. The lonepairs are positioned, in nearly all examples, immediately 3' to a regular secondary structure helix and are stabilized by coaxial stacking onto this flanking helix. In all but two cases, the nucleotides in the triloop are involved in a tertiary interaction with another section of the rRNA, establishing an overall three-dimensional function for this motif. Of these 24 examples, 14 occur in multi-stem loops, seven in hairpin loops and three in internal loops. While the most common lonepair, U:A, occurs in ten of the 24 LPTLs, the remaining 14 LPTLs contain seven different base-pair types. Only a few of these lonepairs adopt the standard Watson-Crick base-pair conformations, while the majority of the base-pairs have non-standard conformations. While the general three-dimensional conformation is similar for all examples of this motif, characteristic differences lead to several subtypes present in different structural environments. At least one triloop nucleotide in 22 of the 24 LPTLs in the rRNAs and tRNAs forms a tertiary interaction with another part of the RNA. When a LPTL containing the GNR or UYR triloop sequence forms a tertiary interaction with the first (and second) triloop nucleotide, it recruits a fourth nucleotide to mediate stacking and mimic the tetraloop conformation. Approximately half of the LPTL motifs are in close association with proteins. The majority of these LPTLs are positioned at sites in rRNAs that are conserved in the three phylogenetic domains; a few of these occur in regions of the rRNA associated with ribosomal function, including the presumed site of peptidyl transferase activity in the 23S rRNA.
Collapse
Affiliation(s)
- Jung C Lee
- The University of Texas at Austin, College of Pharmacy, 1 University Station, A1900, Austin, TX 78712-0120, USA
| | | | | |
Collapse
|
40
|
Vasil'eva IA, Ankilova VN, Lavrik OI, Moor NA. tRNA discrimination by T. thermophilus phenylalanyl-tRNA synthetase at the binding step. J Mol Recognit 2002; 15:188-96. [PMID: 12382236 DOI: 10.1002/jmr.575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.
Collapse
Affiliation(s)
- Inna A Vasil'eva
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Russia
| | | | | | | |
Collapse
|
41
|
Daniels DA, Sohal AK, Rees S, Grisshammer R. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal Biochem 2002; 305:214-26. [PMID: 12054450 DOI: 10.1006/abio.2002.5663] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein-coupled receptors (GPCRs) are integral membrane proteins involved in signal transduction and constitute major drug targets for disease therapy. Aptamers, which are globular RNA or DNA molecules evolved to specifically bind a target, could represent a valuable tool with which to probe the role of such receptors in normal tissue and disease pathology and for cocrystallization with receptors for structure determination by X-ray crystallography. Using the bacterially expressed rat neurotensin receptor NTS-1 as an example, we describe a strategy for the generation of GPCR-specific RNA aptamers. Seven rounds of a "subtractive," paramagnetic bead-based selection protocol were used to enrich for neurotensin receptor-specific aptamers, while circumventing the evolution of aptamers reactive to minor protein contaminants. Representatives of each aptamer family were analyzed in Escherichia coli membrane nitrocellulose filter binding assays. Eight aptamers demonstrated specificity for the neurotensin receptor. One aptamer, P19, was characterized in detail and shown to bind to both the rat receptor and the human receptor with nanomolar affinity. P19 was also shown to interact with rat neurotensin receptor expressed in CHO cells, in both membrane preparations and intact cells. P19 represents the first example of a GPCR-specific RNA aptamer.
Collapse
Affiliation(s)
- Dion A Daniels
- Gene Expression and Protein Biochemistry, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom
| | | | | | | |
Collapse
|
42
|
Vortler S, Pütz J, Giegé R. Manipulation of tRNA properties by structure-based and combinatorial in vitro approaches. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:291-334. [PMID: 11642365 DOI: 10.1016/s0079-6603(01)70020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The wide knowledge accumulated over the years on the structure and function of transfer RNAs (tRNAs) has allowed molecular biologists to decipher the rules underlying the function and the architecture of these molecules. These rules will be discussed and the implications for manipulating tRNA properties by structure-based and combinatorial in vitro approaches reviewed. Since most of the signals conferring function to tRNAs are located on the two distal extremities of their three-dimensional L shape, this implies that the structure of the RNA domain connecting these two extremities can be of different architecture and/or can be modified without disturbing individual functions. This concept is first supported by the existence in nature of RNAs of peculiar structures having tRNA properties, as well as by engineering experiments on natural tRNAs. The concept is further illustrated by examples of RNAs designed by combinatorial methods. The different procedures used to select RNAs or tRNA-mimics interacting with aminoacyl-tRNA synthetases or with elongation factors and to select tRNA-mimics aminoacylated by synthetases are presented, as well as the functional and structural characteristics of the selected molecules. Production and characteristics of aptameric RNAs fulfilling aminoacyl-tRNA synthetase functions and of RNAs selected to have affinities for amino acids are also described. Finally, properties of RNAs obtained by either the structure-based or the combinatorial methods are discussed in the light of the origin and evolution of the translation machinery, but also with a view to obtain new inhibitors targeting specific steps in translation.
Collapse
Affiliation(s)
- S Vortler
- Département Mécanismes et Macromolécules de la Synthèse, Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
43
|
Allers J, Shamoo Y. Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J Mol Biol 2001; 311:75-86. [PMID: 11469858 DOI: 10.1006/jmbi.2001.4857] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, drawing general conclusions about RNA recognition by proteins has been hindered by the paucity of high-resolution structures. We have analyzed 45 PDB entries of protein-RNA complexes to explore the underlying chemical principles governing both specific and non-sequence specific binding. To facilitate the analysis, we have constructed a database of interactions using ENTANGLE, a JAVA-based program that uses available structural models in their PDB format and searches for appropriate hydrogen bonding, stacking, electrostatic, hydrophobic and van der Waals interactions. The resulting database of interactions reveals correlations that suggest the basis for the discrimination of RNA from DNA and for base-specific recognition. The data illustrate both major and minor interaction strategies employed by families of proteins such as tRNA synthetases, ribosomal proteins, or RNA recognition motifs with their RNA targets. Perhaps most surprisingly, specific RNA recognition appears to be mediated largely by interactions of amide and carbonyl groups in the protein backbone with the edge of the RNA base. In cases where a base accepts a proton, the dominant amino acid donor is arginine, whereas in cases where the base donates a proton, the predominant acceptor is the backbone carbonyl group, not a side-chain group. This is in marked contrast to DNA-protein interactions, which are governed predominantly by amino acid side-chain interactions with functional groups that are presented in the accessible major groove. RNA recognition often proceeds through loops, bulges, kinks and other irregular structures that permit use of all the RNA functional groups and this is seen throughout the protein-RNA interaction database.
Collapse
Affiliation(s)
- J Allers
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
44
|
Abstract
The core of Escherichia coli tRNA(Cys) is important for aminoacylation of the tRNA by cysteine-tRNA synthetase. This core differs from the common tRNA core by having a G15:G48, rather than a G15:C48 base-pair. Substitution of G15:G48 with G15:C48 decreases the catalytic efficiency of aminoacylation by two orders of magnitude. This indicates that the design of the core is not compatible with G15:C48. However, the core of E. coli tRNA(Gln), which contains G15:C48, is functional for cysteine-tRNA synthetase. Here, guided by the core of E. coli tRNA(Gln), we sought to test and identify alternative functional design of the tRNA(Cys) core that contains G15:C48. Although analysis of the crystal structure of tRNA(Cys) and tRNA(Gln) implicated long-range tertiary base-pairs above and below G15:G48 as important for a functional core, we showed that this was not the case. The replacement of tertiary interactions involving 9, 21, and 59 in tRNA(Cys) with those in tRNA(Gln) did not construct a functional core that contained G15:C48. In contrast, substitution of nucleotides in the variable loop adjacent to 48 of the 15:48 base-pair created functional cores. Modeling studies of a functional core suggests that the re-constructed core arose from enhanced stacking interactions that compensated for the disruption caused by the G15:C48 base-pair. The repacked tRNA core displayed features that were distinct from those of the wild-type and provided evidence that stacking interactions are alternative means than long-range tertiary base-pairs to a functional core for aminoacylation.
Collapse
MESH Headings
- Acylation
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- RNA, Transfer, Cys/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- Substrate Specificity
- Sulfuric Acid Esters/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- T Christian
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, BLSB 222, 19107, USA
| | | | | | | |
Collapse
|