1
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Nakashima Y, Kawakami A, Ogasawara Y, Maeki M, Tokeshi M, Dairi T, Morita H. Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism. Nat Commun 2023; 14:4752. [PMID: 37550286 PMCID: PMC10406935 DOI: 10.1038/s41467-023-40232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
The lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with D-tryptophan at the C-terminus, and is derived from the precursor peptide MslA. MslH, encoded in the MS-271 biosynthetic gene cluster (msl), catalyzes the epimerization at the Cα center of the MslA C-terminal Trp21, leading to epi-MslA. The detailed catalytic process, including the catalytic site and cofactors, has remained enigmatic. Herein, based on X-ray crystallographic studies in association with MslA core peptide analogues, we show that MslH is a metallo-dependent peptide epimerase with a calcineurin-like fold. The crystal structure analysis, followed by site-directed mutagenesis, docking simulation, and ICP-MS studies demonstrate that MslH employs acid/base chemistry to facilitate the reversible epimerization of the C-terminal Trp21 of MslA, by utilizing two pairs of His/Asp catalytic residues that are electrostatically tethered to a six-coordination motif with a Ca(II) ion via water molecules.
Collapse
Affiliation(s)
- Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kawakami
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Masatoshi Maeki
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Manabu Tokeshi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
3
|
Bearne SL. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism. Methods Enzymol 2023; 690:397-444. [PMID: 37858537 DOI: 10.1016/bs.mie.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Racemases and epimerases catalyze the inversion of stereochemistry at asymmetric carbon atoms to generate stereoisomers that often play important roles in normal and pathological physiology. Consequently, there is interest in developing inhibitors of these enzymes for drug discovery. A strategy for the rational design of substrate-product analog (SPA) inhibitors of racemases and epimerases utilizing a direct 1,1-proton transfer mechanism is elaborated. This strategy assumes that two groups on the asymmetric carbon atom remain fixed at active-site binding determinants, while the hydrogen and third, motile group move during catalysis, with the latter potentially traveling between an R- and S-pocket at the active site. SPAs incorporate structural features of the substrate and product, often with geminal disubstitution on the asymmetric carbon atom to simultaneously present the motile group to both the R- and S-pockets. For racemases operating on substrates bearing three polar groups (glutamate, aspartate, and serine racemases) or with compact, hydrophobic binding pockets (proline racemase), substituent motion is limited and the design strategy furnishes inhibitors with poor or modest binding affinities. The approach is most successful when substrates have a large, motile hydrophobic group that binds at a plastic and/or capacious hydrophobic site. Potent inhibitors were developed for mandelate racemase, isoleucine epimerase, and α-methylacyl-CoA racemase using the SPA inhibitor design strategy, exhibiting binding affinities ranging from substrate-like to exceeding that of the substrate by 100-fold. This rational approach for designing inhibitors of racemases and epimerases having the appropriate active-site architectures is a useful strategy for furnishing compounds for drug development.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
4
|
Cagiada M, Bottaro S, Lindemose S, Schenstrøm SM, Stein A, Hartmann-Petersen R, Lindorff-Larsen K. Discovering functionally important sites in proteins. Nat Commun 2023; 14:4175. [PMID: 37443362 PMCID: PMC10345196 DOI: 10.1038/s41467-023-39909-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Proteins play important roles in biology, biotechnology and pharmacology, and missense variants are a common cause of disease. Discovering functionally important sites in proteins is a central but difficult problem because of the lack of large, systematic data sets. Sequence conservation can highlight residues that are functionally important but is often convoluted with a signal for preserving structural stability. We here present a machine learning method to predict functional sites by combining statistical models for protein sequences with biophysical models of stability. We train the model using multiplexed experimental data on variant effects and validate it broadly. We show how the model can be used to discover active sites, as well as regulatory and binding sites. We illustrate the utility of the model by prospective prediction and subsequent experimental validation on the functional consequences of missense variants in HPRT1 which may cause Lesch-Nyhan syndrome, and pinpoint the molecular mechanisms by which they cause disease.
Collapse
Affiliation(s)
- Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindemose
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Signe M Schenstrøm
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Proteomic Response of Deinococcus radiodurans to Short-Term Real Microgravity during Parabolic Flight Reveals Altered Abundance of Proteins Involved in Stress Response and Cell Envelope Functions. Life (Basel) 2021; 12:life12010023. [PMID: 35054415 PMCID: PMC8779699 DOI: 10.3390/life12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Rapidly evolving space exploration makes understanding the short- and long- term effects of microgravity on humans, plants, and microorganisms an important task. The ubiquitous presence of the gravitational force has had an influence on the development of all living entities on Earth, and short- and long-term changes in perceived gravitational force can induce notable changes within cells. Deinococcus radiodurans is the Gram-positive bacterium that is best known for its extreme resistance to UV-C and gamma radiation, oxidation stress, and desiccation. Thus increased interest has been placed on this species in the context of space research. The present study aims to elucidate the short-term proteomic response of this species to real microgravity during parabolic flight. Overnight cultures of D. radiodurans were subjected to microgravity during a single parabola, and metabolic activity was quenched using methanol. Proteins were extracted and subsequently measured using HPLC nESI MS/MS. The results, such as the enrichment of the peptidoglycan biosynthesis pathway with differentially abundant proteins and altered S-layer protein abundance, suggested molecular rearrangements in the cell envelope of D. radiodurans. Altered abundance of proteins involved in energy metabolism and DNA repair could be linked with increased endogenous ROS production that contributes to the stress response. Moreover, changes in protein abundance in response to microgravity show similarities with previously reported stress responses. Thus, the present results could be used to further investigate the complex regulation of the remarkable stress management of this bacterium.
Collapse
|
6
|
From pan-genome to protein dynamics: A computational hierarchical quest to identify drug target in multi-drug resistant Burkholderia cepacia. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
8
|
Fischer C, Ahn YC, Vederas JC. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat Prod Rep 2020; 36:1687-1705. [PMID: 30994146 DOI: 10.1039/c9np00017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
| | | | | |
Collapse
|
9
|
Muhammad M, Bai J, Alhassan AJ, Sule H, Ju J, Zhao B, Liu D. Significance of Glutamate Racemase for the Viability and Cell Wall Integrity of Streptococcus iniae. BIOCHEMISTRY (MOSCOW) 2020; 85:248-256. [PMID: 32093601 DOI: 10.1134/s0006297920020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptococcus iniae is a pathogenic and zoonotic bacterium responsible for human diseases and mortality of many fish species. Recently, this bacterium has demonstrated an increasing trend for antibiotics resistance, which has warranted a search for new approaches to tackle its infection. Glutamate racemase (MurI) is a ubiquitous enzyme of the peptidoglycan synthesis pathway that plays an important role in the cell wall integrity maintenance; however, the significance of this enzyme differs in different species. In this study, we knocked out the MurI gene in S. iniae in order to elucidate the role of glutamate racemase in maintaining cell wall integrity in this bacterial species. We also cloned, expressed, and purified MurI and determined its biochemical characteristics. Biochemical analysis revealed that the MurI gene in S. iniae encodes a functional enzyme with a molecular weight of 30 kDa, temperature optimum at 35°C, and pH optimum at 8.5. Metal ions, such as Cu2+, Mn2+, Co2+ and Zn2+, inhibited the enzyme activity. MurI was found to be essential for the viability and cell wall integrity of S. iniae. The optimal growth of the MurI-deficient S. iniae mutant can be achieved only by adding a high concentration of D-glutamate to the medium. Membrane permeability assay of the mutant showed an increasing extent of the cell wall damage with time upon D-glutamate starvation. Moreover, the mutant lost its virulence when incubated in fish blood. Our results demonstrated that the MurI knockout leads to the generation of S. iniae auxotroph with damaged cell walls.
Collapse
Affiliation(s)
- M Muhammad
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.,Kano University of Science and Technology, Department of Biochemistry, Wudil, Nigeria
| | - J Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - A J Alhassan
- Bayero University Kano, Department of Biochemistry, Kano, Nigeria
| | - H Sule
- Bayero University Kano, Department of Medical Laboratory Science, Kano, Nigeria
| | - J Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - B Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - D Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
10
|
Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Sci Rep 2020; 10:949. [PMID: 31969615 PMCID: PMC6976638 DOI: 10.1038/s41598-020-57658-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/17/2019] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (MTB), a highly infectious disease accounting for nearly 1.5 million deaths every year and has been a major global concern. Moreover, resistance to anti-TB drugs is an arduous obstacle to effective prevention, TB care and management. Therefore, incessant attempts are being made to identify novel drug targets and newer anti-tubercular drugs to fight with this deadly pathogen. Increasing resistance, adverse effects and costly treatment by conventional therapeutic agents have been inclining the researchers to search for an alternative source of medicine. In this regard natural compounds have been exploited extensively for their therapeutic interventions targeting cellular machinery of MTB. Glutamate racemase (MurI) is an enzyme involved in peptidoglycan (PG) biosynthesis and has become an attractive target due to its moonlighting property. We screened various classes of natural compounds using computational approach for their binding to MTB-MurI. Shortlisted best docked compounds were evaluated for their functional, structural and anti-mycobacterial activity. The results showed that two flavonoids (naringenin and quercetin) exhibited best binding affinity with MTB-MurI and inhibited the racemization activity with induced structural perturbation. In addition, fluorescence and electron microscopy were employed to confirm the membrane and cell wall damages in mycobacterial cells on exposure to flavonoids. Together, these observations could provide impetus for further research in better understanding of anti-tubercular mechanisms of flavonoids and establishing them as lead molecules for TB treatment.
Collapse
|
11
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94:1721-1739. [PMID: 31260188 DOI: 10.1111/cbdd.13582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Enterococcus faecalis (Ef) is one of the major pathogens involved in hospital-acquired infections. It can cause nosocomial bacteremia, surgical wound infection, and urinary tract infection. It is important to mention here that Ef is developing resistance against many commonly occurring antibiotics. The occurrence of multidrug resistance (MDR) and extensive-drug resistance (XDR) is now posing a major challenge to the medical community. In this regard, to combat the infections caused by Ef, we have to look for an alternative. Rational structure-based drug design exploits the three-dimensional structure of the target protein, which can be unraveled by various techniques such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. In this review, we have discussed the complete picture of Ef infections, the possible treatment available at present, and the alternative treatment options to be explored. This study will help in better understanding of novel biological targets against Ef and the compounds, which are likely to bind with these targets. Using these detailed structural informations, rational structure-based drug design is achievable and tight inhibitors against Ef can be prepared.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
12
|
Pawar A, Jha P, Konwar C, Chaudhry U, Chopra M, Saluja D. Ethambutol targets the glutamate racemase of Mycobacterium tuberculosis—an enzyme involved in peptidoglycan biosynthesis. Appl Microbiol Biotechnol 2018; 103:843-851. [DOI: 10.1007/s00253-018-9518-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
|
13
|
Amyes TL, Richard JP. Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites. Synlett 2017; 28:2407-2421. [PMID: 28993718 DOI: 10.1055/s-0036-1588778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methods are described for the determination of pKas for weak carbon acids in water. The application of these methods to the determination of the pKas for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed; and, the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5'-phosphate is reviewed. The procedure for estimating the pKa of uridine 5'-phosphate for C-6 deprotonation at the active site of orotidine 5'-phosphate decarboxylase is described, and the effect of a 5-F substituent on carbon acidity of the enzyme-bound substrate is discussed.
Collapse
Affiliation(s)
- Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| |
Collapse
|
14
|
Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections. PLoS One 2016; 11:e0167350. [PMID: 27898711 PMCID: PMC5127577 DOI: 10.1371/journal.pone.0167350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/12/2016] [Indexed: 11/19/2022] Open
Abstract
The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II) and Mn (III) 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 μM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.
Collapse
|
15
|
Cendron L, Ramazzina I, Puggioni V, Maccacaro E, Liuzzi A, Secchi A, Zanotti G, Percudani R. The Structure and Function of a Microbial Allantoin Racemase Reveal the Origin and Conservation of a Catalytic Mechanism. Biochemistry 2016; 55:6421-6432. [DOI: 10.1021/acs.biochem.6b00881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Laura Cendron
- Department
of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | - Andrea Secchi
- Department
of Chemistry, University of Parma, Parma, Italy
| | - Giuseppe Zanotti
- Department
of Biomedical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
16
|
Femmer C, Bechtold M, Roberts TM, Panke S. Exploiting racemases. Appl Microbiol Biotechnol 2016; 100:7423-36. [DOI: 10.1007/s00253-016-7729-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023]
|
17
|
Huang Q, Luo H, Liu M, Zeng J, Abdalla AE, Duan X, Li Q, Xie J. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis. INFECTION GENETICS AND EVOLUTION 2016; 40:295-301. [DOI: 10.1016/j.meegid.2015.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 01/02/2023]
|
18
|
Liu X, Gao F, Ma Y, Liu S, Cui Y, Yuan Z, Kang X. Crystal structure and molecular mechanism of an aspartate/glutamate racemase from Escherichia coli O157. FEBS Lett 2016; 590:1262-9. [PMID: 27001440 DOI: 10.1002/1873-3468.12148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 02/02/2023]
Abstract
EcL-DER, the aspartate/glutamate racemase from the pathogen Escherichia coli O157, exhibits racemase activity for l-aspartate and l-glutamate. This study reports the crystal structures of apo-EcL-DER, the EcL-DER-l-aspartate and the EcL-DER-d-aspartate complexes. The EcL-DER structure contains two domains, forming pseudo-mirror symmetry in the active site. A unique catalytic pair consisting of Thr(83) and Cys(197) exists in the active site. The characteristic conformations of l-Asp and d-Asp in the active site provide a straight structural evidence for the racemization mechanism of EcL-DER. In addition, the diversity of catalytic pairs implies that PLP-independent amino acid racemases adopt various catalytic mechanisms and are classified into different subgroups.
Collapse
Affiliation(s)
- Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Fei Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yinliang Ma
- College of Life Sciences, Hebei University, Baoding, China
| | - Shuang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Yaqi Cui
- College of Life Sciences, Hebei University, Baoding, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
19
|
Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. Biochem J 2016; 473:1267-80. [PMID: 26964898 DOI: 10.1042/bcj20160186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
Glutamate racemase (MurI) is responsible for providing D-glutamate for peptidoglycan biosynthesis in bacteria and has been a favoured target in pharmaceutical drug design efforts. It has recently been proven to be essential in Mycobacterium tuberculosis, the causative organism of tuberculosis, a disease for which new medications are urgently needed. In the present study, we have determined the protein crystal structures of MurI from both M. tuberculosis and Mycobacterium smegmatis in complex with D-glutamate to 2.3 Å and 1.8 Å resolution respectively. These structures are conserved, but reveal differences in their active site architecture compared with that of other MurI structures. Furthermore, compounds designed to target other glutamate racemases have been screened but do not inhibit mycobacterial MurI, suggesting that a new drug design effort will be needed to develop inhibitors. A new type of MurI dimer arrangement has been observed in both structures, and this arrangement becomes the third biological dimer geometry for MurI found to date. The mycobacterial MurI dimer is tightly associated, with a KD in the nanomolar range. The enzyme binds D- and L-glutamate specifically, but is inactive in solution unless the dimer interface is mutated. We created triple mutants of this interface in the M. smegmatis glutamate racemase (D26R/R105A/G194R or E) that have appreciable activity (kcat=0.056-0.160 min(-1) and KM=0.26-0.51 mM) and can be utilized to screen proposed antimicrobial candidates for inhibition.
Collapse
|
20
|
Analyses of the Binding between Water Soluble C60 Derivatives and Potential Drug Targets through a Molecular Docking Approach. PLoS One 2016; 11:e0147761. [PMID: 26829126 PMCID: PMC4735121 DOI: 10.1371/journal.pone.0147761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
Fullerene C60, a unique sphere-shaped molecule consisting of carbon, has been proved to have inhibitory effects on many diseases. However, the applications of C60 in medicine have been severely hindered by its complete insolubility in water and low solubility in almost all organic solvents. In this study, the water-soluble C60 derivatives and the C60 binding protein’s structures were collected from the literature. The selected proteins fall into several groups, including acetylcholinesterase, glutamate racemase, inosine monophosphate dehydrogenase, lumazine synthase, human estrogen receptor alpha, dihydrofolate reductase and N-myristoyltransferase. The C60 derivatives were docked into the binding sites in the proteins. The binding affinities of the C60 derivatives were calculated. The bindings between proteins and their known inhibitors or native ligands were also characterized in the same way. The results show that C60 derivatives form good interactions with the binding sites of different protein targets. In many cases, the binding affinities of C60 derivatives are better than those of known inhibitors and native ligands. This study demonstrates the interaction patterns of C60 derivatives and their binding partners, which will have good impact on the fullerene-based drug discovery.
Collapse
|
21
|
Ahn JW, Chang JH, Kim KJ. Structural basis for an atypical active site of an L-aspartate/glutamate-specific racemase from Escherichia coli. FEBS Lett 2015; 589:3842-7. [PMID: 26555188 DOI: 10.1016/j.febslet.2015.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/15/2022]
Abstract
We determined the crystal structure of EcL-DER to elucidate protein function and substrate specificity. Unlike other asp/glu racemases, EcL-DER has an unbalanced pair of catalytic residues, Thr83/Cys197, at the active site that is crucial for L- to D-unidirectional racemase activity. EcL-DER exhibited racemase activity for both L-glutamate and L-aspartate, but had threefold higher activity for L-glutamate. Based on the structure of the EcL-DER(C197S) mutant in complex with L-glutamate, we determined the binding mode of the L-glutamate substrate in EcL-DER and provide a structural basis for how the protein utilizes L-glutamate as a main substrate. The unidirectionality, despite an equilibrium constant of unity, can be understood in terms of the Haldane relationship.
Collapse
Affiliation(s)
- Jae-Woo Ahn
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| |
Collapse
|
22
|
Lewin R, Goodall M, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J. Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates. Chemistry 2015; 21:6557-63. [PMID: 25766433 PMCID: PMC4517146 DOI: 10.1002/chem.201406014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 12/28/2022]
Abstract
The enzyme aryl/alkenyl malonate decarboxylase (AMDase) catalyses the enantioselective decarboxylative protonation (EDP) of a range of disubstituted malonic acids to give homochiral carboxylic acids that are valuable synthetic intermediates. AMDase exhibits a number of advantages over the non-enzymatic EDP methods developed to date including higher enantioselectivity and more environmentally benign reaction conditions. In this report, AMDase and engineered variants have been used to produce a range of enantioenriched heteroaromatic α-hydroxycarboxylic acids, including pharmaceutical precursors, from readily accessible α-hydroxymalonates. The enzymatic method described here represents an improvement upon existing synthetic chemistry methods that have been used to produce similar compounds. The relationship between the structural features of these new substrates and the kinetics associated with their enzymatic decarboxylation is explored, which offers further insight into the mechanism of AMDase.
Collapse
Affiliation(s)
- Ross Lewin
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - Mark Goodall
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - Mark L Thompson
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - James Leigh
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | | | | | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| |
Collapse
|
23
|
Lind MES, Himo F. Theoretical Study of Reaction Mechanism and Stereoselectivity of Arylmalonate Decarboxylase. ACS Catal 2014. [DOI: 10.1021/cs5009738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria E. S. Lind
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
24
|
Ollivaux C, Soyez D, Toullec JY. Biogenesis of d
-amino acid containing peptides/proteins: where, when and how? J Pept Sci 2014; 20:595-612. [DOI: 10.1002/psc.2637] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Céline Ollivaux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227; Integrative Biology of Marine Models, Station Biologique de Roscoff; CS 90074, F-29688 Roscoff cedex France
- CNRS, UMR 8227; Integrative Biology of Marine Models, Station Biologique de Roscoff; CS 90074, F-29688 Roscoff cedex France
| | - Daniel Soyez
- Sorbonne Universités, UPMC Univ Paris 06, ER3; Biogenèse des signaux peptidiques; 7 Quai Saint Bernard F-75251 Paris cedex 05 France
- CNRS, ER3; Biogenèse des signaux peptidiques; 7 Quai Saint Bernard F-75251 Paris cedex 05 France
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7144; Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff; CS 90074, F-29688 Roscoff cedex France
- CNRS, UMR 7144; Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff; CS 90074, F-29688 Roscoff cedex France
| |
Collapse
|
25
|
Bioactivities of Compounds from Elephantopus scaber, an Ethnomedicinal Plant from Southwest China. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:569594. [PMID: 24963325 PMCID: PMC4055671 DOI: 10.1155/2014/569594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022]
Abstract
Elephantopus scaber is an ethnomedicinal plant used by the Zhuang people in Southwest China to treat headaches, colds, diarrhea, hepatitis, and bronchitis. A new δ-truxinate derivative, ethyl, methyl 3,4,3′,4′-tetrahydroxy-δ-truxinate (1), was isolated from the ethyl acetate extract of the entire plant, along with 4 known compounds. The antioxidant activity of these 5 compounds was determined by ABTS radical scavenging assay. Compound 1 was also tested for its cytotoxicity effect against HepG2 by MTT assay (IC50 = 60 μM), and its potential anti-inflammatory, antibiotic, and antitumor bioactivities were predicted using target fishing method software.
Collapse
|
26
|
Kaushik P, Jain CK, Gabrani R, Singh TR. Study on variability assessment and evolutionary relationships of glutamate racemase in Pseudomonas species. Interdiscip Sci 2014; 5:247-57. [PMID: 24402817 DOI: 10.1007/s12539-013-0181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022]
Abstract
Pseudomonas species is known to cause multiple nosocomial infections in patients and results in high morbidity and mortality rates (10%). The greatest obstacle in treating patients infected with the Pseudomonas species is the widespread emergence of antibiotic resistance. Hence, there is an urgent need to develop new compounds which can be effective against Pseudomonas species and possibly remain tolerant to drug resistance. The enzyme glutamate racemase plays an important role in cell wall synthesis of bacteria and as a rate limiting step, thus it is an excellent target for the designing of new class of antibacterial agents. The objective of this study is to investigate the variations in sequences of glutamate racemase, a potential drug target across the all 31 species of Pseudomonas. Sequence variability and conservation for functional motif identification is helpful for identifying evolutionarily important residues with functional significance; subsequently these results of variable sites were supported by entropy profile obtained from protein variability server using Shannon entropy. Phylogenetic profile among the different Pseudomonas sp. having fully/highly conserved residues was observed, suggesting possible functional similarities between them. The variation analysis in conserved and non-conserved region of the sequence can be used to predict the binding site for target specific drug discovery.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | | | | | | |
Collapse
|
27
|
Whalen KL, Spies MA. Flooding enzymes: quantifying the contributions of interstitial water and cavity shape to ligand binding using extended linear response free energy calculations. J Chem Inf Model 2013; 53:2349-59. [PMID: 24111836 PMCID: PMC3782002 DOI: 10.1021/ci400244x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Glutamate
racemase (GR) is a cofactor independent amino acid racemase that has
recently garnered increasing attention as an antimicrobial drug target.
There are numerous high resolution crystal structures of GR, yet these
are invariably bound to either d-glutamate or very weakly
bound oxygen-based salts. Recent in silico screens have identified
a number of new competitive inhibitor scaffolds, which are not based
on d-Glu, but exploit many of the same hydrogen bond donor
positions. In silico studies on 1-H-benzimidazole-2-sulfonic
acid (BISA) show that the sulfonic acid points to the back of the
GR active site, in the most buried region, analogous to the C2-carboxylate
binding position in the GR-d-glutamate complex. Furthermore,
BISA has been shown to be the strongest nonamino acid competitive
inhibitor. Previously published computational studies have suggested
that a portion of this binding strength is derived from complexation
with a more closed active site, relative to weaker ligands, and in
which the internal water network is more isolated from the bulk solvent.
In order to validate key contacts between the buried sulfonate moiety
of BISA and moieties in the back of the enzyme active site, as well
as to probe the energetic importance of the potentially large number
of interstitial waters contacted by the BISA scaffold, we have designed
several mutants of Asn75. GR-N75A removes a key hydrogen bond donor
to the sulfonate of BISA, but also serves to introduce an additional
interstitial water, due to the newly created space of the mutation.
GR- N75L should also show the loss of a hydrogen bond donor to the
sulfonate of BISA, but does not (a priori) seem to permit an additional
interstitial water contact. In order to investigate the dynamics,
structure, and energies of this water-mediated complexation, we have
employed the extended linear response (ELR) approach for the calculation
of binding free energies to GR, using the YASARA2 knowledge based
force field on a set of ten GR complexes, and yielding an R-squared
value of 0.85 and a RMSE of 2.0 kJ/mol. Surprisingly, the inhibitor
set produces a uniformly large interstitial water contribution to
the electrostatic interaction energy (⟨Vel⟩), ranging from 30 to >50%, except for the natural
substrate (d-glutamate), which has only a 7% contribution
of ⟨Vel⟩ from water. The
broader implications for predicting and exploiting significant interstitial
water contacts in ligand–enzyme complexation are discussed.
Collapse
Affiliation(s)
- Katie L Whalen
- College of Pharmacy, Division of Medicinal and Natural Products Chemistry, and ‡Carver College of Medicine, Department of Biochemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
28
|
Abstract
Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.
Collapse
Affiliation(s)
- Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000
| | - John P. Richard
- To whom correspondence should be addressed: Tel: (716) 645 4232; Fax: (716) 645 6963;
| |
Collapse
|
29
|
Mixcoha E, Garcia-Viloca M, Lluch JM, González-Lafont À. Theoretical Analysis of the Catalytic Mechanism of Helicobacter pylori Glutamate Racemase. J Phys Chem B 2012; 116:12406-14. [DOI: 10.1021/jp3054982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edgar Mixcoha
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Mireia Garcia-Viloca
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - José M. Lluch
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Àngels González-Lafont
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
30
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
31
|
French JB, Neau DB, Ealick SE. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase. J Mol Biol 2011; 410:447-60. [PMID: 21616082 DOI: 10.1016/j.jmb.2011.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
Abstract
The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a k(cat)/K(m) of 6.0 × 10(5) M(-1) s(-1). Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
32
|
Cava F, Lam H, de Pedro MA, Waldor MK. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci 2010; 68:817-31. [PMID: 21161322 PMCID: PMC3037491 DOI: 10.1007/s00018-010-0571-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/24/2010] [Accepted: 10/14/2010] [Indexed: 12/24/2022]
Abstract
The d-enantiomers of amino acids have been thought to have relatively minor functions in biological processes. While l-amino acids clearly predominate in nature, d-amino acids are sometimes found in proteins that are not synthesized by ribosomes, and d-Ala and d-Glu are routinely found in the peptidoglycan cell wall of bacteria. Here, we review recent findings showing that d-amino acids have previously unappreciated regulatory roles in the bacterial kingdom. Many diverse bacterial phyla synthesize and release d-amino acids, including d-Met and d-Leu, which were not previously known to be made. These noncanonical d-amino acids regulate cell wall remodeling in stationary phase and cause biofilm dispersal in aging bacterial communities. Elucidating the mechanisms by which d-amino acids govern cell wall remodeling and biofilm disassembly will undoubtedly reveal new paradigms for understanding how extracytoplasmic processes are regulated as well as lead to development of novel therapeutics.
Collapse
Affiliation(s)
- Felipe Cava
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
33
|
Wrabl JO, Hilser VJ. Investigating homology between proteins using energetic profiles. PLoS Comput Biol 2010; 6:e1000722. [PMID: 20361049 PMCID: PMC2845653 DOI: 10.1371/journal.pcbi.1000722] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/25/2010] [Indexed: 11/19/2022] Open
Abstract
Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future thermodynamically informed classification of protein homology. Protein structure and function are fundamentally determined by thermodynamics. However, for technical as well as historical reasons, current evolutionary classification schemes and bioinformatics tools do not fully utilize thermodynamic information to describe or analyze proteins. In this work, we address this deficiency by computationally estimating the position-specific thermodynamic quantities of stability (ΔG), enthalpy (ΔH), and entropy (TΔS) for a large and diverse representative sample of protein structures. The sample was drawn from an expertly curated database, such that accepted evolutionary relationships existed for all protein pairs. Importantly, trivial relationships between pairs highly similar in amino acid sequence were explicitly excluded. We found that all position-specific thermodynamic quantities ΔG, ΔH, and TΔS were more similar between proteins that were evolutionarily related (i.e., homologous), and were less similar between proteins that were not evolutionarily related (i.e., non-homologous), with stability being particularly similar between homologous proteins. However, interesting statistically significant exceptions to these trends were observed, exceptions that could indicate novel processes of functional adaptation or evolutionary fold change, mediated by thermodynamics, for the proteins involved. Taken together, these results expand our understanding of the role of thermodynamics in protein evolution and suggest an organizational framework for a future thermodynamically-informed classification of protein homology.
Collapse
Affiliation(s)
- James O. Wrabl
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Vincent J. Hilser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wong LS, Okrasa K, Micklefield J. Site-selective immobilisation of functional enzymes on to polystyrene nanoparticles. Org Biomol Chem 2009; 8:782-7. [PMID: 20135034 DOI: 10.1039/b916773k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immobilisation of proteins on to nanoparticles has a number of applications ranging from biocatalysis through to cellular delivery of biopharmaceuticals. Here we describe a phosphopantetheinyl transferase (Sfp)-catalysed method for immobilising proteins bearing a small 12-mer "ybbR" tag on to nanoparticles functionalised with coenzyme A. The Sfp-catalysed immobilisation of proteins on to nanoparticles is a highly efficient, single step reaction that proceeds under mild conditions and results in a homogeneous population of proteins that are covalently and site-specifically attached to the surface of the nanoparticles. Several enzymes of interest for biocatalysis, including an arylmalonate decarboxylase (AMDase) and a glutamate racemase (GluR), were immobilised on to nanoparticles using this approach. These enzymes retained their activity and showed high operational stability upon immobilisation.
Collapse
Affiliation(s)
- Lu Shin Wong
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, UKM1 7DN
| | | | | |
Collapse
|
35
|
Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum. Arch Biochem Biophys 2009; 491:16-24. [DOI: 10.1016/j.abb.2009.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/17/2022]
|
36
|
Spies MA, Reese JG, Dodd D, Pankow KL, Blanke SR, Baudry J. Determinants of catalytic power and ligand binding in glutamate racemase. J Am Chem Soc 2009; 131:5274-84. [PMID: 19309142 DOI: 10.1021/ja809660g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate racemases (EC 5.1.1.3) catalyze the cofactor-independent stereoinversion of D- and L-glutamate and are important for viability in several gram-negative and -positive bacteria. As the only enzyme involved in the stereoinversion of L- to D-glutamate for peptidoglycan biosynthesis, glutamate racemase is an attractive target for the design of antibacterial agents. However, the development of competitive tight-binding inhibitors has been problematic and highly species specific. Despite a number of recent crystal structures of cofactor-independent epimerases and racemases, cocrystallized with substrates or substrate analogues, the source of these enzymes' catalytic power and their ability to acidify the C alpha of amino acids remains unknown. The present integrated computational and experimental study focuses on the glutamate racemase from Bacillus subtilis (RacE). A particular focus is placed on the interaction of the glutamate carbanion intermediate with RacE. Results suggest that the reactive form of the RacE-glutamate carbanion complex, vis-à-vis proton abstraction from C alpha, is significantly different than the RacE-D-glutamate complex on the basis of the crystal structure and possesses dramatically stronger enzyme-ligand interaction energy. In silico and experimental site-directed mutagenesis indicates that the strength of the RacE-glutamate carbanion interaction energy is highly distributed among numerous electrostatic interactions in the active site, rather than being dominated by strong hydrogen bonds. Results from this study are important for laying the groundwork for discovery and design of high-affinity ligands to this class of cofactor-independent racemases.
Collapse
Affiliation(s)
- M Ashley Spies
- Department of Biochemistry, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Puig E, Mixcoha E, Garcia-Viloca M, González-Lafont À, Lluch JM. How the Substrate d-Glutamate Drives the Catalytic Action of Bacillus subtilis Glutamate Racemase. J Am Chem Soc 2009; 131:3509-21. [DOI: 10.1021/ja806012h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduard Puig
- Departament de Química and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Edgar Mixcoha
- Departament de Química and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Mireia Garcia-Viloca
- Departament de Química and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Àngels González-Lafont
- Departament de Química and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - José M. Lluch
- Departament de Química and Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
38
|
Crystal Structure of Diaminopimelate Epimerase from Arabidopsis thaliana, an Amino Acid Racemase Critical for l-Lysine Biosynthesis. J Mol Biol 2009; 385:580-94. [DOI: 10.1016/j.jmb.2008.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
39
|
Fisher SL. Glutamate racemase as a target for drug discovery. Microb Biotechnol 2008; 1:345-60. [PMID: 21261855 PMCID: PMC3815242 DOI: 10.1111/j.1751-7915.2008.00031.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 02/15/2008] [Indexed: 11/28/2022] Open
Abstract
The bacterial cell wall is a highly cross-linked polymeric structure consisting of repeating peptidoglycan units, each of which contains a novel pentapeptide substitution which is cross-linked through transpeptidation. The incorporation of D-glutamate as the second residue is strictly conserved across the bacterial kingdom. Glutamate racemase, a member of the cofactor-independent, two-thiol-based family of amino acid racemases, has been implicated in the production and maintenance of sufficient d-glutamate pool levels required for growth. The subject of over four decades of research, it is now evident that the enzyme is conserved and essential for growth across the bacterial kingdom and has a conserved overall topology and active site architecture; however, several different mechanisms of regulation have been observed. These traits have recently been targeted in the discovery of both narrow and broad spectrum inhibitors. This review outlines the biological history of this enzyme, the recent biochemical and structural characterization of isozymes from a wide range of species and developments in the identification of inhibitors that target the enzyme as possible therapeutic agents.
Collapse
Affiliation(s)
- Stewart L Fisher
- Infection Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| |
Collapse
|
40
|
Okrasa K, Levy C, Hauer B, Baudendistel N, Leys D, Micklefield J. Structure and Mechanism of an Unusual Malonate Decarboxylase and Related Racemases. Chemistry 2008; 14:6609-13. [DOI: 10.1002/chem.200800918] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Nakasako M, Obata R, Okubo R, Nakayama S, Miyamoto K, Ohta H. Crystallization and preliminary X-ray diffraction experiments of arylmalonate decarboxylase from Alcaligenes bronchisepticus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:610-3. [PMID: 18607088 DOI: 10.1107/s1744309108014723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/15/2008] [Indexed: 11/11/2022]
Abstract
Arylmalonate decarboxylase catalyses the enantioselective decarboxylation of alpha-aryl-alpha-methylmalonates to produce optically pure alpha-arylpropionates. The enzyme was crystallized with ammonium sulfate under alkaline pH conditions with the aim of understanding the mechanism of the enantioselective reaction. X-ray diffraction data collected to a resolution of 3.0 A at cryogenic temperature showed that the crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 83.13, b = 99.62, c = 139.64 A. This suggested that the asymmetric unit would contain between four and six molecules. Small-angle X-ray scattering revealed that the enzyme exists as a monomer in solution. Thus, the assembly of molecules in the asymmetric unit was likely to have been induced during the crystallization process.
Collapse
Affiliation(s)
- Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Ohtaki A, Nakano Y, Iizuka R, Arakawa T, Yamada K, Odaka M, Yohda M. Structure of aspartate racemase complexed with a dual substrate analogue, citric acid, and implications for the reaction mechanism. Proteins 2008; 70:1167-74. [PMID: 17847084 DOI: 10.1002/prot.21528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pyrococcus horikoshii OT3 aspartate racemase (PhAspR) catalyzes the interconversion between L- and D-aspartate. The X-ray structure of PhAspR revealed a pseudo mirror-symmetric distribution of the residues around its active site, which is very reasonable for its chiral substrates, L-aspartate and D-aspartate. In this study, we have determined the crystal structure of an inactive mutant PhAspR complexed with a citric acid (Cit) at a resolution of 2.0 A. Cit contains the substrate analogue moieties of both L- and D-aspartate and exhibits a low competitive inhibition activity against PhAspR. In the structure, Cit binds to the catalytic site of PhAspR, which induced the conformational change to close the active site. The distance between the thiolates was estimated to be 7.4 A, representing a catalytic state and the substrate binding modes of PhAspR. Two conserved basic residues, Arg48 and Lys164, seem to be indispensable for PhAspR activity. Arg48 is thought to be responsible for recognizing carboxyl groups of the substrates L-/D-aspartates and stabilizing a reaction intermediate, and Lys164 is responsible for stabilizing a closed state structure. In this structure, the L-aspartate moiety of Cit is likely to take the substrate position of the PhAspR-substrate complex, which is very similar to that of Glutamate racemase. There is also another possibility that the two substrate analogue moieties of the bound Cit reflect the binding modes of both L- and D-aspartates. Based on the PhAspR-Cit complex structure, the reaction mechanism of aspartate racemase was elucidated.
Collapse
Affiliation(s)
- Akashi Ohtaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Active-Site Mobility Revealed by the Crystal Structure of Arylmalonate Decarboxylase from Bordetella bronchiseptica. J Mol Biol 2008; 377:386-94. [DOI: 10.1016/j.jmb.2007.12.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/18/2007] [Accepted: 12/26/2007] [Indexed: 11/19/2022]
|
44
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
45
|
Sánchez-Flores A, Pérez-Rueda E, Segovia L. Protein homology detection and fold inference through multiple alignment entropy profiles. Proteins 2008; 70:248-56. [PMID: 17671981 DOI: 10.1002/prot.21506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homology detection and protein structure prediction are central themes in bioinformatics. Establishment of relationship between protein sequences or prediction of their structure by sequence comparison methods finds limitations when there is low sequence similarity. Recent works demonstrate that the use of profiles improves homology detection and protein structure prediction. Profiles can be inferred from protein multiple alignments using different approaches. The "Conservatism-of-Conservatism" is an effective profile analysis method to identify structural features between proteins having the same fold but no detectable sequence similarity. The information obtained from protein multiple alignments varies according to the amino acid classification employed to calculate the profile. In this work, we calculated entropy profiles from PSI-BLAST-derived multiple alignments and used different amino acid classifications summarizing almost 500 different attributes. These entropy profiles were converted into pseudocodes which were compared using the FASTA program with an ad-hoc matrix. We tested the performance of our method to identify relationships between proteins with similar fold using a nonredundant subset of sequences having less than 40% of identity. We then compared our results using Coverage Versus Error per query curves, to those obtained by methods like PSI-BLAST, COMPASS and HHSEARCH. Our method, named HIP (Homology Identification with Profiles) presented higher accuracy detecting relationships between proteins with the same fold. The use of different amino acid classifications reflecting a large number of amino acid attributes, improved the recognition of distantly related folds. We propose the use of pseudocodes representing profile information as a fast and powerful tool for homology detection, fold assignment and analysis of evolutionary information enclosed in protein profiles.
Collapse
Affiliation(s)
- Alejandro Sánchez-Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México
| | | | | |
Collapse
|
46
|
Kim KH, Bong YJ, Park JK, Shin KJ, Hwang KY, Kim EE. Structural Basis for Glutamate Racemase Inhibition. J Mol Biol 2007; 372:434-43. [PMID: 17658548 DOI: 10.1016/j.jmb.2007.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/19/2007] [Accepted: 05/02/2007] [Indexed: 11/24/2022]
Abstract
D-Glutamic acid is a required biosynthetic building block for peptidoglycan, and the enzyme glutamate racemase (GluR) catalyzes the inter-conversion of D and L-glutamate enantiomers. Therefore, GluR is considered as an attractive target for the design of new antibacterial drugs. Here, we report the crystal structures of GluR from Streptococcus pyogenes in both inhibitor-free and inhibitor-bound forms. The inhibitor free GluR crystallized in two different forms, which diffracted to 2.25 A and 2.5 A resolution, while the inhibitor-bound crystal diffracted to 2.5 A resolution. GluR is composed of two domains of alpha/beta protein that are related by pseudo-2-fold symmetry and the active site is located at the domain interface. The inhibitor, gamma-2-naphthylmethyl-D-glutamate, which was reported earlier as a novel potent competitive inhibitor, makes several hydrogen bonds with protein atoms, and the naphthyl moiety is located in the hydrophobic pocket. The inhibitor binding induces a disorder in one of the loops near the active site. In both crystal forms, GluR exists as a dimer and the interactions seen at the dimer interface are almost identical. This agrees well with the results from gel filtration and dynamic light-scattering studies.
Collapse
Affiliation(s)
- Kook-Han Kim
- Life Sciences Division, Korea Institute of Science and Technology, 39-1 Hawolkok-Dong, Sungbuk-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Dodd D, Reese JG, Louer CR, Ballard JD, Spies MA, Blanke SR. Functional comparison of the two Bacillus anthracis glutamate racemases. J Bacteriol 2007; 189:5265-75. [PMID: 17496086 PMCID: PMC1951872 DOI: 10.1128/jb.00352-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/01/2007] [Indexed: 11/20/2022] Open
Abstract
Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because L-glutamate stereoisomerization to D-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of L-glutamate and D-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of L-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
48
|
Puig E, Garcia-Viloca M, González-Lafont A, Lluch JM. On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic. J Phys Chem A 2007; 110:717-25. [PMID: 16405345 DOI: 10.1021/jp054555y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Computer simulations on a QM/MM potential energy surface have been carried out to gain insights into the catalytic mechanism of glutamate racemase (MurI). Understanding such a mechanism is a challenging task from the chemical point of view because it involves the deprotonation of a low acidic proton by a relatively weak base to give a carbanionic intermediate. First, we have examined the dependency of the kinetics and thermodynamics of the racemization process catalyzed by MurI on the ionization state of the substrate (glutamate) main chain. Second, we have employed an energy decomposition procedure to study the medium effect on the enzyme-substrate electrostatic and polarization interactions along the reaction. Importantly, the present theoretical results quantitatively support the mechanistic proposal by Rios et al. [J. Am. Chem. Soc. 2000, 122, 9373-9385] for the PLP-independent amino acid racemases.
Collapse
Affiliation(s)
- Eduard Puig
- Departament de Química, Universitat Autonoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
49
|
May M, Mehboob S, Mulhearn DC, Wang Z, Yu H, Thatcher GR, Santarsiero BD, Johnson ME, Mesecar AD. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design. J Mol Biol 2007; 371:1219-37. [PMID: 17610893 PMCID: PMC2736553 DOI: 10.1016/j.jmb.2007.05.093] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 12/01/2022]
Abstract
Glutamate racemase (RacE) is responsible for converting l-glutamate to d-glutamate, which is an essential component of peptidoglycan biosynthesis, and the primary constituent of the poly-gamma-d-glutamate capsule of the pathogen Bacillus anthracis. RacE enzymes are essential for bacterial growth and lack a human homolog, making them attractive targets for the design and development of antibacterial therapeutics. We have cloned, expressed and purified the two glutamate racemase isozymes, RacE1 and RacE2, from the B. anthracis genome. Through a series of steady-state kinetic studies, and based upon the ability of both RacE1 and RacE2 to catalyze the rapid formation of d-glutamate, we have determined that RacE1 and RacE2 are bona fide isozymes. The X-ray structures of B. anthracis RacE1 and RacE2, in complex with d-glutamate, were determined to resolutions of 1.75 A and 2.0 A. Both enzymes are dimers with monomers arranged in a "tail-to-tail" orientation, similar to the B. subtilis RacE structure, but differing substantially from the Aquifex pyrophilus RacE structure. The differences in quaternary structures produce differences in the active sites of racemases among the various species, which has important implications for structure-based, inhibitor design efforts within this class of enzymes. We found a Val to Ala variance at the entrance of the active site between RacE1 and RacE2, which results in the active site entrance being less sterically hindered for RacE1. Using a series of inhibitors, we show that this variance results in differences in the inhibitory activity against the two isozymes and suggest a strategy for structure-based inhibitor design to obtain broad-spectrum inhibitors for glutamate racemases.
Collapse
Affiliation(s)
- Melissa May
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607
| | - Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Debbie C. Mulhearn
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Zhiqiang Wang
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607
| | - Huidong Yu
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607
| | - Gregory R.J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
| | - Andrew D. Mesecar
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607
- Address correspondence to: Andrew D. Mesecar, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago IL, 60607. Tel. 312 996-1877; Fax. 312 413-9303; E-Mail:
| |
Collapse
|
50
|
Lundqvist T, Fisher SL, Kern G, Folmer RHA, Xue Y, Newton DT, Keating TA, Alm RA, de Jonge BLM. Exploitation of structural and regulatory diversity in glutamate racemases. Nature 2007; 447:817-22. [PMID: 17568739 DOI: 10.1038/nature05689] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 02/14/2007] [Indexed: 11/09/2022]
Abstract
Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and D-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Tomas Lundqvist
- AstraZeneca Global Structural Chemistry, AstraZeneca R&D Mölndal, SE-431 83, Mölndal, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|