1
|
Silvestrini ML, Solazzo R, Boral S, Cocco MJ, Closson JD, Masetti M, Gardner KH, Chong LT. Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B. Protein Sci 2024; 33:e5198. [PMID: 39467204 PMCID: PMC11516114 DOI: 10.1002/pro.5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.
Collapse
Affiliation(s)
| | - Riccardo Solazzo
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Soumendu Boral
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Melanie J. Cocco
- Department of Pharmaceutical SciencesUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Joseph D. Closson
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Matteo Masetti
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Kevin H. Gardner
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, and ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Lillian T. Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Mészáros B, Hatos A, Palopoli N, Quaglia F, Salladini E, Van Roey K, Arthanari H, Dosztányi Z, Felli IC, Fischer PD, Hoch JC, Jeffries CM, Longhi S, Maiani E, Orchard S, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Pritisanac I, Tenorio L, Viennet T, Tompa P, Vranken W, Tosatto SCE, Davey NE. Minimum information guidelines for experiments structurally characterizing intrinsically disordered protein regions. Nat Methods 2023; 20:1291-1303. [PMID: 37400558 DOI: 10.1038/s41592-023-01915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/18/2023] [Indexed: 07/05/2023]
Abstract
An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - András Hatos
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires, Argentina
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | - Edoardo Salladini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kim Van Roey
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Haribabu Arthanari
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | | | - Isabella C Felli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Patrick D Fischer
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- UniCamillus - Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Roberta Pierattelli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Iva Pritisanac
- Hospital for Sick Children, Toronto, Ontario, Canada
- Medical University of Graz, Graz, Austria
| | - Luiggi Tenorio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thibault Viennet
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Norman E Davey
- Division Of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, Chelsea, London, UK.
| |
Collapse
|
3
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
4
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
5
|
Tassone G, Paolino M, Pozzi C, Reale A, Salvini L, Giorgi G, Orlandini M, Galvagni F, Mangani S, Yang X, Carlotti B, Ortica F, Latterini L, Olivucci M, Cappelli A. Xanthopsin-Like Systems via Site-Specific Click-Functionalization of a Retinoic Acid Binding Protein. Chembiochem 2022; 23:e202100449. [PMID: 34647400 PMCID: PMC8934143 DOI: 10.1002/cbic.202100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Indexed: 01/07/2023]
Abstract
The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.
Collapse
Affiliation(s)
- Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Federico Galvagni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, OH 43403, USA
| | - Benedetta Carlotti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Fausto Ortica
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, OH 43403, USA
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
6
|
Woloschuk RM, Reed PMM, Jaikaran ASI, Demmans KZ, Youn J, Kanelis V, Uppalapati M, Woolley GA. Structure-based design of a photoswitchable affibody scaffold. Protein Sci 2021; 30:2359-2372. [PMID: 34590762 DOI: 10.1002/pro.4196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Photo-control of affinity reagents offers a general approach for high-resolution spatiotemporal control of diverse molecular processes. In an effort to develop general design principles for a photo-controlled affinity reagent, we took a structure-based approach to the design of a photoswitchable Z-domain, among the simplest of affinity reagent scaffolds. A chimera, designated Z-PYP, of photoactive yellow protein (PYP) and the Z-domain, was designed based on the concept of mutually exclusive folding. NMR analysis indicated that, in the dark, the PYP domain of the chimera was folded, and the Z-domain was unfolded. Blue light caused loss of structure in PYP and a two- to sixfold change in the apparent affinity of Z-PYP for its target as determined using size exclusion chromatography, UV-Vis based assays, and enyzme-linked immunosorbent assay (ELISA). A thermodynamic model indicated that mutations to decrease Z-domain folding energy would alter target affinity without loss of switching. This prediction was confirmed experimentally with a double alanine mutant in helix 3 of the Z-domain of the chimera (Z-PYP-AA) showing >30-fold lower dark-state binding and no loss in switching. The effect of decreased dark-state binding affinity was tested in a two-hybrid transcriptional control format and enabled pronounced light/dark differences in yeast growth in vivo. Finally, the design was transferable to the αZ-Taq affibody enabling tunable light-dependent binding both in vitro and in vivo to the Z-Taq target. This system thus provides a framework for the focused development of light switchable affibodies for a range of targets.
Collapse
Affiliation(s)
- Ryan M Woloschuk
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna S I Jaikaran
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Karl Z Demmans
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Youn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Skeletal Structure of the Chromophore of Photoactive Yellow Protein in the Excited State Investigated by Ultraviolet Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:6154-6161. [PMID: 34102843 DOI: 10.1021/acs.jpcb.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ultrafast structural dynamics of photoactive yellow protein (PYP) using ultraviolet femtosecond stimulated Raman spectroscopy. By employing the Raman pump and probe pulses in the ultraviolet region, resonantly enhanced, rich vibrational features of the excited-state chromophore were observed in the fingerprint region. In contrast to the marked spectral change reported for the excited-state chromophore in solution, in the protein, all of the observed Raman bands in the fingerprint region did not show any noticeable spectral shifts nor band shape changes during the excited-state lifetime of PYP. This indicates that the significant skeletal change does not occur on the chromophore in the excited state of PYP and that the trans conformation is retained in its lifetime. Based on the femtosecond Raman data of PYP obtained so far, we discuss a comprehensive picture of the excited-state structural dynamics of PYP.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
8
|
Boelens R, Ivanov K, Matysik J. Introduction to a special issue of Magnetic Resonance in honour of Robert Kaptein at the occasion of his 80th birthday. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:465-474. [PMID: 37904778 PMCID: PMC10539797 DOI: 10.5194/mr-2-465-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/01/2023]
Abstract
This publication, in honour of Robert Kaptein's 80th birthday, contains contributions from colleagues, many of whom have worked with him, and others who admire his work and have been stimulated by his research. The contributions show current research in biomolecular NMR, spin hyperpolarisation and spin chemistry, including CIDNP (chemically induced dynamic nuclear polarisation), topics to which he has contributed enormously. His proposal of the radical pair mechanism was the birth of the field of spin chemistry, and the laser CIDNP NMR experiment on a protein was a major breakthrough in hyperpolarisation research. He set milestones for biomolecular NMR by developing computational methods for protein structure determination, including restrained molecular dynamics and 3D NMR methodology. With a lac repressor headpiece, he determined one of the first protein structures determined by NMR. His studies of the lac repressor provided the first examples of detailed studies of protein nucleic acid complexes by NMR. This deepened our understanding of protein DNA recognition and led to a molecular model for protein sliding along the DNA. Furthermore, he played a leading role in establishing the cluster of NMR large-scale facilities in Europe. This editorial gives an introduction to the publication and is followed by a biography describing his contributions to magnetic resonance.
Collapse
Affiliation(s)
- Rolf Boelens
- Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Konstantin Ivanov
- International Tomography Center, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University,
Novosibirsk 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04189 Leipzig, Germany
| |
Collapse
|
9
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
10
|
Mineev KS, Goncharuk SA, Goncharuk MV, Povarova NV, Sokolov AI, Baleeva NS, Smirnov AY, Myasnyanko IN, Ruchkin DA, Bukhdruker S, Remeeva A, Mishin A, Borshchevskiy V, Gordeliy V, Arseniev AS, Gorbachev DA, Gavrikov AS, Mishin AS, Baranov MS. NanoFAST: structure-based design of a small fluorogen-activating protein with only 98 amino acids. Chem Sci 2021; 12:6719-6725. [PMID: 34040747 PMCID: PMC8132994 DOI: 10.1039/d1sc01454d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
One of the essential characteristics of any tag used in bioscience and medical applications is its size. The larger the label, the more it may affect the studied object, and the more it may distort its behavior. In this paper, using NMR spectroscopy and X-ray crystallography, we have studied the structure of fluorogen-activating protein FAST both in the apo form and in complex with the fluorogen. We showed that significant change in the protein occurs upon interaction with the ligand. While the protein is completely ordered in the complex, its apo form is characterized by higher mobility and disordering of its N-terminus. We used structural information to design the shortened FAST (which we named nanoFAST) by truncating 26 N-terminal residues. Thus, we created the shortest genetically encoded tag among all known fluorescent and fluorogen-activating proteins, which is composed of only 98 amino acids.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Natalia V Povarova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitry A Ruchkin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Sergey Bukhdruker
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH Jülich 52425 Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH Jülich 52425 Germany
- ESRF - The European Synchrotron Grenoble 38000 France
| | - Alina Remeeva
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
| | - Valentin Borshchevskiy
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH Jülich 52425 Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH Jülich 52425 Germany
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology Dolgoprudny 141701 Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH Jülich 52425 Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH Jülich 52425 Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes, CEA, CNRS Grenoble France
| | - Alexander S Arseniev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexey S Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 Moscow 117997 Russia
| |
Collapse
|
11
|
Ichiryu K, Naito T. Steady-state Observation of Interacting Photochemical Species in Photoexcited Solid States. CHEM LETT 2020. [DOI: 10.1246/cl.200335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kohsuke Ichiryu
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Toshio Naito
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
- Geodynamics Research Center (GRC), Ehime University, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
12
|
Imamoto Y, Sasayama H, Harigai M, Furutani Y, Kataoka M. Regulation of Photocycle Kinetics of Photoactive Yellow Protein by Modulating Flexibility of the β-Turn. J Phys Chem B 2020; 124:1452-1459. [PMID: 32017565 DOI: 10.1021/acs.jpcb.9b11879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the significant flexibility of the β-turn in photoactive yellow protein (PYP) due to Gly115 was studied. G115A and G115P mutations were observed to accelerate the photocycle and shift the equilibrium between the late photocycle intermediate (pB) and its precursor (pR) toward pR. Thermodynamic analysis of dark-state recovery from pB demonstrated that the transition state (pB⧧) has a negative change in transition heat capacity, suggesting that an exposed hydrophobic surface of pB is buried in pB⧧. Fourier transform infrared spectroscopy showed that the structural ensemble of pB is populated by the compact structure in G115P. Taken together, the rigid structure induced by mutation of Gly115 facilitates its transition to pB⧧, which adopts a substantially more compact structure as opposed to the ensemble-averaged structure of pB. The photocycle kinetics of PYP may be fine-tuned by modulating the flexibility of the 115 loop to activate an appropriate number of transducer proteins.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Department of Biophysics, Graduate School of Science , Kyoto University , Kyoto 606-8502 , Japan
| | - Hiroaki Sasayama
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Miki Harigai
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science , National Institutes of Natural Sciences , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan.,Department of Structural Molecular Science , The Graduate University for Advanced Studies (SOKENDAI) , 38 Nishigo-Naka, Myodaiji , Okazaki 444-8585 , Japan
| | - Mikio Kataoka
- Graduate School of Materials Science , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| |
Collapse
|
13
|
Schmidt-Engler JM, Blankenburg L, Zangl R, Hoffmann J, Morgner N, Bredenbeck J. Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels. Phys Chem Chem Phys 2020; 22:22963-22972. [DOI: 10.1039/d0cp04307a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ 2D-IR spectroscopy of the protein label –SCN to describe the local dynamics in the photo-switchable protein PYP in its dark state (pG) and after photoactivation, concomitant with vast structural rearrangements, in its signalling state (pB).
Collapse
Affiliation(s)
| | - Larissa Blankenburg
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Rene Zangl
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jan Hoffmann
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Nina Morgner
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
14
|
Naito T, Watanabe N, Sakamoto Y, Miyaji Y, Shirahata T, Misaki Y, Kitou S, Sawa H. A molecular crystal with an unprecedentedly long-lived photoexcited state. Dalton Trans 2019; 48:12858-12866. [PMID: 31317979 DOI: 10.1039/c9dt02377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Au(iii)-complex anions in a newly synthesised compound BPY[Au(dmit)2]2 (BPY = N,N'-ethylene-2,2'-bipyridinium, dmit = 1,3-dithiole-2-thione-4,5-dithiolate) reversibly exhibit a molecular distortion in the solid state under UV-radiation. The photoexcited state is maintained for a week at 298 K, during which time molecules relax to their original structures and energy is gradually released as heat without decomposition or light emission. Most Au atoms adopt square planar (SP) coordination geometries, but some anions have unusual non-planar (NP) coordination geometries that produce disorder at the Au sites. The total (Gibbs) energy of the system depends on the proportion of Au atoms of NP geometry, which is directly determined from the occupancy (Occ (%)) by X-ray diffractometry. Due to phase transition, Occ substantially changes at a critical temperature (TC) of ∼280 K without other structural changes; however it remains almost constant in each phase. In addition, due to UV-promoted charge-transfer transitions between BPY and Au(dmit)2, Occ can be controlled by UV irradiation (∼250-450 nm). The UV-excited states have unprecedentedly long relaxation times (t1/2 > 36 h at 298 K), which is attributed to the close connection between the degrees of freedom on charge, spin, and molecular structures.
Collapse
Affiliation(s)
- Toshio Naito
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Advanced Research Support Center (ADRES), Ehime University, Matsuyama 790-8577, Japan and Geodynamics Research Center (GRC), Ehime University, Matsuyama 790-8577, Japan and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan
| | - Naoki Watanabe
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Yuuka Sakamoto
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Yuuko Miyaji
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Takashi Shirahata
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan
| | - Yohji Misaki
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan and Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama 790-8577, Japan
| | - Shunsuke Kitou
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan and Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Hiroshi Sawa
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
15
|
Brechun KE, Zhen D, Jaikaran A, Borisenko V, Kumauchi M, Hoff WD, Arndt KM, Woolley GA. Detection of Incorporation of p-Coumaric Acid into Photoactive Yellow Protein Variants in Vivo. Biochemistry 2019; 58:2682-2694. [DOI: 10.1021/acs.biochem.9b00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katherine E. Brechun
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, Brandenburg 14476, Germany
| | - Danlin Zhen
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Vitali Borisenko
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Katja M. Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, Brandenburg 14476, Germany
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
16
|
Kumar A, Nokhrin S, Woloschuk RM, Woolley GA. Duplication of a Single Strand in a β-Sheet Can Produce a New Switching Function in a Photosensory Protein. Biochemistry 2018; 57:4093-4104. [PMID: 29897240 DOI: 10.1021/acs.biochem.8b00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duplication of a single β-strand that forms part of a β-sheet in photoactive yellow protein (PYP) was found to produce two approximately isoenergetic protein conformations, in which either the first or the second copy of the duplicated β-strand participates in the β-sheet. Whereas one conformation (big-loop) is more stable at equilibrium in the dark, the other conformation (long-tail) is populated after recovery from blue light irradiation. By appending a recognition motif (E-helix) to the C-terminus of the protein, we show that β-strand duplication, and the resulting possibility of β-strand slippage, can lead to a new switchable protein-protein interaction. We suggest that β-strand duplication may be a general means of introducing two-state switching activity into protein structures.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Sergiy Nokhrin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Ryan M Woloschuk
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - G Andrew Woolley
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
17
|
Mompeán M, Sánchez-Donoso RM, de la Hoz A, Saggiomo V, Velders AH, Gomez MV. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nat Commun 2018; 9:108. [PMID: 29317665 PMCID: PMC5760532 DOI: 10.1038/s41467-017-02575-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 12/03/2022] Open
Abstract
Among the methods to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy, small-diameter NMR coils (microcoils) are promising tools to tackle the study of mass-limited samples. Alternatively, hyperpolarization schemes based on dynamic nuclear polarization techniques provide strong signal enhancements of the NMR target samples. Here we present a method to effortlessly perform photo-chemically induced dynamic nuclear polarization in microcoil setups to boost NMR signal detection down to sub-picomole detection limits in a 9.4T system (400 MHz 1H Larmor frequency). This setup is unaffected by current major drawbacks such as the use of high-power light sources to attempt uniform irradiation of the sample, and accumulation of degraded photosensitizer in the detection region. The latter is overcome with flow conditions, which in turn open avenues for complex applications requiring rapid and efficient mixing that are not easily achievable on an NMR tube without resorting to complex hardware. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with an inherently low sensitivity. Here, the authors present a combination of microcoils with photo-chemically induced dynamic nuclear polarization to boost NMR sensitivity down to sub-picomole detection limits.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa M Sánchez-Donoso
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain. .,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands. .,MAGNEtic resonance research FacilitY-MAGNEFY, Wageningen University & Research, PO Box 8038, 6700, EK Wageningen, The Netherlands.
| | - M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
18
|
Yu P, Song L, Qin J, Wang J. Capturing the photo-signaling state of a photoreceptor in a steady-state fashion by binding a transition metal complex. Protein Sci 2017; 26:2249-2256. [PMID: 28856755 DOI: 10.1002/pro.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Abstract
Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO-releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p-coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β-sheet at the cost of α-helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo-intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady-state fashion.
Collapse
Affiliation(s)
- Pengyun Yu
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
19
|
Oktaviani NA, Pool TJ, Yoshimura Y, Kamikubo H, Scheek RM, Kataoka M, Mulder FAA. Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery. Biophys J 2017; 112:2109-2116. [PMID: 28538148 DOI: 10.1016/j.bpj.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
The ability to avoid blue-light radiation is crucial for bacteria to survive. In Halorhodospira halophila, the putative receptor for this response is known as photoactive yellow protein (PYP). Its response to blue light is mediated by changes in the optical properties of the chromophore para-coumaric acid (pCA) in the protein active site. PYP displays photocycle kinetics with a strong pH dependence for ground-state recovery, which has remained enigmatic. To resolve this problem, a comprehensive pKa determination of the active-site residues of PYP is required. Herein, we show that Glu-46 stays protonated from pH 3.4 to pH 11.4 in the ground (pG) state. This conclusion is supported by the observed hydrogen-bonded protons between Glu-46 and pCA and Tyr-42 and pCA, which are persistent over the entire pH range. Our experimental results show that none of the active-site residues of PYP undergo pH-induced changes in the pG state. Ineluctably, the pH dependence of pG recovery is linked to conformational change that is dependent upon the population of the relevant protonation state of Glu-46 and the pCA chromophore in the excited state, collaterally explaining why pG recovery is slow.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Trijntje J Pool
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ruud M Scheek
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Frans A A Mulder
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands; Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Schmidt M. A short history of structure based research on the photocycle of photoactive yellow protein. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032201. [PMID: 28191482 PMCID: PMC5291790 DOI: 10.1063/1.4974172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 05/07/2023]
Abstract
The goals of time-resolved macromolecular crystallography are to extract the molecular structures of the reaction intermediates and the reaction dynamics from time-resolved X-ray data alone. To develop the techniques of time-resolved crystallography, biomolecules with special properties are required. The Photoactive Yellow Protein is the most sparkling of these.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
21
|
Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 2017. [PMID: 28644485 DOI: 10.1038/nchem.2717] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm-1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.
Collapse
|
22
|
Kim TW, Yang C, Kim Y, Kim JG, Kim J, Jung YO, Jun S, Lee SJ, Park S, Kosheleva I, Henning R, van Thor JJ, Ihee H. Combined probes of X-ray scattering and optical spectroscopy reveal how global conformational change is temporally and spatially linked to local structural perturbation in photoactive yellow protein. Phys Chem Chem Phys 2017; 18:8911-8919. [PMID: 26960811 DOI: 10.1039/c6cp00476h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time probing of structural transitions of a photoactive protein is challenging owing to the lack of a universal time-resolved technique that can probe the changes in both global conformation and light-absorbing chromophores of the protein. In this work, we combine time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) spectroscopy to investigate how the global conformational changes involved in the photoinduced signal transduction of photoactive yellow protein (PYP) is temporally and spatially related to the local structural change around the light-absorbing chromophore. In particular, we examine the role of internal proton transfer in developing a signaling state of PYP by employing its E46Q mutant (E46Q-PYP), where the internal proton transfer is inhibited by the replacement of a proton donor. The comparison of TRXSS and TA spectroscopy data directly reveals that the global conformational change of the protein, which is probed by TRXSS, is temporally delayed by tens of microseconds from the local structural change of the chromophore, which is probed by TA spectroscopy. The molecular shape of the signaling state reconstructed from the TRXSS curves directly visualizes the three-dimensional conformations of protein intermediates and reveals that the smaller structural change in E46Q-PYP than in wild-type PYP suggested by previous studies is manifested in terms of much smaller protrusion, confirming that the signaling state of E46Q-PYP is only partially developed compared with that of wild-type PYP. This finding provides direct evidence of how the environmental change in the vicinity of the chromophore alters the conformational change of the entire protein matrix.
Collapse
Affiliation(s)
- Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Cheolhee Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Youngmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jong Goo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Yang Ouk Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sunhong Jun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Sungjun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago IL 60637, USA
| | - Jasper J van Thor
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 305-701, Korea
| |
Collapse
|
23
|
Abstract
Sensory photoreceptors underpin optogenetics by mediating the noninvasive and reversible perturbation of living cells by light with unprecedented temporal and spatial resolution. Spurred by seminal optogenetic applications of natural photoreceptors, the engineering of photoreceptors has recently garnered wide interest and has led to the construction of a broad palette of novel light-regulated actuators. Photoreceptors are modularly built of photosensors that receive light signals, and of effectors that carry out specific cellular functions. These modules have to be precisely connected to allow efficient communication, such that light stimuli are relayed from photosensor to effector. The engineering of photoreceptors benefits from a thorough understanding of the underlying signaling mechanisms. This chapter gives a brief overview of key characteristics and signal-transduction mechanisms of sensory photoreceptors. Adaptation of these concepts in photoreceptor engineering has enabled the generation of novel optogenetic tools that greatly transcend the repertoire of natural photoreceptors.
Collapse
Affiliation(s)
- Thea Ziegler
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany
| | | | - Andreas Möglich
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
- Faculty of Biology, Chemistry and Earth Sciences, Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany.
| |
Collapse
|
24
|
Tamura K, Hayashi S. Role of Bulk Water Environment in Regulation of Functional Hydrogen-Bond Network in Photoactive Yellow Protein. J Phys Chem B 2015; 119:15537-49. [DOI: 10.1021/acs.jpcb.5b07555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koichi Tamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Hamada N, Tan Z, Kanematsu Y, Inazumi N, Nakamura R. Influence of a chromophore analogue in the protein cage of a photoactive yellow protein. Photochem Photobiol Sci 2015; 14:1722-8. [PMID: 26178816 DOI: 10.1039/c5pp00176e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved spectra of a photoactive yellow protein (PYP) containing cyano-p-coumaric acid (CHCA) were recorded. To understand the mechanism of photo-isomerization, an electron-withdrawing CN group was introduced into the PYP to alter the C[double bond, length as m-dash]C double bond character. Free CHCA chromophores in aqueous solution underwent photo-isomerization whereas PYP with a bound CHCA (PYP-CN) exhibited no photocycle at acidic or alkaline pH or in urea and other solutions. Furthermore, no photocycle was observed with PYP mutants after illumination. This phenomenon cannot be fully explained by the electron-withdrawing properties of the CN group. We conclude that the CHCA chromophore in PYP was locked in the protein cage and that the CN group interacted with the protein residues.
Collapse
Affiliation(s)
- Norio Hamada
- Science & Technology Entrepreneurship Laboratory (e-square), Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
26
|
Kumar A, Ali AM, Woolley GA. Photo-control of DNA binding by an engrailed homeodomain-photoactive yellow protein hybrid. Photochem Photobiol Sci 2015. [PMID: 26204102 DOI: 10.1039/c5pp00160a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-controlled version of the engrailed homeodomain (zENG) was created by inserting the homeodomain into a surface loop of a circularly permuted version of the photoactive yellow protein (cPYP). The two proteins fold independently as judged by NMR and fluorescence denaturation measurements. In the dark, the affinity of the zENG domain for its cognate DNA is inhibited >100-fold compared to wild-type zENG. Blue-light irradiation of the hybrid protein leads to enhanced conformational dynamics of the cPYP portion and a two-fold enhancement of the DNA binding affinity of the zENG domain. These results suggest that insertion into a surface loop of cPYP can be a general approach for conferring an initial level of photo-control on a given target protein. Focussed mutation/selection strategies may then be used to enhance the degree of photo-control.
Collapse
Affiliation(s)
- A Kumar
- Dept. of Chemistry, University of Toronto, 80 St. George St., Toronto, CanadaM5S 3H6.
| | | | | |
Collapse
|
27
|
A. Rohrdanz M, Zheng W, Lambeth B, Vreede J, Clementi C. Multiscale approach to the determination of the photoactive yellow protein signaling state ensemble. PLoS Comput Biol 2014; 10:e1003797. [PMID: 25356903 PMCID: PMC4214557 DOI: 10.1371/journal.pcbi.1003797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 07/08/2014] [Indexed: 02/04/2023] Open
Abstract
The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical. Many protein systems of biological interest undergo dynamical changes on a time scale too long to be modeled using standard computational methods. One example is photoactive yellow protein (PYP), found in several bacterial species. Blue light, potentially harmful for DNA, triggers several structural changes in PYP, eventually resulting in a conformation that changes the swimming behavior of bacteria. This conformation is difficult to investigate, as it is too short lived. In addition, understanding this “signaling state” is computationally difficult because of the long timescale of the transition. We overcome this by constructing a coarse-grained model to rapidly induce transitions to the signaling state. We then reconstruct and further sample the all-atom configurations from these coarse-grained representations. Our results are consistent with all available experimental and computational evidence.
Collapse
Affiliation(s)
- Mary A. Rohrdanz
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Chemistry Department, Rice University, Houston, Texas, United States of America
| | - Wenwei Zheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Chemistry Department, Rice University, Houston, Texas, United States of America
| | - Bradley Lambeth
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Jocelyne Vreede
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Chemistry Department, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
29
|
Thellamurege NM, Si D, Cui F, Li H. Quantum mechanical/molecular mechanical/continuum style solvation model: Second order Møller-Plesset perturbation theory. J Chem Phys 2014; 140:174115. [DOI: 10.1063/1.4873344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Schmidt M, Saldin DK. Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2014; 1:024701. [PMID: 26798774 PMCID: PMC4711602 DOI: 10.1063/1.4869472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/13/2014] [Indexed: 05/29/2023]
Abstract
With recent technological advances at synchrotrons [Graber et al., J. Synchrotron Radiat. 18, 658-670 (2011)], it is feasible to rapidly collect time-resolved crystallographic data at multiple temperature settings [Schmidt et al., Acta Crystallogr. D 69, 2534-2542 (2013)], from which barriers of activation can be extracted. With the advent of fourth generation X-ray sources, new opportunities emerge to investigate structure and dynamics of biological macromolecules in real time [M. Schmidt, Adv. Condens. Matter Phys. 2013, 1-10] in crystals and potentially from single molecules in random orientation in solution [Poon et al., Adv. Condens. Matter Phys. 2013, 750371]. Kinetic data from time-resolved experiments on short time-scales must be interpreted in terms of chemical kinetics [Steinfeld et al., Chemical Kinetics and Dynamics, 2nd ed. (Prentience Hall, 1985)] and tied to existing time-resolved experiments on longer time-scales [Schmidt et al., Acta Crystallogr. D 69, 2534-2542 (2013); Jung et al., Nat. Chem. 5, 212-220 (2013)]. With this article, we will review and outline steps that are required to routinely determine the energetics of reactions in biomolecules in crystal and solution with newest X-ray sources. In eight sections, we aim to describe concepts and experimental details that may help to inspire new approaches to collect and interpret these data.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin , Milwaukee, Wisconsin 53211, USA
| | - Dilano K Saldin
- Physics Department, University of Wisconsin , Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
31
|
Light-Induced Differences in Conformational Dynamics of the Circadian Clock Regulator VIVID. J Mol Biol 2014; 426:601-10. [DOI: 10.1016/j.jmb.2013.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
|
32
|
Uversky VN. Disorder in the lifetime of a protein. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26782. [PMID: 28516024 PMCID: PMC5424783 DOI: 10.4161/idp.26782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022]
Abstract
Intrinsic disorder is everywhere and is inevitable. The non-folding propensity is inherent for numerous natural polypeptide chains, and many functional proteins and protein regions are intrinsically disordered. Furthermore, at particular moments in their life, most notably during their synthesis and degradation, all ordered proteins are at least partially unfolded (disordered). Also, there is a widely spread phenomenon of conditional (functional or transient) disorder, where functions of many ordered proteins require local or even global unfolding of their unique structures. Finally, extrinsic disorder (i.e., intrinsic disorder in functional partners of ordered proteins) should be taken into account too. Therefore, even if a protein is completely devoid of intrinsically disordered regions in its mature form (which is a rather exceptional situation), it faces different forms of disorder (intrinsic, extrinsic, or induced disorder) at all the stages of its functional life, from birth to death. The goal of this article is to briefly introduce this concept of disorder in the lifetime of a protein.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
33
|
Creamer TP. Transient disorder: Calcineurin as an example. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e26412. [PMID: 28516023 PMCID: PMC5424781 DOI: 10.4161/idp.26412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/11/2023]
Abstract
How intrinsically disordered proteins and regions evade degradation by cellular machinery evolved to recognize unfolded and misfolded chains remains a vexing question. One potential means by which this can occur is the disorder is transient in nature. That is, the disorder exists just long enough for it to be bound by a partner biomolecule and fold. A review of 30 y of studies of calmodulin’s activation of calcineurin suggests that the regulatory domain of this vital phosphatase is a transiently disordered region. During activation, the regulatory domain progresses from a folded state, to disordered, followed by folding upon being bound by calmodulin. The transient disordered state of this domain is part of a critical intermediate state that facilitates the rapid binding of calmodulin. Building upon “fly-casting” as a means of facilitating partner binding, the mechanism by which calcineurin undergoes activation and subsequent deactivation could be considered “catch and release.”
Collapse
Affiliation(s)
- Trevor P Creamer
- Center for Structural Biology; Department of Molecular and Cellular Biochemistry; University of Kentucky; Lexington, KY USA
| |
Collapse
|
34
|
Thellamurege NM, Cui F, Li H. Quantum mechanical/molecular mechanical/continuum style solvation model: Time-dependent density functional theory. J Chem Phys 2013; 139:084106. [DOI: 10.1063/1.4819139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Abstract
By covalently linking an azobenzene photoswitch across the binding groove of a PDZ domain, a conformational transition, similar to the one occurring upon ligand binding to the unmodified domain, can be initiated on a picosecond timescale by a laser pulse. The protein structures have been characterized in the two photoswitch states through NMR spectroscopy and the transition between them through ultrafast IR spectroscopy and molecular dynamics simulations. The binding groove opens on a 100-ns timescale in a highly nonexponential manner, and the molecular dynamics simulations suggest that the process is governed by the rearrangement of the water network on the protein surface. We propose this rearrangement of the water network to be another possible mechanism of allostery.
Collapse
|
36
|
Kim Y, Ganesan P, Ihee H. High-throughput instant quantification of protein expression and purity based on photoactive yellow protein turn off/on label. Protein Sci 2013; 22:1109-17. [PMID: 23740751 PMCID: PMC3810716 DOI: 10.1002/pro.2286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 12/04/2022]
Abstract
Quantifying the concentration and purity of a target protein is essential for high-throughput protein expression test and rapid screening of highly soluble proteins. However, conventional methods such as PAGE and dot blot assay generally involve multiple time-consuming tasks requiring hours or do not allow instant quantification. Here, we demonstrate a new method based on the Photoactive yellow protein turn Off/On Label (POOL) system that can instantly quantify the concentration and purity of a target protein. The main idea of POOL is to use Photoactive Yellow Protein (PYP), or its miniaturized version, as a fusion partner of the target protein. The characteristic blue light absorption and the consequent yellow color of PYP is absent when initially expressed without its chromophore, but can be turned on by binding its chromophore, p-coumaric acid. The appearance of yellow color upon adding a precursor of chromophore to the co-expressed PYP can be used to check the expression amount of the target protein via visual inspection within a few seconds as well as to quantify its concentration and purity with the aid of a spectrometer within a few minutes. The concentrations measured by the POOL method, which usually takes a few minutes, show excellent agreement with those by the BCA Kit, which usually takes ∼1 h. We demonstrate the applicability of POOL in E. coli, insect, and mammalian cells, and for high-throughput protein expression screening.
Collapse
Affiliation(s)
- Youngmin Kim
- Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | | | | |
Collapse
|
37
|
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724. [PMID: 23553817 PMCID: PMC3690711 DOI: 10.1002/pro.2261] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically "freeze" while their "pictures are taken." However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
38
|
Kumar A, Burns DC, Al-Abdul-Wahid MS, Woolley GA. A circularly permuted photoactive yellow protein as a scaffold for photoswitch design. Biochemistry 2013; 52:3320-31. [PMID: 23570450 DOI: 10.1021/bi400018h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upon blue light irradiation, photoactive yellow protein (PYP) undergoes a conformational change that involves large movements at the N-terminus of the protein. We reasoned that this conformational change might be used to control other protein or peptide sequences if these were introduced as linkers connecting the N- and C-termini of PYP in a circular permutant. For such a design strategy to succeed, the circularly permuted PYP (cPYP) would have to fold normally and undergo a photocycle similar to that of the wild-type protein. We created a test cPYP by connecting the N- and C-termini of wild-type PYP (wtPYP) with a GGSGGSGG linker polypeptide and introducing new N- and C-termini at G115 and S114, respectively. Biophysical analysis indicated that this cPYP adopts a dark-state conformation much like wtPYP and undergoes wtPYP-like photoisomerization driven by blue light. However, thermal recovery of dark-state cPYP is ∼10-fold faster than that of wtPYP, so that very bright light is required to significantly populate the light state. Targeted mutations at M121E (M100 in wtPYP numbering) were found to enhance the light sensitivity substantially by lengthening the lifetime of the light state to ∼10 min. Nuclear magnetic resonance (NMR), circular dichroism, and UV-vis analysis indicated that the M121E-cPYP mutant also adopts a dark-state structure like that of wtPYP, although protonated and deprotonated forms of the chromophore coexist, giving rise to a shoulder near 380 nm in the UV-vis absorption spectrum. Fluorine NMR studies with fluorotryptophan-labeled M121E-cPYP show that blue light drives large changes in conformational dynamics and leads to solvent exposure of Trp7 (Trp119 in wtPYP numbering), consistent with substantial rearrangement of the N-terminal cap structure. M121E-cPYP thus provides a scaffold that may allow a wider range of photoswitchable protein designs via replacement of the linker polypeptide with a target protein or peptide sequence.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | | | | | | |
Collapse
|
39
|
Hellingwerf KJ, Hendriks J, Gensch T. On the Configurational and Conformational Changes in Photoactive Yellow Protein that Leads to Signal Generation in Ectothiorhodospira halophila. J Biol Phys 2013; 28:395-412. [PMID: 23345784 DOI: 10.1023/a:1020360505111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photoactive Yellow Protein (PYP), a phototaxis photoreceptor from Ectothiorhodospira halophila, is a small water-soluble protein that iscrystallisable and excellently photo-stable. It can be activated with light(λ(max)= 446 nm), to enter a series of transientintermediates that jointly form the photocycle of this photosensor protein.The most stable of these transient states is the signalling state forphototaxis, pB.The spatial structure of the ground state of PYP, pG and the spectralproperties of the photocycle intermediates have been very well resolved.Owing to its excellent chemical- and photochemical stability, also the spatialstructure of its photocycle intermediates has been characterised with X-raydiffraction and multinuclear NMR spectroscopy. Surprisingly, the resultsobtained showed that their structure is dependent on the molecular contextin which they are formed. Therefore, a large range of diffraction-,scattering- and spectroscopic techniques is now being employed to resolvein detail the dynamical changes of the structure of PYP while it progressesthrough its photocycle. This approach has led to considerable progress,although some techniques still result in mutually inconsistent conclusionsregarding aspects of the structure of particular intermediates.Recently, significant progress has also been made with simulations withmolecular dynamics analyses of the initial events that occur in PYP uponphoto activation. The great challenge in this field is to eventually obtainagreement between predicted dynamical alterations in PYP structure, asobtained with the MD approach and the actually measured dynamicalchanges in its structure as evolving during photocycle progression.
Collapse
|
40
|
|
41
|
Hospes M, Hendriks J, Hellingwerf KJ. Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation. Photochem Photobiol Sci 2013. [DOI: 10.1039/c2pp25222h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Unusual biophysics of intrinsically disordered proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:932-51. [PMID: 23269364 DOI: 10.1016/j.bbapap.2012.12.008] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Research of a past decade and a half leaves no doubt that complete understanding of protein functionality requires close consideration of the fact that many functional proteins do not have well-folded structures. These intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered protein regions (IDPRs) are highly abundant in nature and play a number of crucial roles in a living cell. Their functions, which are typically associated with a wide range of intermolecular interactions where IDPs possess remarkable binding promiscuity, complement functional repertoire of ordered proteins. All this requires a close attention to the peculiarities of biophysics of these proteins. In this review, some key biophysical features of IDPs are covered. In addition to the peculiar sequence characteristics of IDPs these biophysical features include sequential, structural, and spatiotemporal heterogeneity of IDPs; their rough and relatively flat energy landscapes; their ability to undergo both induced folding and induced unfolding; the ability to interact specifically with structurally unrelated partners; the ability to gain different structures at binding to different partners; and the ability to keep essential amount of disorder even in the bound form. IDPs are also characterized by the "turned-out" response to the changes in their environment, where they gain some structure under conditions resulting in denaturation or even unfolding of ordered proteins. It is proposed that the heterogeneous spatiotemporal structure of IDPs/IDPRs can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and unfoldons. They may lose their function when folded, and activation of some IDPs is associated with the awaking of the dormant disorder. It is possible that IDPs represent the "edge of chaos" systems which operate in a region between order and complete randomness or chaos, where the complexity is maximal. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
43
|
Hospes M, Ippel JH, Boelens R, Hellingwerf KJ, Hendriks J. Binding of Hydrogen-Citrate to Photoactive Yellow Protein Is Affected by the Structural Changes Related to Signaling State Formation. J Phys Chem B 2012; 116:13172-82. [DOI: 10.1021/jp306891s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marijke Hospes
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johannes H. Ippel
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rolf Boelens
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins. Biochem Soc Trans 2012; 40:1014-20. [DOI: 10.1042/bst20120171] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are available and idiosyncratic sensitivity of backbone chemical shifts to structural information is treated in a sensible manner. In the present paper, we describe methods to detect structural protein changes from chemical shifts, and present an online tool [ncSPC (neighbour-corrected Structural Propensity Calculator)], which unites aspects of several current approaches. Examples of structural propensity calculations are given for two well-characterized systems, namely the binding of α-synuclein to micelles and light activation of photoactive yellow protein. These examples spotlight the great power of NMR chemical shift analysis for the quantitative assessment of protein disorder at the atomic level, and further our understanding of biologically important problems.
Collapse
|
45
|
Kyndt JA, Meyer TE, Olson KT, Van Beeumen J, Cusanovich MA. Photokinetic, biochemical and structural features of chimeric photoactive yellow protein constructs. Photochem Photobiol 2012; 89:349-60. [PMID: 22958002 DOI: 10.1111/j.1751-1097.2012.01235.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
Abstract
Of the 10 photoactive yellow protein (PYPs) that have been characterized, the two from Rhodobacter species are the only ones that have an additional intermediate spectral form in the resting state (λmax = 375 nm), compared to the prototypical Halorhodospira halophila PYP. We have constructed three chimeric PYP proteins by replacing the first 21 residues from the N-terminus (Hyb1PYP), 10 from the β4-β5 loop (Hyb2PYP) and both (Hyb3PYP) in Hhal PYP with those from Rb. capsulatus PYP. The N-terminal chimera behaves both spectrally and kinetically like Hhal PYP, indicating that the Rcaps N-terminus folds against the core of Hhal PYP. A small fraction shows dimerization and slower recovery, possibly due to interaction at the N-termini. The loop chimera has a small amount of the intermediate spectral form and a photocycle that is 20 000 times slower than Hhal PYP. The third chimera, with both regions exchanged, resembles Rcaps PYP with a significant amount of intermediate spectral form (λmax = 380 nm), but has even slower kinetics. The effects are not strictly additive in the double chimera, suggesting that what perturbs one site, affects the other as well. These chimeras suggest that the intermediate spectral form has its origins in overall protein stability and solvent exposure.
Collapse
Affiliation(s)
- John A Kyndt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | |
Collapse
|
46
|
pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Biophys J 2012; 102:325-32. [PMID: 22339869 DOI: 10.1016/j.bpj.2011.11.4021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022] Open
Abstract
Visualizing the three-dimensional structures of a protein during its biological activity is key to understanding its mechanism. In general, protein structure and function are pH-dependent. Changing the pH provides new insights into the mechanisms that are involved in protein activity. Photoactive yellow protein (PYP) is a signaling protein that serves as an ideal model for time-dependent studies on light-activated proteins. Its photocycle is studied extensively under different pH conditions. However, the structures of the intermediates remain unknown until time-resolved crystallography is employed. With the newest beamline developments, a comprehensive time series of Laue data can now be collected from a single protein crystal. This allows us to vary the pH. Here we present the first structure, to our knowledge, of a short-lived protein-inhibitor complex formed in the pB state of the PYP photocycle at pH 4. A water molecule that is transiently stabilized in the chromophore active site prevents the relaxation of the chromophore back to the trans configuration. As a result, the dark-state recovery is slowed down dramatically. At pH 9, PYP stops cycling through the pB state altogether. The electrostatic environment in the chromophore-binding site is the likely reason for this altered kinetics at different pH values.
Collapse
|
47
|
Schmidt M, Šrajer V, Purwar N, Tripathi S. The kinetic dose limit in room-temperature time-resolved macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:264-73. [PMID: 22338689 PMCID: PMC3284346 DOI: 10.1107/s090904951105549x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 05/16/2023]
Abstract
Protein X-ray structures are determined with ionizing radiation that damages the protein at high X-ray doses. As a result, diffraction patterns deteriorate with the increased absorbed dose. Several strategies such as sample freezing or scavenging of X-ray-generated free radicals are currently employed to minimize this damage. However, little is known about how the absorbed X-ray dose affects time-resolved Laue data collected at physiological temperatures where the protein is fully functional in the crystal, and how the kinetic analysis of such data depends on the absorbed dose. Here, direct evidence for the impact of radiation damage on the function of a protein is presented using time-resolved macromolecular crystallography. The effect of radiation damage on the kinetic analysis of time-resolved X-ray data is also explored.
Collapse
Affiliation(s)
- M Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | | | |
Collapse
|
48
|
Uchida T, Sagami I, Shimizu T, Ishimori K, Kitagawa T. Effects of the bHLH domain on axial coordination of heme in the PAS-A domain of neuronal PAS domain protein 2 (NPAS2): Conversion from His119/Cys170 coordination to His119/His171 coordination. J Inorg Biochem 2012; 108:188-95. [DOI: 10.1016/j.jinorgbio.2011.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
49
|
Kim TW, Lee JH, Choi J, Kim KH, van Wilderen LJ, Guerin L, Kim Y, Jung YO, Yang C, Kim J, Wulff M, van Thor JJ, Ihee H. Protein structural dynamics of photoactive yellow protein in solution revealed by pump-probe X-ray solution scattering. J Am Chem Soc 2012; 134:3145-53. [PMID: 22304441 DOI: 10.1021/ja210435n] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.
Collapse
Affiliation(s)
- Tae Wu Kim
- Center for Time-Resolved Diffraction, Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramachandran PL, Lovett JE, Carl PJ, Cammarata M, Lee JH, Jung YO, Ihee H, Timmel CR, van Thor JJ. The short-lived signaling state of the photoactive yellow protein photoreceptor revealed by combined structural probes. J Am Chem Soc 2011; 133:9395-404. [PMID: 21627157 DOI: 10.1021/ja200617t] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 Å upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.
Collapse
Affiliation(s)
- Pradeep L Ramachandran
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|