1
|
Kamizono J, Nishikawaji Y, Nagano S, Ikeda M, Horikawa Y, Kamisasanuki T, Mitsui K, Matsuda E, Kosai KI. Triple-regulated conditionally replicating adenovirus for effective and safer treatment of peritoneal carcinomatosis. Biochem Biophys Res Commun 2024; 737:150894. [PMID: 39481189 DOI: 10.1016/j.bbrc.2024.150894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
There is no effective therapy for peritoneal carcinomatosis derived from gastric cancer. An ideal conditionally replicating adenovirus (CRA) that selectively replicates in and kills cancer cells has not been developed for gastric cancer-derived peritoneal carcinomatosis. Using our platform technology of CRA regulated and treating tumors with multiple factors (m-CRA), we generated two types of survivin-responsive m-CRAs, Surv.m-CRA-CMVp and Surv.m-CRA-CEAp, consisting of E1A downstream of the survivin promoter, and the mutated E1B gene downstream of the human cytomegalovirus immediate early gene enhancer/promoter and carcinoembryonic antigen promoter, respectively. Survivin mRNA was expressed at high and undetectable levels in two gastric cancer cells and eleven normal cells, respectively. Carcinoembryonic antigen was expressed at high and very low levels in MKN-45 gastric cancer and normal PrEC cells, respectively, and was not detected in other cell types. While both Surv.m-CRA-CEAp and Surv.m-CRA-CMVp exhibited potent cytotoxic effects on MKN-45 cells in vitro, Surv.m-CRA-CEAp significantly reduced cytotoxicity to normal cells compared to Surv.m-CRA-CMVp. Control mice that received an intraperitoneal injection of MKN-45 cells gradually lost body weight and died of peritoneal carcinomatosis within 98 days. In contrast, all mice receiving Surv.m-CRA-CEAp or Surv.m-CRA-CMVp-infected MKN-45 cells increased their body weight and survived 120 days. In conclusion, the triple-regulated Surv.m-CRA-CEAp enhances cancer specificity (i.e., safety) without reducing the potent therapeutic effect for carcinoembryonic antigen-positive gastric cancer-derived peritoneal carcinomatosis. The modified E1B promoter strategy of CRA facilitates the development of novel CRAs for the effective and safe treatment of a variety of refractory cancers.
Collapse
Affiliation(s)
- Junichi Kamizono
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Orthopaedic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Division of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Yuya Nishikawaji
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Clinical Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Division of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Minako Ikeda
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yoshiharu Horikawa
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Orthopaedic Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Taro Kamisasanuki
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaoru Mitsui
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Eriko Matsuda
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Innovative Therapy Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; South Kyushu Center for Innovative Medical Research and Application, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for Clinical and Translational Research, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Division of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
2
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Ingusci S, Hall BL, Goins WF, Cohen JB, Glorioso JC. Viral vectors for gene delivery to the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:59-81. [PMID: 39341663 DOI: 10.1016/b978-0-323-90120-8.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain diseases with a known or suspected genetic basis represent an important frontier for advanced therapeutics. The central nervous system (CNS) is an intricate network in which diverse cell types with multiple functions communicate via complex signaling pathways, making therapeutic intervention in brain-related diseases challenging. Nevertheless, as more information on the molecular genetics of brain-related diseases becomes available, genetic intervention using gene therapeutic strategies should become more feasible. There remain, however, several significant hurdles to overcome that relate to (i) the development of appropriate gene vectors and (ii) methods to achieve local or broad vector delivery. Clearly, gene delivery tools must be engineered for distribution to the correct cell type in a specific brain region and to accomplish therapeutic transgene expression at an appropriate level and duration. They also must avoid all toxicity, including the induction of inflammatory responses. Over the last 40 years, various types of viral vectors have been developed as tools to introduce therapeutic genes into the brain, primarily targeting neurons. This review describes the most prominent vector systems currently approaching clinical application for CNS disorders and highlights both remaining challenges as well as improvements in vector designs that achieve greater safety, defined tropism, and therapeutic gene expression.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie L Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Kim JH, Lee CH, Lee SW. Adenovirus VA RNAs impair maturation of primary microRNA. J Gene Med 2023; 25:e3564. [PMID: 37434327 DOI: 10.1002/jgm.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Adenovirus expresses two non-coding virus-associated (VA) RNAs: VA I RNA and VA II RNA. Adenovirus-expressed VA RNAs interfere with the microRNA (miRNA) pathway by competing with precursor miRNAs. The processing pattern of primary miRNA (pri-miRNA) and factors to affect its processing are not exactly known when using adenovirus for the delivery of pri-miRNA. METHODS To observe pri-miRNA processing, plasmid construct encoding pri-miRNA was co-transfected with VA I/II RNA expression plasmid, or recombinant adenovirus encoding pri-miRNA was generated and infected. Levels of miRNAs, VA I RNA and VA II RNA were analyzed by a quantitative real-time PCR (RT-PCR). VA I-II full-length RNA was analyzed by a RT-PCR. RNA immunoprecipitation analysis to pull-down the VA I-II full-length RNA binding with Drosha was conducted with Drosha antibody. RESULTS pri-miRNA was normally processed into mature miRNA when it was expressed in cells using plasmid. However, miRNA maturation was impaired when pri-miRNA was delivered and expressed using adenovirus. Of note, pri-miRNA processing was observed to be blocked by VA RNA expression. Such blocked processing could be recovered by introducing antisense RNA of VA RNA, anti-3'VA RNA. In addition, VA RNAs were transcribed into VA I-II full-length RNA, which was found to bind and sequester Drosha. CONCLUSIONS Adenovirus infection downregulated the processing of pri-miRNAs in cells, and such downregulation could be derived from VA I-II full-length RNAs in pri-miRNA-like form through competitively binding to Drosha protein. These results indicated that the expression of adenovirus VA RNAs should be inhibited for successful delivery and expression of pri-miRNA or shRNA in cells using adenovirus.
Collapse
Affiliation(s)
- Ji Hyun Kim
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
| | - Chang Ho Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Yadav R, Das PP, Sharma S, Sengupta S, Kumar D, Sagar R. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. Med Oncol 2023; 40:347. [PMID: 37930458 DOI: 10.1007/s12032-023-02195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cervical cancer is a huge worldwide health burden, impacting women in impoverished nations in particular. Traditional therapeutic approaches, such as surgery, radiation therapy, and chemotherapy, frequently result in systemic toxicity and ineffectiveness. Nanomedicine has emerged as a viable strategy for targeted delivery of therapeutic drugs to cancer cells while decreasing off-target effects and increasing treatment success in recent years. Nanomedicine for cervical cancer introduces several novel aspects that distinguish it from previous treatment options such as tailored delivery system, precision targeting, combination therapies, real-time monitoring and diverse nanocarriers to overcome the limitations of one another. This abstract presents recent advances in nanomedicine-based tailored delivery systems for the treatment of cervical cancer. Liposomes, polymeric nanoparticles, dendrimers, and carbon nanotubes have all been intensively studied for their ability to transport chemotherapeutic medicines, nucleic acids, and imaging agents to cervical cancer cells. Because of the way these nanocarriers are designed, they may cross biological barriers and preferentially aggregate at the tumor site, boosting medicine concentration and lowering negative effects on healthy tissues. Surface modification of nanocarriers with targeting ligands like antibodies, peptides, or aptamers improves specificity for cancer cells by identifying overexpressed receptors or antigens on the tumor surface. Furthermore, nanomedicine-based techniques have made it possible to co-deliver numerous therapeutic drugs, allowing for synergistic effects and overcoming drug resistance. In preclinical and clinical investigations, combination treatments comprising chemotherapeutic medicines, gene therapy, immunotherapy, and photodynamic therapy have showed encouraging results, opening up new avenues for individualized and multimodal treatment regimens. Furthermore, the inclusion of contrast agents and imaging probes into nanocarrier systems has enabled real-time monitoring and imaging of treatment response. This enables the assessment of therapy efficacy, the early diagnosis of recurrence, and the optimization of treatment regimens.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Siew ZY, Loh A, Segeran S, Leong PP, Voon K. Oncolytic Reoviruses: Can These Emerging Zoonotic Reoviruses Be Tamed and Utilized? DNA Cell Biol 2023. [PMID: 37015068 DOI: 10.1089/dna.2022.0561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
Collapse
Affiliation(s)
- Zhen Yun Siew
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alson Loh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sharrada Segeran
- School of Medicine, Australian National University, Canberra, Australia
| | - Pooi Pooi Leong
- Faculty of Medicine and Health Sciences, Universiti of Tunku Abdul Rahman, Kajang, Malaysia
| | - Kenny Voon
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
7
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
8
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
9
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
10
|
Doerner J, Sallard E, Zhang W, Solanki M, Liu J, Ehrke-Schulz E, Zirngibl H, Lieber A, Ehrhardt A. Novel Group C Oncolytic Adenoviruses Carrying a miRNA Inhibitor Demonstrate Enhanced Oncolytic Activity In Vitro and In Vivo. Mol Cancer Ther 2022; 21:460-470. [PMID: 35027480 PMCID: PMC9377726 DOI: 10.1158/1535-7163.mct-21-0240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Oncolytic adenoviruses (OAd) represent an attractive treatment option for cancer. Clinical efficacy of commonly utilized human adenovirus type 5 (Ad5)-based oncolytic viruses is limited by variable expression levels of the coxsackie- and adenovirus receptor (CAR) in tumor cells and high prevalence of neutralizing antibodies against human Ad5. However, previous studies have highlighted alternative human Ad types as promising candidates for oncolytic therapy. In this study, we generated novel OAds based on Ad1, -2, -5, and -6 derived from species C Ads. These OAds contain a 24-bp deletion in the early gene E1A for tumor selective replication and express the RNAi inhibitor P19. We examined these OAds for in vitro anticancer activity on various cancer cell lines derived from lung, colon, gynecologic, bone, and pancreatic carcinoma. In most surveyed cell lines, OAds based on Ad1, -2, and -6 demonstrated higher cell lysis capability compared with Ad5, suggesting enhanced oncolytic potential. Moreover, enhanced oncolytic activity was associated with P19 expression in a cell type-dependent manner. We further explored a A549 tumor xenograft mouse model to compare the novel OAds directly with Ad5 and H101, an oncolytic adenovirus used in clinical trials. These P19-containing OAds based on Ad1, -2, and -6 showed significantly decelerated tumor progression compared with H101, indicating better antitumor potency in vivo. Our studies provide a novel path for OAd development based on alternative Ad types with improved effectiveness by RNA interference suppression.
Collapse
Affiliation(s)
- Johannes Doerner
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Chair for Surgery II, Helios University Hospital Wuppertal, Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Manish Solanki
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Jing Liu
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hubert Zirngibl
- Chair for Surgery II, Helios University Hospital Wuppertal, Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.,Corresponding Author: Anja Ehrhardt, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Strasse 10, Witten 58453, Germany. Phone: +49 23902 926 273; Fax: +49 2302 926 44278; E-mail:
| |
Collapse
|
11
|
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7:e10258. [PMID: 35079633 PMCID: PMC8780015 DOI: 10.1002/btm2.10258] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapies are currently one of the most investigated therapeutic modalities in both the preclinical and clinical settings and have shown promise in treating a diverse spectrum of diseases. Gene therapies aim at introducing a gene material in target cells and represent a promising approach to cure diseases that were thought to be incurable by conventional modalities. In many cases, a gene therapy requires a vector to deliver gene therapeutics into target cells; viral vectors are among the most widely studied vectors owing to their distinguished advantages such as outstanding transduction efficiency. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes with many products approved for treating a range of diseases including cancer, infectious diseases and monogenic diseases. In addition, a number of active clinical trials are underway to further expand their therapeutic potential. In this review, we highlight the diversity of viral vectors, review approved products, and discuss the current clinical landscape of in vivo viral vector-based gene therapies. We have reviewed 13 approved products and their clinical applications. We have also analyzed more than 200 active trials based on various viral vectors and discussed their respective therapeutic applications. Moreover, we provide a critical analysis of the major translational challenges for in vivo viral vector-based gene therapies and discuss possible strategies to address the same.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
12
|
Lu SC, Hansen M, Hemsath J, Parrett B, Zell B, Barry MA. Modulating Oncolytic Adenovirus Immunotherapy by Driving Two Axes of the Immune System by Expressing 4-1BBL and CD40L. Hum Gene Ther 2021; 33:250-261. [PMID: 34731019 DOI: 10.1089/hum.2021.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses can have utility for direct killing of cancer cells but may also serve to activate the immune system against cancer cells. While viruses alone can serve as immune stimulators, there is great interest in arming oncolytic viruses with the genes for immune stimulatory proteins to amplify their effects. In this work, we have tested the efficacy of a conditionally-replicating adenoviruses (CRAds) with and without selected immunostimulatory payloads in an immune competent mouse model of melanoma. Empty CRAd657 was compared to the same vector expressing mouse CD40L or mouse 4-1BBL. When CRAd657-m4-1BBL and CRAd657-mCD40L were injected into B16-hCAR murine melanoma tumors, both single vectors delayed tumor growth and prolong survival when compared to empty CRAd657. However, combined injection of both CRAd-4-1BBL and CRAd-CD40L mediated significantly better control of tumor growth. All of the payloads increased immune cell infiltration into tumors and notably reduced expression of PD-1 exhaustion marker on T cells. However, recruitment of CD8+ T cells was higher with 4-1BBL alone while CD40L expression induced more CD4+ T cell infiltration. Notably, the combination of CRAd657-4-1BBL and CRAd657-CD40L induced higher anti-TRP-2 tumor-associated antigen T cell responses than empty or single gene vectors. This combination also caused depigmentation in areas adjacent to the tumor sites in more animals. These data indicate that driving two axes of the immune system with combined immune stimulatory payloads can lead to improved anti-cancer immune responses and better tumor control in an immune competent model of cancer.
Collapse
Affiliation(s)
- Shao-Chia Lu
- Mayo Clinic, 6915, Virology and Gene Therapy Graduate Program, First Street SW, Rochester, Minnesota, United States, 55905-0002;
| | - Michael Hansen
- Mayo Clinic, Medicine, Rochester, Minnesota, United States;
| | - Jack Hemsath
- Mayo Clinic, Medicine, Rochester, Minnesota, United States;
| | - Brian Parrett
- Mayo Clinic, Medicine, Rochester, Minnesota, United States;
| | - Brady Zell
- Mayo Clinic, Medicine, Rochester, Minnesota, United States;
| | | |
Collapse
|
13
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Hum Gene Ther 2021; 32:1481-1494. [PMID: 34155929 DOI: 10.1089/hum.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZD55-IL-24 is an armed oncolytic adenovirus similar but superior to ONYX-015. Virotherapeutic strategies using ZD55-IL-24 have been demonstrated to be effective against several cancer types. However, it is unclear whether the traditional administration strategy is able to exert the maximal antitumor efficacy of ZD55-IL-24. In this study, we sought to optimize the administration strategy of ZD55-IL-24 in both A375-bearing immunocompromised mouse model and B16-bearing immunocompetent mouse model. Although the underlying antitumor mechanisms are quite different, the obtained results are similar in these two mouse tumor models. We find that the antitumor efficacy of ZD55-IL-24 increases as injection times increase in both of these two models. However, no obvious increase of efficacy is observed as the dose of each injection increases. Our further investigation reveals that the administration strategy of sustained ZD55-IL-24 therapy can achieve a better therapeutic effect than the traditional administration strategy of short-term ZD55-IL-24 therapy. Furthermore, there is no need to inject every day; every 2 or 3 days of injection achieves an equivalent therapeutic efficacy. Finally, we find that the sustained rather than the traditional short-term ZD55-IL-24 therapy can synergize with anti-PD-1 therapy to reject tumors in B16-bearing immunocompetent mouse model. These findings suggest that the past administration strategy of ZD55-IL-24 is in fact suboptimal and the antitumor efficacy can be further enhanced through administration strategy optimization. This study might shed some light on the development of clinically applicable administration regimens for ZD55-IL-24 therapy.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, China; and
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Puigdelloses M, Garcia-Moure M, Labiano S, Laspidea V, Gonzalez-Huarriz M, Zalacain M, Marrodan L, Martinez-Velez N, De la Nava D, Ausejo I, Hervás-Stubbs S, Herrador G, Chen Z, Hambardzumyan D, Patino Garcia A, Jiang H, Gomez-Manzano C, Fueyo J, Gállego Pérez-Larraya J, Alonso M. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. J Immunother Cancer 2021; 9:jitc-2021-002644. [PMID: 34281988 PMCID: PMC8291319 DOI: 10.1136/jitc-2021-002644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 01/09/2023] Open
Abstract
Background Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. Methods The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. Results Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as characterized by increases in the expression of Programmed Death 1 (PD-1) on T cells and Programmed Death-ligand 1 (PD-L1) on different myeloid cell populations. Because Delta-24-ACT did not induce an immune memory response in long-term survivors, as indicated by rechallenge experiments, we combined Delta-24-ACT with an anti-PD-L1 antibody. In GL261 tumor-bearing mice, this combination showed superior efficacy compared with either monotherapy. Specifically, this combination not only increased the median survival but also generated immune memory, which allowed long-term survival and thus tumor rejection on rechallenge. Conclusions In summary, our data demonstrated the efficacy of Delta-24-ACT combined with a PD-L1 inhibitor in murine glioma models. Moreover, the data underscore the potential to combine local immunovirotherapy with ICIs as an effective therapy for poorly infiltrated tumors.
Collapse
Affiliation(s)
- Montserrat Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Lucia Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel De la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iker Ausejo
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program in Immunology and Immunotherapy, Foundation for the Applied Medical Research, Pamplona, Spain
| | - Guillermo Herrador
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - ZhiHong Chen
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institut and Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, New York, USA
| | - Ana Patino Garcia
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain.,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Hong Jiang
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of NeuroOncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain .,Programs in Solid Tumors and Neuroscience, Foundation for the Applied Medical Research, Pamplona, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Clarkin RG, Del Papa J, Poulin KL, Parks RJ. The genome position of a therapeutic transgene strongly influences the level of expression in an armed oncolytic human adenovirus vector. Virology 2021; 561:87-97. [PMID: 34171766 DOI: 10.1016/j.virol.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Efficacy of oncolytic, conditionally-replicating adenovirus (CRAd) vectors can be enhanced by "arming" the vector with therapeutic transgenes. We examined whether inclusion of an intact early region 3 (E3) and the reptilian reovirus fusogenic p14 fusion-associated small transmembrane (FAST) protein enhanced vector efficacy. The p14 FAST transgene was cloned between the fiber gene and E4 region, with an upstream splice acceptor for replication-dependent expression from the major late promoter. In A549 cells, this vector expressed p14 FAST protein at very low levels, and showed a poor ability to mediate cell-cell fusion, relative to a similar vector encoding p14 FAST within the E3 deletion. Although expression of E3 proteins from the CRAd increased plaque size, poor expression of p14 FAST protein compromised the fusogenic capacity of the vector. Thus, location of a therapeutic transgene within a CRAd can significantly impact expression of the transgene and is an important consideration in vector design.
Collapse
Affiliation(s)
- Ryan G Clarkin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Del Papa
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
16
|
Mozaffari Nejad AS, Noor T, Munim ZH, Alikhani MY, Ghaemi A. A bibliometric review of oncolytic virus research as a novel approach for cancer therapy. Virol J 2021; 18:98. [PMID: 33980264 PMCID: PMC8113799 DOI: 10.1186/s12985-021-01571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, oncolytic viruses (OVs) have drawn attention as a novel therapy to various types of cancers, both in clinical and preclinical cancer studies all around the world. Consequently, researchers have been actively working on enhancing cancer therapy since the early twentieth century. This study presents a systematic review of the literature on OVs, discusses underlying research clusters and, presents future directions of OVs research. Methods A total of 1626 published articles related to OVs as cancer therapy were obtained from the Web of Science (WoS) database published between January 2000 and March 2020. Various aspects of OVs research, including the countries/territories, institutions, journals, authors, citations, research areas, and content analysis to find trending and emerging topics, were analysed using the bibliometrix package in the R-software. Results In terms of the number of publications, the USA based researchers were the most productive (n = 611) followed by Chinese (n = 197), and Canadian (n = 153) researchers. The Molecular Therapy journal ranked first both in terms of the number of publications (n = 133) and local citations (n = 1384). The most prominent institution was Mayo Clinic from the USA (n = 117) followed by the University of Ottawa from Canada (n = 72), and the University of Helsinki from Finland (n = 63). The most impactful author was Bell J.C with the highest number of articles (n = 67) and total local citations (n = 885). The most impactful article was published in the Cell journal. In addition, the latest OVs research mainly builds on four research clusters. Conclusion The domain of OVs research has increased at a rapid rate from 2000 to 2020. Based on the synthesis of reviewed studies, adenovirus, herpes simplex virus, reovirus, and Newcastle disease virus have shown potent anti-cancer activity. Developed countries such as the USA, Canada, the UK, and Finland were the most productive, hence, contributed most to this field. Further collaboration will help improve the clinical research translation of this therapy and bring benefits to cancer patients worldwide.
Collapse
Affiliation(s)
| | - Tehjeeb Noor
- Faculty of Medicine, University of Bergen, Horten, Norway
| | - Ziaul Haque Munim
- Faculty of Technology, Natural and Maritime Sciences, University of South-Eastern Norway, Horten, Norway
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Zafar S, Basnet S, Launonen IM, Quixabeira DCA, Santos J, Hemminki O, Malmstedt M, Cervera-Carrascon V, Aronen P, Kalliokoski R, Havunen R, Rannikko A, Mirtti T, Matikainen M, Kanerva A, Hemminki A. Oncolytic Adenovirus Type 3 Coding for CD40L Facilitates Dendritic Cell Therapy of Prostate Cancer in Humanized Mice and Patient Samples. Hum Gene Ther 2021; 32:192-202. [PMID: 33050725 PMCID: PMC10112462 DOI: 10.1089/hum.2020.222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines have shown some degree of success for the treatment of prostate cancer (PC). However, the highly immunosuppressive tumor microenvironment leads to DC dysfunction, which has limited the effectiveness of these vaccines. We hypothesized that use of a fully serotype 3 oncolytic adenovirus (Ad3-hTERT-CMV-hCD40L; TILT-234) could stimulate DCs in the prostate tumor microenvironment by expressing CD40L. Activated DCs would then activate cytotoxic T cells against the tumor, resulting in therapeutic immune responses. Oncolytic cell killing due to cancer cell-specific virus replication adds to antitumor effects but also enhances the immunological effect by releasing tumor epitopes for sampling by DC, in the presence of danger signals. In this study, we evaluated the companion effect of Ad3-hTERT-CMV-hCD40L and DC-therapy in a humanized mouse model and PC histocultures. Treatment with Ad3-hTERT-CMV-hCD40L and DC resulted in enhanced antitumor responses in vivo. Treatment of established histocultures with Ad3-hTERT-CMV-hCD40L induced DC maturation and notable increase in proinflammatory cytokines. In conclusion, Ad3-hTERT-CMV-hCD40L is able to modulate an immunosuppressive prostate tumor microenvironment and improve the effectiveness of DC vaccination in PC models and patient histocultures, setting the stage for clinical translation.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Inga-Maria Launonen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Dafne Carolina Alves Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Joao Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,Division of Urology, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Pasi Aronen
- Biostatistics Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Antti Rannikko
- Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | | | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
18
|
O'Bryan SM, Mathis JM. CXCL12 Retargeting of an Oncolytic Adenovirus Vector to the Chemokine CXCR4 and CXCR7 Receptors in Breast Cancer. ACTA ACUST UNITED AC 2021; 12:311-336. [PMID: 34178415 DOI: 10.4236/jct.2021.126029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Breast cancer is the most frequently diagnosed cancer in women under 60, and the second most diagnosed cancer in women over 60. While significant progress has been made in developing targeted therapies for breast cancer, advanced breast cancer continues to have high mortality, with poor 5-year survival rates. Thus, current therapies are insufficient in treating advanced stages of breast cancer; new treatments are sorely needed to address the complexity of advanced-stage breast cancer. Oncolytic virotherapy has been explored as a therapeutic approach capable of systemic administration, targeting cancer cells, and sparing normal tissue. In particular, oncolytic adenoviruses have been exploited as viral vectors due to their ease of manipulation, production, and demonstrated clinical safety profile. In this study, we engineered an oncolytic adenovirus to target the chemokine receptors CXCR4 and CXCR7. The overexpression of CXCR4 and CXCR7 is implicated in the initiation, survival, progress, and metastasis of breast cancer. Both receptors bind to the ligand, CXCL12 (SDF-1), which has been identified to play a crucial role in the metastasis of breast cancer cells. This study incorporated a T4 fibritin protein fused to CXCL12 into the tail domain of an adenovirus fiber to retarget the vector to the CXCR4 and CXCR7 chemokine receptors. We showed that the modified virus targets and infects CXCR4- and CXCR7-overexpressing breast cancer cells more efficiently than a wild-type control vector. In addition, the substitution of the wild-type fiber and knob with the modified chimeric fiber did not interfere with oncolytic capability. Overall, the results of this study demonstrate the feasibility of retargeting adenovirus vectors to chemokine receptor-positive tumors.
Collapse
Affiliation(s)
- Samia M O'Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana USA.,University of North Texas Health Science Center, Graduate School of Biomedical Sciences, Fort Worth, Texas, USA
| |
Collapse
|
19
|
Hu HJ, Liang X, Li HL, Du CM, Hao JL, Wang HY, Gu JF, Ni AM, Sun LY, Xiao J, Hu JQ, Yuan H, Dai YS, Jin XT, Zhang KJ, Liu XY. The armed oncolytic adenovirus ZD55-IL-24 eradicates melanoma by turning the tumor cells from the self-state into the nonself-state besides direct killing. Cell Death Dis 2020; 11:1022. [PMID: 33257647 PMCID: PMC7705698 DOI: 10.1038/s41419-020-03223-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
ZD55-IL-24 is similar but superior to the oncolytic adenovirus ONYX-015, yet the exact mechanism underlying the observed therapeutic effect is still not well understood. Here we sought to elucidate the underlying antitumor mechanism of ZD55-IL-24 in both immunocompetent and immunocompromised mouse model. We find that ZD55-IL-24 eradicates established melanoma in B16-bearing immunocompetent mouse model not through the classic direct killing pathway, but mainly through the indirect pathway of inducing systemic antitumor immunity. Inconsistent with the current prevailing view, our further results suggest that ZD55-IL-24 can induce antitumor immunity in B16-bearing immunocompetent mouse model in fact not due to its ability to lyse tumor cells and release the essential elements, such as tumor-associated antigens (TAAs), but due to its ability to put a “nonself” label in tumor cells and then turn the tumor cells from the “self” state into the “nonself” state without tumor cell death. The observed anti-melanoma efficacy of ZD55-IL-24 in B16-bearing immunocompetent mouse model was practically caused only by the viral vector. In addition, we also notice that ZD55-IL-24 can inhibit tumor growth in B16-bearing immunocompetent mouse model through inhibiting angiogenesis, despite it plays only a minor role. In contrast to B16-bearing immunocompetent mouse model, ZD55-IL-24 eliminates established melanoma in A375-bearing immunocompromised mouse model mainly through the classic direct killing pathway, but not through the antitumor immunity pathway and anti-angiogenesis pathway. These findings let us know ZD55-IL-24 more comprehensive and profound, and provide a sounder theoretical foundation for its future modification and drug development.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, 361023, Xiamen, China
| | - Chun-Ming Du
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jia-Li Hao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hao Yuan
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yan-Song Dai
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Xiao-Ting Jin
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
20
|
Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Efficient drug and gene delivery to liver fibrosis: rationale, recent advances, and perspectives. Acta Pharm Sin B 2020; 10:1279-1293. [PMID: 32874828 PMCID: PMC7451940 DOI: 10.1016/j.apsb.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis results from chronic damages together with an accumulation of extracellular matrix, and no specific medical therapy is approved for that until now. Due to liver metabolic capacity for drugs, the fragility of drugs, and the presence of insurmountable physiological obstacles in the way of targeting, the development of efficient drug delivery systems for anti-fibrotics seems vital. We have explored articles with a different perspective on liver fibrosis over the two decades, then collected and summarized the information by providing corresponding in vitro and in vivo cases. We have discussed the mechanism of hepatic fibrogenesis with different ways of fibrosis induction in animals. Furthermore, the critical chemical and herbal anti-fibrotics, biological molecules such as micro-RNAs, siRNAs, and growth factors, which can affect cell division and differentiation, are mentioned. Likewise, drug and gene delivery and therapeutic systems on in vitro and in vivo models are summarized in the data tables. This review article enlightens recent advances in emerging drugs and nanocarriers and represents perspectives on targeting strategies employed in liver fibrosis treatment.
Collapse
Affiliation(s)
- Somayeh Mahdinloo
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Seyed Hossein Kiaie
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Ala Amiri
- Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
21
|
Hossain E, Habiba U, Yanagawa-Matsuda A, Alam A, Ahmed I, Towfik Alam M, Yasuda M, Higashino F. Advantages of Using Paclitaxel in Combination with Oncolytic Adenovirus Utilizing RNA Destabilization Mechanism. Cancers (Basel) 2020; 12:cancers12051210. [PMID: 32408515 PMCID: PMC7281177 DOI: 10.3390/cancers12051210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a novel approach to cancer therapy. Ad-fosARE is a conditionally replicative adenovirus engineered by inserting AU-rich elements (ARE) in the 3'-untranslated region of the E1A gene. In this study, we examined the oncolytic activity of Ad-fosARE and used it in a synergistic combination with the chemotherapeutic agent paclitaxel (PTX) for treating cancer cells. The expression of E1A was high in cancer cells due to stabilized E1A-ARE mRNA. As a result, the efficiency of its replication and cytolytic activity in cancer cells was higher than in normal cells. PTX treatment increased the cytoplasmic HuR relocalization in cancer cells, enhanced viral replication through elevated E1A expression, and upregulated CAR (Coxsackie-adenovirus receptor) required for viral uptake. Furthermore, PTX altered the instability of microtubules by acetylation and detyrosination, which is essential for viral internalization and trafficking to the nucleus. These results indicate that PTX can provide multiple advantages to the efficacy of Ad-fosARE both in vitro and in vivo, and provides a basis for designing novel clinical trials. Thus, this virus has a lot of benefits that are not found in other oncolytic viruses. The virus also has the potential for treating PXT-resistant cancers.
Collapse
Affiliation(s)
- Elora Hossain
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
| | - Umma Habiba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Aya Yanagawa-Matsuda
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
| | - Arefin Alam
- Department of Restorative Dentistry, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan;
| | - Ishraque Ahmed
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
| | - Motoaki Yasuda
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan;
| | - Fumihiro Higashino
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
- Correspondence: ; Tel.: +81-(0)11-706-4237
| |
Collapse
|
22
|
Chen SH, Sun JM, Chen BM, Lin SC, Chang HF, Collins S, Chang D, Wu SF, Lu YC, Wang W, Chen TC, Kasahara N, Wang HE, Tai CK. Efficient Prodrug Activator Gene Therapy by Retroviral Replicating Vectors Prolongs Survival in an Immune-Competent Intracerebral Glioma Model. Int J Mol Sci 2020; 21:ijms21041433. [PMID: 32093290 PMCID: PMC7073086 DOI: 10.3390/ijms21041433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Shih-Han Chen
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (S.-H.C.); (J.-M.S.)
| | - Jui-Ming Sun
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (S.-H.C.); (J.-M.S.)
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Bing-Mao Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Sheng-Che Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Hao-Fang Chang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Sara Collins
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.C.); (N.K.)
| | - Deching Chang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Yin-Che Lu
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Weijun Wang
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (W.W.); (T.C.C.)
| | - Thomas C. Chen
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (W.W.); (T.C.C.)
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.C.); (N.K.)
- Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (H.-E.W.); (C.-K.T.)
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
- Correspondence: (H.-E.W.); (C.-K.T.)
| |
Collapse
|
23
|
Le TMD, Jung BK, Li Y, Duong HTT, Nguyen TL, Hong JW, Yun CO, Lee DS. Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater Sci 2019; 7:4195-4207. [PMID: 31386700 DOI: 10.1039/c9bm00992b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A dual pH- and temperature-responsive physically crosslinked and injectable hydrogel system was developed for efficient and long-term delivery of oncolytic adenoviruses (Ads). Three different types of physically crosslinked hydrogels with different chemical compositions and properties were prepared. These hydrogels with good biocompatibility can be injected at pH 9.0 and room temperature and rapidly form a gel under body or tumor microenvironment conditions. Ads encapsulated in hydrogels were released gradually without burst release. Moreover, these physically crosslinked hydrogels provided a protective environment for Ads and maintained their bioactivity for a long period of time. Compared to naked Ads, Ads protected by these physically crosslinked hydrogels showed strong cytotoxicity to cancer cells even after 11 days. The Ad-loaded hydrogel system also exhibited enhanced and long-term antitumor therapeutic effects in human xenograft tumor models. Due to these outstanding properties, Ad-loaded injectable hydrogels might have potential for long-term cancer treatment.
Collapse
Affiliation(s)
- Thai Minh Duy Le
- School of Chemical Engineering and Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Bo-Kyeong Jung
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yi Li
- School of Chemical Engineering and Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Huu Thuy Trang Duong
- School of Chemical Engineering and Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Thanh Loc Nguyen
- School of Chemical Engineering and Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jin Woo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea. and GeneMedicine Co., Ltd, Seoul, 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea. and GeneMedicine Co., Ltd, Seoul, 04763, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering and Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Sato-Dahlman M, Yamamoto M. The Development of Oncolytic Adenovirus Therapy in the Past and Future - For the Case of Pancreatic Cancer. Curr Cancer Drug Targets 2019; 18:153-161. [PMID: 28228084 DOI: 10.2174/1568009617666170222123925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is an aggressive malignant disease and the efficacy of current treatments for unresectable diseases is quite limited despite recent advances. Gene therapy /virotherapy strategies may provide new options for the treatment of various cancers including pancreatic cancer. Oncolytic adenovirus shows an antitumoral effect via its intratumoral amplification and strong cytocidal effect in a variety of cancers and it has been employed for the development of potent oncolytic virotherapy agents for pancreatic cancer. Our ultimate goal is to develop an oncolytic adenovirus enabling the treatment of patients with advanced or spread diseases by systemic injection. Systemic application of oncolytic therapy mandates more efficient and selective gene delivery and needs to embody sufficient antitumor effect even with limited initial delivery to the tumor location. In this review, the current status of oncolytic adenoviruses from the viewpoints of vector design and potential strategies to overcome current obstacles for its clinical application will be described. We will also discuss the efforts to improve the antitumor activity of oncolytic adenovirus, in in vivo animal models, and the combination therapy of oncolytic adenovirus with radiation and chemotherapy.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| | - Masato Yamamoto
- Division of Basic and Translational Medicine, Department of Surgery, University of Minnesota, MN, United States
| |
Collapse
|
26
|
Schlottmann F, Strauss S, Hake K, Vogt PM, Bucan V. Down-Regulation of MHC Class I Expression in Human Keratinocytes Using Viral Vectors Containing US11 Gene of Human Cytomegalovirus and Cultivation on Bovine Collagen-Elastin Matrix (Matriderm ®): Potential Approach for an Immune-Privileged Skin Substitute. Int J Mol Sci 2019; 20:E2056. [PMID: 31027326 PMCID: PMC6540026 DOI: 10.3390/ijms20092056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Skin transplantation, especially in burn patients, is still challenging because surgeons are faced with limited disposability of autologous donor side material. The in vitro culture of keratinocytes has become an important reconstructive option. However, only non-immunogenic allogenic keratinocytes offer the opportunity to develop a skin graft that can overcome rejection. The purpose of the study was to develop targeted gene modification of keratinocytes in order to reduce immunogenicity for the use as allogenic transplantable skin graft by decreasing the expression of MHC class I. To reduce MHC class I expression, viral vectors containing the US11 gene of human cytomegalovirus were generated and tested on their functionality using Western blotting, indirect immunofluorescence staining, and flow cytometry. Transfected keratinocytes were seeded on commercially available bovine collagen-elastin matrices and further cultured for histological and cell survival assays. Results showed transient down-regulation of MHC class I after 24 h post-transfection, with recovery of MHC class I expression after 48 h. Histological assessments showed long-term cell survival as well as histological patterns comparable to epidermal layers of healthy human skin. The data postulates the potential application of US11 transfected keratinocytes as an approach towards an immune-privileged skin substitute. Nevertheless, further studies and data are needed.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Kevin Hake
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
27
|
Zafar S, Sorsa S, Siurala M, Hemminki O, Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De Gruijl T, Kanerva A, Hemminki A. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology 2018; 7:e1490856. [PMID: 30386680 PMCID: PMC6207416 DOI: 10.1080/2162402x.2018.1490856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells ex vivo and in vivo. Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- Division of Urology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Hongjie Wang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andre Lieber
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Tanja De Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Kanerva
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
28
|
Kubo S, Takagi-Kimura M, Kasahara N. Efficient tumor transduction and antitumor efficacy in experimental human osteosarcoma using retroviral replicating vectors. Cancer Gene Ther 2018; 26:41-47. [PMID: 30042500 PMCID: PMC6760559 DOI: 10.1038/s41417-018-0037-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/12/2018] [Accepted: 05/24/2018] [Indexed: 11/09/2022]
Abstract
Retroviral replicating vectors (RRVs) have achieved efficient tumor transduction and enhanced therapeutic benefit in a wide variety of cancer models. Here, we evaluated two different RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which utilize different cellular receptors (PiT-2 and PiT-1, respectively) for viral entry, in human osteosarcoma cells. Quantitative RT-PCR showed that low levels of expression of both receptors were observed in normal and non-malignant cells. However, high PiT-2 (for AMLV) and low PiT-1 (for GALV) expression was observed in most osteosarcoma cell lines. Accordingly, AMLV expressing the green fluorescent protein gene infected and replicated more efficiently than GALV in most osteosarcoma cell lines. Furthermore, RRVs expressing the cytosine deaminase prodrug activator gene showed differential cytotoxicity that correlated with the results of viral spread. AMLV-RRV-mediated prodrug activator gene therapy achieved significant inhibition of subcutaneous MG-63 tumor growth over GALV in nude mice. These data indicate that AMLV vectors predominate over GALV in human osteosarcoma cells. Moreover, our findings support the potential utility of the two RRVs in personalized cancer virotherapy on the basis of receptor expression.
Collapse
Affiliation(s)
- Shuji Kubo
- Unit of Molecular and Genetic Therapeutics, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Misato Takagi-Kimura
- Unit of Molecular and Genetic Therapeutics, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | - Noriyuki Kasahara
- Departments of Cell Biology and Pathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
29
|
Oncolytic Viruses as Therapeutic Tools for Pediatric Brain Tumors. Cancers (Basel) 2018; 10:cancers10070226. [PMID: 29987215 PMCID: PMC6071081 DOI: 10.3390/cancers10070226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, we have seen an important progress in our comprehension of the molecular basis of pediatric brain tumors (PBTs). However, they still represent the main cause of death by disease in children. Due to the poor prognosis of some types of PBTs and the long-term adverse effects associated with the traditional treatments, oncolytic viruses (OVs) have emerged as an interesting therapeutic option since they displayed safety and high tolerability in pre-clinical and clinical levels. In this review, we summarize the OVs evaluated in different types of PBTs, mostly in pre-clinical studies, and we discuss the possible future direction of research in this field. In this sense, one important aspect of OVs antitumoral effect is the stimulation of an immune response against the tumor which is necessary for a complete response in preclinical immunocompetent models and in the clinic. The role of the immune system in the response of OVs needs to be evaluated in PBTs and represents an experimental challenge due to the limited immunocompetent models of these diseases available for pre-clinical research.
Collapse
|
30
|
Hazini A, Pryshliak M, Brückner V, Klingel K, Sauter M, Pinkert S, Kurreck J, Fechner H. Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Hum Gene Ther 2018; 29:1301-1314. [PMID: 29739251 DOI: 10.1089/hum.2018.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded RNA virus of the picornavirus family, has been described as a novel oncolytic virus. However, the CVB3 strain used induced hepatitis and myocarditis in vivo. It was hypothesized that oncolytic activity and safety of CVB3 depends on the virus strain and its specific receptor tropism. Different laboratory strains of CVB3 (Nancy, 31-1-93, and H3), which use the coxsackievirus and adenovirus receptor (CAR), and the strain PD, which uses N- and 6-O-sulfated heparan sulfate (HS) for entry into the cells, were investigated for their potential to lyse tumor cells and for their safety profile. The investigations were carried out in colorectal carcinoma. In vitro investigations showed variable infection efficiency and lysis of colorectal carcinoma cell lines by the CVB3 strains. The most efficient strain was PD, which was the only one that could lyse all investigated colorectal carcinoma cell lines. Lytic activity of CAR-dependent CVB3 did not correlate with CAR expression on cells, whereas there was a clear correlation between lytic activity of PD and its ability to bind to HS at the cell surface of colorectal carcinoma cells. Intratumoral injection of Nancy, 31-1-93, or PD into subcutaneous colorectal DLD1 cell tumors in BALB/c nude mice resulted in strong inhibition of tumor growth. The effect was seen in the injected tumor, as well as in a non-injected, contralateral tumor. However, all animals treated with 31-1-93 and Nancy developed systemic infection and died or were moribund and sacrificed within 8 days post virus injection. In contrast, five of the six animals treated with PD showed no signs of a systemic viral infection, and PD was not detected in any organ. The data demonstrate the potential of PD as a new oncolytic virus and HS-binding of PD as a key feature of oncolytic activity and improved safety.
Collapse
Affiliation(s)
- Ahmet Hazini
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany .,2 Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University , Davutpasa Campus, Istanbul, Turkey
| | - Markian Pryshliak
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Vanessa Brückner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Karin Klingel
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Martina Sauter
- 3 Department of Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen , Tübingen, Germany
| | - Sandra Pinkert
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Jens Kurreck
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| | - Henry Fechner
- 1 Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin, Germany
| |
Collapse
|
31
|
Sato-Dahlman M, Wirth K, Yamamoto M. Role of Gene Therapy in Pancreatic Cancer-A Review. Cancers (Basel) 2018; 10:E103. [PMID: 29614005 PMCID: PMC5923358 DOI: 10.3390/cancers10040103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/05/2023] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) has remained essentially unchanged for decades and its relative contribution to overall cancer death is projected to only increase in the coming years. Current treatment for PDAC includes aggressive chemotherapy and surgical resection in a limited number of patients, with median survival of optimal treatment rather dismal. Recent advances in gene therapies offer novel opportunities for treatment, even in those with locally advanced disease. In this review, we summarize emerging techniques to the design and administration of virotherapy, synthetic vectors, and gene-editing technology. Despite these promising advances, shortcomings continue to exist and here will also be highlighted those approaches to overcoming obstacles in current laboratory and clinical research.
Collapse
Affiliation(s)
| | - Keith Wirth
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Surgery BTR, MMC 195, 8195F, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Liu F, Xu K, Yang H, Li Y, Liu J, Wang J, Guan Z. A novel approach to glioma therapy using an oncolytic adenovirus with two specific promoters. Oncol Lett 2017; 15:3362-3368. [PMID: 29435080 DOI: 10.3892/ol.2017.7684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor in adults, where more than half of the cases are malignant, and the prognosis is poor. The early viral 1A (E1A) protein has been widely recognized to be essential for adenoviral replication and production of progeny virions in human cells, a process that is regulated by human telomerase reverse transcriptase. The p53 gene, as a tumor suppressor, regulates diverse cellular processes, including cell cycle arrest, cell autophagy, senescence and apoptosis. Dysfunction of the p53 pathways is common in malignant gliomas. Exogenous expression of p53 during adenovirus replication in human cancer cells may accelerate cell death and improve the release of early virus progeny. In the present study, a conditionally replicative adenovirus (CRAd) Ad-Tp-E1A-Gp-p53, which expressed functional p53 protein when replicating in cancer cells, was constructed. Next, the level of p53 expression in U251 cells was determined by western blot analysis, and the inhibitory effect of Ad-Tp-E1A-Gp-p53 on U251 cells was detected via an MTT assay. The results indicated that p53 expression was upregulated with an increase in the multiplicity of infection (MOI) of Ad-Tp-E1A-Gp-p53. Additionally, the inhibitory effects of Ad-Tp-E1A-Gp-p53 in different groups were significantly different (P<0.05), with the inhibition ratio of the experimental groups being higher, compared with the control group (P<0.05). Furthermore, the inhibition ratio increased with increases in the MOI of Ad-Tp-E1A-Gp-p53. Therefore, the expression of functional p53 and that of E1A may increase the potency of CRAd, and overexpression of p53 through CRAd is a promising approach to more effective treatments in a number of human cancer types.
Collapse
Affiliation(s)
- Feng Liu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Kaya Xu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Hua Yang
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yuming Li
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Jian Liu
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Jixiang Wang
- Department of Neurosurgery, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Zhizhong Guan
- Department of Molecular Biology, The Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
33
|
Targeting polysialic acid-abundant cancers using oncolytic adenoviruses with fibers fused to active bacteriophage borne endosialidase. Biomaterials 2017; 158:86-94. [PMID: 29304405 DOI: 10.1016/j.biomaterials.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 11/24/2022]
Abstract
Genetic replacement of adenoviral fiber knobs by ligands that enable tumor specific targeting of oncolytic adenoviruses is challenging because the fiber knob contributes to virus assembly. Here, we present a novel concept by describing stable recombinant adenoviruses with tumor specific infection mode. The fiber knob was replaced by endosialidaseNF (endoNF), the tailspike protein of bacteriophage K1F. EndoNF recognizes polysialic acid, an oncofetal antigen characteristic for high malignant tumors of neuroendocrine origin. An intramolecular chaperone contained in endoNF warrants folding and compensates for the knob function in virus assembly. Obtained recombinant viruses demonstrated polysialic acid dependent infection modes, strong oncolytic capacity with polysialic acid positive cells in culture and a high potential to inhibit tumor growth in a therapeutic mouse model of subcutaneous neuroblastoma. With a single genetic manipulation we achieved ablation of the fiber knob, introduction of a tumor specific ligand, and folding control over the chimeric fiber construct.
Collapse
|
34
|
Kasala D, Lee SH, Hong JW, Choi JW, Nam K, Chung YH, Kim SW, Yun CO. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 2017; 145:207-222. [DOI: 10.1016/j.biomaterials.2017.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
|
35
|
Hohl A, Ramms AS, Dohmen C, Mantwill K, Bielmeier A, Kolk A, Ruppert A, Nawroth R, Holm PS. Adenovirus Particle Quantification in Cell Lysates Using Light Scattering. Hum Gene Ther Methods 2017; 28:268-276. [DOI: 10.1089/hgtb.2017.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Adrian Hohl
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Anne Sophie Ramms
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | | | - Klaus Mantwill
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Andrea Bielmeier
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universität, München, Germany
| | | | - Roman Nawroth
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Per Sonne Holm
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
- XVir Therapeutics GmbH, München, Germany
| |
Collapse
|
36
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Jung KH, Choi IK, Lee HS, Yan HH, Son MK, Ahn HM, Hong J, Yun CO, Hong SS. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett 2017; 396:155-166. [PMID: 28315430 DOI: 10.1016/j.canlet.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is a highly lethal disease for which limited therapeutic options are available. Pancreatic cancer exhibits a pronounced collagen-rich stromal reaction, which induces chemoresistance by inhibiting drug diffusion into the tumor. Complementary treatment with oncolytic virus such as an oncolytic adenovirus expressing relaxin (YDC002) is an innovative treatment option for combating chemoresistant pancreatic cancer. Here, we examined the ability of combined treatment with gemcitabine and YDC002, which degrades extracellular matrix (ECM), to efficiently treat chemoresistant and desmoplastic pancreatic cancer. Gemcitabine alone exhibited similarly low cytotoxicity toward pancreatic cancer cells throughout the concentration range (1-50 μM) used, whereas the combination of YDC002 and a subtherapeutic dose of gemcitabine (0.01-0.05 μM) resulted in potent anticancer effects through effective induction of apoptosis. Importantly, YDC002 combined with gemcitabine significantly attenuated the expression of major ECM components including collagens, fibronectin, and elastin in tumor spheroids and xenograft tumors compared with gemcitabine alone, resulting in potent induction of apoptosis, gemcitabine-mediated cytotoxicity, and an oncolytic effect through degradation of tumor ECM. Our results demonstrate that YDC002 can selectively degrade aberrant ECM and attenuate the ECM-induced chemoresistance observed in desmoplastic pancreatic tumor, resulting in a potent antitumor effect through effective induction of apoptosis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hee-Seung Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, 133-791, Seoul, Republic of Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea.
| |
Collapse
|
39
|
Gardeck AM, Sheehan J, Low WC. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther 2017; 17:457-474. [DOI: 10.1080/14712598.2017.1296132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew M. Gardeck
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jordan Sheehan
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
40
|
Kaczorowski A, Hammer K, Liu L, Villhauer S, Nwaeburu C, Fan P, Zhao Z, Gladkich J, Groß W, Nettelbeck DM, Herr I. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget 2016; 7:9046-59. [PMID: 26824985 PMCID: PMC4891025 DOI: 10.18632/oncotarget.7031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers. The infection competence, tumor migration, and oncolysis were measured in cancer stem cell (CSC) models of primary and established tumor cells and in tumor xenografts. All OAds infected and lysed CSCs and prevented colony formation. MSCs migrated into PDA spheroids without impaired homing capacity. Xenotransplantation of non-infected PDA cells mixed with infected tumor cells strongly reduced the tumor volume and the expression of the proliferation marker Ki67 along with a necrotic morphology. Adenoviral capsid protein was detected in tumor xenograft tissue after intravenous injection of infected MSCs, but not in normal tissue, implying tumor-specific migration. Likewise, direct in vivo treatment correlated with a strongly reduced tumor volume, lower expression of Ki67 and CD24, and enhanced activity of caspase 3. These data demonstrate that the improved OAds induced efficient oncolysis with the OAd-TRAIL as most promising candidate for future clinical application.
Collapse
Affiliation(s)
- Adam Kaczorowski
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Hammer
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Liu
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Villhauer
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clifford Nwaeburu
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei Fan
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhefu Zhao
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jury Gladkich
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Groß
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk M Nettelbeck
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Herr
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Three-dimensional cell culture models for investigating human viruses. Virol Sin 2016; 31:363-379. [PMID: 27822716 PMCID: PMC7090760 DOI: 10.1007/s12250-016-3889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Collapse
|
42
|
Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy. Ther Deliv 2016; 6:453-68. [PMID: 25996044 DOI: 10.4155/tde.14.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malignant glioma is a relentless burden to both patients and clinicians, and calls for innovation to overcome the limitations in current management. Glioma therapy using viruses has been investigated to accentuate the nature of a virus, killing a host tumor cell during its replication. As virus mediated approaches progress with promising therapeutic advantages, combination therapy with chemotherapy and oncolytic viruses has emerged as a more synergistic and possibly efficacious therapy. Here, we will review malignant glioma as well as prior experience with oncolytic viruses, chemotherapy and combination of the two, examining how the combination can be optimized in the future.
Collapse
|
43
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Hemminki O, Parviainen S, Juhila J, Turkki R, Linder N, Lundin J, Kankainen M, Ristimäki A, Koski A, Liikanen I, Oksanen M, Nettelbeck DM, Kairemo K, Partanen K, Joensuu T, Kanerva A, Hemminki A. Immunological data from cancer patients treated with Ad5/3-E2F-Δ24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 2015; 6:4467-81. [PMID: 25714011 PMCID: PMC4414204 DOI: 10.18632/oncotarget.2901] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/14/2014] [Indexed: 11/25/2022] Open
Abstract
Oncolytic viruses that selectively replicate in tumor cells can be used for treatment of cancer. Accumulating data suggests that virus induced oncolysis can enhance anti-tumor immunity and break immune tolerance. To capitalize on the immunogenic nature of oncolysis, we generated a quadruple modified oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (GMCSF). Ad5/3-E2F-Δ24-GMCSF (CGTG-602) was engineered to contain a tumor specific E2F1 promoter driving an E1 gene deleted at the retinoblastoma protein binding site (“Δ24”). The fiber features a knob from serotype 3 for enhanced gene delivery to tumor cells. The virus was tested preclinically in vitro and in vivo and then 13 patients with solid tumors refractory to standard therapies were treated. Treatments were well tolerated and frequent tumor- and adenovirus-specific T-cell immune responses were seen. Overall, with regard to tumor marker or radiological responses, signs of antitumor efficacy were seen in 9/12 evaluable patients (75%). The radiological disease control rate with positron emission tomography was 83% while the response rate (including minor responses) was 50%. Tumor biopsies indicated accumulation of immunological cells, especially T-cells, to tumors after treatment. RNA expression analyses of tumors indicated immunological activation and metabolic changes secondary to virus replication.
Collapse
Affiliation(s)
- Otto Hemminki
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Suvi Parviainen
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Juuso Juhila
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Riku Turkki
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Nina Linder
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Johan Lundin
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.,Division of Global Health/IHCAR, Karolinska Institutet, Stockholm, Sweden
| | | | - Ari Ristimäki
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki, University Central Hospital and Genome-Scale Biology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anniina Koski
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Ilkka Liikanen
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Minna Oksanen
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Anna Kanerva
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Transplantation Laboratory & Haartman Institute, University of Helsinki, Helsinki, Finland.,Docrates Cancer Center, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| |
Collapse
|
45
|
Lucas T, Benihoud K, Vigant F, Schmidt CQA, Bachem MG, Simmet T, Kochanek S. Hexon modification to improve the activity of oncolytic adenovirus vectors against neoplastic and stromal cells in pancreatic cancer. PLoS One 2015; 10:e0117254. [PMID: 25692292 PMCID: PMC4332860 DOI: 10.1371/journal.pone.0117254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety.
Collapse
Affiliation(s)
- Tanja Lucas
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - Karim Benihoud
- Univ. Paris-Sud, Orsay Cedex, France and CNRS UMR 8203, Institut Gustave Roussy, Villejuif Cedex, France
| | - Frédéric Vigant
- Univ. Paris-Sud, Orsay Cedex, France and CNRS UMR 8203, Institut Gustave Roussy, Villejuif Cedex, France
| | - Christoph Q. Andreas Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
- Tierforschungszentrum, Ulm University, Ulm, Germany
| | - Max G. Bachem
- Department of Clinical Chemistry, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
46
|
Martinez-Velez N, Xipell E, Jauregui P, Zalacain M, Marrodan L, Zandueta C, Vera B, Urquiza L, Sierrasesúmaga L, Julián MS, Toledo G, Fueyo J, Gomez-Manzano C, Torre W, Lecanda F, Patiño-García A, Alonso MM. The oncolytic adenovirus Δ24-RGD in combination with cisplatin exerts a potent anti-osteosarcoma activity. J Bone Miner Res 2014; 29:2287-96. [PMID: 24737304 DOI: 10.1002/jbmr.2253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/10/2014] [Indexed: 11/12/2022]
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents. The presence of metastases and the lack of response to conventional treatment are the major adverse prognostic factors. Therefore, there is an urgent need for new treatment strategies that overcome both of these problems. Our purpose was to elucidate whether the use of the oncolytic adenovirus Δ24-RGD alone or in combination with standard chemotherapy would be effective, in vitro and in vivo, against osteosarcoma. Our results showed that Δ24-RGD exerted a potent antitumor effect against osteosarcoma cell lines that was increased by the addition of cisplatin. Δ24-RGD osteosarcoma treatment resulted in autophagy in vitro that was further enhanced when combined with cisplatin. Of importance, administration of Δ24-RGD and/or cisplatin, in novel orthotopic and two lung metastatic models in vivo resulted in a significant reduction of tumor burden meanwhile maintaining a safe toxicity profile. Together, our data underscore the potential of Δ24-RGD to become a realistic therapeutic option for primary and metastatic pediatric osteosarcoma. Moreover, this study warrants a future clinical trial to evaluate the safety and efficacy of Δ24-RGD for this devastating disease.
Collapse
Affiliation(s)
- Naiara Martinez-Velez
- Department of Medical Oncology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets 2014; 15:2-16. [PMID: 24387338 DOI: 10.2174/1389450114666140106095151] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine. 240 Med Sci D, Irvine, CA 92697, USA.
| |
Collapse
|
48
|
Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials 2014; 35:9554-61. [PMID: 25154663 DOI: 10.1016/j.biomaterials.2014.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022]
Abstract
Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140 to 180 nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4 × higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations.
Collapse
|
49
|
Lee CH, Kasala D, Na Y, Lee MS, Kim SW, Jeong JH, Yun CO. Enhanced therapeutic efficacy of an adenovirus-PEI-bile-acid complex in tumors with low coxsackie and adenovirus receptor expression. Biomaterials 2014; 35:5505-16. [PMID: 24731708 DOI: 10.1016/j.biomaterials.2014.03.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/21/2014] [Indexed: 01/22/2023]
Abstract
Adenovirus (Ad) is a potential vehicle for cancer gene therapy. However, cells that express low levels of the coxsackie and adenovirus receptor (CAR) demonstrate poor Ad infection efficiency. We developed a bile acid-conjugated poly(ethyleneimine) (DA3)-coated Ad complex (Ad/DA3) to enhance Ad transduction efficiency. The size distribution and zeta potential of Ad/DA3 increased to 324 ± 3.08 nm and 10.13 ± 0.21 mV, respectively, compared with those of naked Ad (108 ± 2.26 nm and -17.7 ± 1.5 mV). The transduction efficiency of Ad/DA3 increased in a DA3 polymer concentration-dependent manner. Enhanced gene transfer by Ad/DA3 was more evident in CAR-moderate and CAR-negative cancer cells. Competition assays with a CAR-specific antibody revealed that internalization of Ad/DA3 was not mediated primarily by CAR but involved clathrin-, caveolae-, and macropinocytosis-mediated endocytosis. Cancer cell death was significantly increased when oncolytic Ad and DA3 were complexed (RdB-KOX/DA3) compared to that of naked oncolytic Ad and was inversely proportional to CAR levels. Importantly, RdB-KOX/DA3 significantly enhanced apoptosis, reduced angiogenesis, reduced proliferation, and increased active viral replication in human tumor xenografts compared to that of naked Ad. These results demonstrate that a hybrid vector system can increase the efficacy of oncolytic Ad virotherapy, particularly in CAR-limited tumors.
Collapse
Affiliation(s)
- Cho-Hee Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Oncolytic virotherapy for osteosarcoma using midkine promoter-regulated adenoviruses. Cancer Gene Ther 2014; 21:126-32. [DOI: 10.1038/cgt.2014.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
|