1
|
Ridnik M, Abberbock E, Alipov V, Lhermann SZ, Kaufman S, Lubman M, Poulat F, Gonen N. Two redundant transcription factor binding sites in a single enhancer are essential for mammalian sex determination. Nucleic Acids Res 2024; 52:5514-5528. [PMID: 38499491 PMCID: PMC11162780 DOI: 10.1093/nar/gkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical outcomes observed in patients harboring different variants in the same enhancer.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Elisheva Abberbock
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Veronica Alipov
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shelly Ziv Lhermann
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shoham Kaufman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maor Lubman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Francis Poulat
- Group “Development and Pathology of the Gonad”. Department of Genetics, Cell Biology and Development, Institute of Human Genetics, CNRS-University of Montpellier UMR9002, Montpellier, France
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Ming Z, Bagheri-Fam S, Frost ER, Ryan JM, Vining B, Harley VR. A role for TRPC3 in mammalian testis development. Front Cell Dev Biol 2024; 12:1337714. [PMID: 38425503 PMCID: PMC10902130 DOI: 10.3389/fcell.2024.1337714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
SOX9 is a key transcription factor for testis determination and development. Mutations in and around the SOX9 gene contribute to Differences/Disorders of Sex Development (DSD). However, a substantial proportion of DSD patients lack a definitive genetic diagnosis. SOX9 target genes are potentially DSD-causative genes, yet only a limited subset of these genes has been investigated during testis development. We hypothesize that SOX9 target genes play an integral role in testis development and could potentially be causative genes in DSD. In this study, we describe a novel testicular target gene of SOX9, Trpc3. Trpc3 exhibits high expression levels in the SOX9-expressing male Sertoli cells compared to female granulosa cells in mouse fetal gonads between embryonic day 11.5 (E11.5) and E13.5. In XY Sox9 knockout gonads, Trpc3 expression is markedly downregulated. Moreover, culture of E11.5 XY mouse gonads with TRPC3 inhibitor Pyr3 resulted in decreased germ cell numbers caused by reduced germ cell proliferation. Trpc3 is also expressed in endothelial cells and Pyr3-treated E11.5 XY mouse gonads showed a loss of the coelomic blood vessel due to increased apoptosis of endothelial cells. In the human testicular cell line NT2/D1, TRPC3 promotes cell proliferation and controls cell morphology, as observed by xCELLigence and HoloMonitor real-time analysis. In summary, our study suggests that SOX9 positively regulates Trpc3 in mouse testes and TRPC3 may mediate SOX9 function during Sertoli, germ and endothelial cell development.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Emily R. Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Janelle M. Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Vincent R. Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Sajan SA, Brown CM, Davis-Keppen L, Burns K, Royer E, Coleman JAC, Hilton BA, DuPont BR, Perry DL, Taft RJ, Kesari A. The smallest likely pathogenic duplication of a SOX9 enhancer identified to date in a family with 46,XX testicular differences of sex development. Am J Med Genet A 2023; 191:2831-2836. [PMID: 37551848 DOI: 10.1002/ajmg.a.63367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Copy number variants that duplicate distal upstream enhancer elements of the SOX9 gene cause 46,XX testicular differences of sex development (DSD) which is characterized by a 46,XX karyotype in an individual presenting with either ambiguous genitalia or genitalia with varying degrees of virilization, including those resembling typical male genitalia. Reported duplications in this region range in size from 24 to 780 kilobases (kb). Here we report a family with two affected individuals, the proband and his maternal uncle, harboring a 3.7 kb duplication of a SOX9 enhancer identified by clinical genome sequencing. Prior fluorescence in situ hybridization (FISH) for SRY and a multi-gene panel for ambiguous genitalia were non-diagnostic. The unaffected mother also carries this duplication, consistent with previously described incomplete penetrance. To our knowledge, this is the smallest duplication identified to-date, most of which resides in a 5.2 kb region that has been previously shown to possess enhancer activity that promotes the expression of SOX9. The duplication was confirmed by quantitative-PCR and shown to be in tandem by bidirectional Sanger sequencing breakpoint analysis. This finding highlights the importance of non-coding variant interrogation in suspected genetic disorders.
Collapse
Affiliation(s)
- Samin A Sajan
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, California, USA
| | - Carolyn M Brown
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, California, USA
| | - Laura Davis-Keppen
- USD Sanford School of Medicine, Sanford Children's Hospital, Sioux Falls, South Dakota, USA
| | - Kaitlyn Burns
- USD Sanford School of Medicine, Sanford Children's Hospital, Sioux Falls, South Dakota, USA
| | - Erin Royer
- USD Sanford School of Medicine, Sanford Children's Hospital, Sioux Falls, South Dakota, USA
| | | | | | | | - Denise L Perry
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, California, USA
| | - Ryan J Taft
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, California, USA
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, California, USA
| |
Collapse
|
5
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
6
|
Zhu T, Kong M, Yu Y, Schartl M, Power DM, Li C, Ma W, Sun Y, Li S, Yue B, Li W, Shao C. Exosome delivery to the testes for dmrt1 suppression: A powerful tool for sex-determining gene studies. J Control Release 2023; 363:275-289. [PMID: 37726035 DOI: 10.1016/j.jconrel.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as promising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex-determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.
Collapse
Affiliation(s)
- Tengfei Zhu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Yushan Road 5, Qingdao 266003, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Guangyun Road 33, Foshan 528225, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Sanderring 2, Würzburg 97074, Germany; The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Algarve, Faro 8005-139, Portugal
| | - Chen Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266072, China
| | - Wenxiu Ma
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Yanxu Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Shuo Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Bowen Yue
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Weijing Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhaizhong Road 168, Qingdao 266237, China.
| |
Collapse
|
7
|
Dujardin E, André M, Dewaele A, Mandon-Pépin B, Poulat F, Frambourg A, Thépot D, Jouneau L, Jolivet G, Pailhoux E, Pannetier M. DMRT1 is a testis-determining gene in rabbits and is also essential for female fertility. eLife 2023; 12:RP89284. [PMID: 37847154 PMCID: PMC10581690 DOI: 10.7554/elife.89284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.
Collapse
Affiliation(s)
- Emilie Dujardin
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Marjolaine André
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Aurélie Dewaele
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Béatrice Mandon-Pépin
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier; 34396MontpellierFrance
| | - Anne Frambourg
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Dominique Thépot
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Geneviève Jolivet
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED; 78350Jouy-en-JosasFrance
- École Nationale Vétérinaire d'Alfort, BREED; 94700Maisons-AlfortFrance
| |
Collapse
|
8
|
Maezawa S, Yukawa M, Hasegawa K, Sugiyama R, Iizuka M, Hu M, Sakashita A, Vidal M, Koseki H, Barski A, DeFalco T, Namekawa SH. PRC1 suppresses a female gene regulatory network to ensure testicular differentiation. Cell Death Dis 2023; 14:501. [PMID: 37542070 PMCID: PMC10403552 DOI: 10.1038/s41419-023-05996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.
Collapse
Affiliation(s)
- So Maezawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan.
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan.
| | - Masashi Yukawa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, New Territories, Hong Kong
| | - Kazuteru Hasegawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ryo Sugiyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mizuho Iizuka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Mengwen Hu
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akihiko Sakashita
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas, Department of Cellular and Molecular Biology, Madrid, 28040, Spain
| | - Haruhiko Koseki
- Developmental Genetics Laboratory, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Reproductive Sciences Center, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Kang Y, Laprocina K, Zheng HS, Huang CCJ. Current insight into the transient X-zone in the adrenal gland cortex. VITAMINS AND HORMONES 2023; 124:297-339. [PMID: 38408801 PMCID: PMC11023618 DOI: 10.1016/bs.vh.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mouse models have been widely used in the study of adrenal gland development and diseases. The X-zone is a unique structure of the mouse adrenal gland and lineage-tracing studies show that the X-zone is a remnant of the fetal adrenal cortex. Although the X-zone is considered analogous to the fetal zone in the human adrenal cortex, the functional significance of the X-zone has remained comparatively more obscure. The X-zone forms during the early postnatal stages of adrenal development and regresses later in a remarkable sexually dimorphic fashion. The formation and regression of the X-zone can be different in mice with different genetic backgrounds. Mouse models with gene mutations, hormone/chemical treatments, and/or gonadectomy can also display an aberrant development of the X-zone or alternatively a dysregulated X-zone regression. These models have shed light on the molecular mechanisms regulating the development and regression of these unique adrenocortical cells. This review paper briefly describes the development of the adrenal gland including the formation and regression processes of the X-zone. It also summarizes and lists mouse models that demonstrate different X-zone phenotypes.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karly Laprocina
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Huifei Sophia Zheng
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
10
|
Lyraki R, Grabek A, Tison A, Weerasinghe Arachchige LC, Peitzsch M, Bechmann N, Youssef SA, de Bruin A, Bakker ERM, Claessens F, Chaboissier MC, Schedl A. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis Model Mech 2023; 16:dmm050053. [PMID: 37102205 PMCID: PMC10184674 DOI: 10.1242/dmm.050053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Anaëlle Grabek
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Amélie Tison
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sameh A. Youssef
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Janssen Research and Development, 2340 Beerse, Belgium
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Elvira R. M. Bakker
- Department of Pathology, University Medical Center Utrecht, 3508 AB, Utrecht, the Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
11
|
Okashita N, Maeda R, Tachibana M. CDYL reinforces male gonadal sex determination through epigenetically repressing Wnt4 transcription in mice. Proc Natl Acad Sci U S A 2023; 120:e2221499120. [PMID: 37155872 PMCID: PMC10193937 DOI: 10.1073/pnas.2221499120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
In mammals, male and female gonads initially develop from bipotential progenitor cells, which can differentiate into either testicular or ovarian cells. The decision to adopt a testicular or ovarian fate relies on robust genetic forces, i.e., activation of the testis-determining gene Sry, as well as a delicate balance of expression levels for pro-testis and pro-ovary factors. Recently, epigenetic regulation has been found to be a key element in activation of Sry. Nevertheless, the mechanism by which epigenetic regulation controls the expression balance of pro-testis and pro-ovary factors remains unclear. Chromodomain Y-like protein (CDYL) is a reader protein for repressive histone H3 methylation marks. We found that a subpopulation of Cdyl-deficient mice exhibited XY sex reversal. Gene expression analysis revealed that the testis-promoting gene Sox9 was downregulated in XY Cdyl-deficient gonads during the sex determination period without affecting Sry expression. Instead, we found that the ovary-promoting gene Wnt4 was derepressed in XY Cdyl-deficient gonads prior to and during the sex-determination period. Wnt4 heterozygous deficiency restored SOX9 expression in Cdyl-deficient XY gonads, indicating that derepressed Wnt4 is a cause of the repression of Sox9. We found that CDYL directly bound to the Wnt4 promoter and maintained its H3K27me3 levels during the sex-determination period. These findings indicate that CDYL reinforces male gonadal sex determination by repressing the ovary-promoting pathway in mice.
Collapse
Affiliation(s)
- Naoki Okashita
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Ryo Maeda
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
12
|
Yamada Y, Simon R, Iwane K, Nakanishi Y, Takeuchi Y, Yoshizawa A, Takada M, Toi M, Haga H, Marx A, Sauter G. An exploratory study for tuft cells in the breast and their relevance in triple-negative breast cancer: the possible relationship of SOX9. BMC Cancer 2023; 23:438. [PMID: 37179317 PMCID: PMC10183142 DOI: 10.1186/s12885-023-10949-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Breast cancer is highly heterogeneous, suggesting that small but relevant subsets have been under-recognized. Rare and mainly triple-negative breast cancers (TNBCs) were recently found to exhibit tuft cell-like expression profiles, including POU2F3, the tuft cell master regulator. In addition, immunohistochemistry (IHC) has identified POU2F3-positive cells in the normal human breast, suggesting the presence of tuft cells in this organ. METHODS Here, we (i) reviewed previously identified POU2F3-positive invasive breast cancers (n = 4) for POU2F3 expression in intraductal cancer components, (ii) investigated a new cohort of invasive breast cancers (n = 1853) by POU2F3-IHC, (iii) explored POU2F3-expressing cells in non-neoplastic breast tissues obtained from women with or without BRCA1 mutations (n = 15), and (iv) reanalyzed publicly available single-cell RNA sequencing (scRNA-seq) data from normal breast cells. RESULTS Two TNBCs of the four previously reported invasive POU2F3-positive breast cancers contained POU2F3-positive ductal carcinoma in situ (DCIS). In the new cohort of invasive breast cancers, IHC revealed four POU2F3-positive cases, two of which were triple-negative, one luminal-type, and one triple-positive. In addition, another new POU2F3-positive tumor with a triple-negative phenotype was found in daily practice. All non-neoplastic breast tissues contained POU2F3-positive cells, irrespective of BRCA1 status. The scRNA-seq reanalysis confirmed POU2F3-expressing epithelial cells (3.3% of all epithelial cells) and the 17% that co-expressed the other two tuft cell-related markers (SOX9/AVIL or SOX9/GFI1B), which suggested they were bona fide tuft cells. Of note, SOX9 is also known as the "master regulator" of TNBCs. CONCLUSIONS POU2F3 expression defines small subsets in various breast cancer subtypes, which can be accompanied by DCIS. The mechanistic relationship between POU2F3 and SOX9 in the breast warrants further analysis to enhance our understanding of normal breast physiology and to clarify the significance of the tuft cell-like phenotype for TNBCs.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Alexander Marx
- Institute of Pathology, Mannheim and Medical Faculty Mannheim, University Medical Centre, Heidelberg University, Mannheim, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Liu X, Liang C, Fan J, Zhou M, Chang Z, Li L. Polyvinyl chloride microplastics induce changes in gene expression and organ histology along the HPG axis in Cyprinus carpio var. larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106483. [PMID: 37023657 DOI: 10.1016/j.aquatox.2023.106483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The negative consequences of microplastics pollution on the health of aquatic species have garnered extensive attention. However, the mechanisms through which microplastics may cause harm in the reproductive processes of fish remain unknown. For this study, Cyprinus carpio var. was subjected to four treatments with various concentrations of PVC microplastics for 60 days, through food rationed diets (no plastic control, 10%, 20% and 30%). The gonadosomatic indices, gonad and brain histologies, sex hormone levels, and transcriptional and translational genes in the hypothalamic-pituitary-gonadal (HPG) axes of both sexes were observed. According to the results, the gonadosomatic indices were significantly decreased, gonadal development was delayed, and the level of estradiol (E2) in the females was significantly elevated. In addition, the expression levels of genes associated with the HPG axis in the brains and gonads (gnrh, gtha1, fshβ, cyp19b, erα, vtg1, dmrt1, sox9b, and cyp19a) and the transcription levels of apoptosis-related genes in the brains and gonads (caspase3, bax, and bcl-2) exhibited significant changes. Further investigation revealed that the translation levels of genes linked to sex differentiation and sex steroid hormone (cyp19b and dmrt1) were significantly altered. These findings indicated that PVC likely microplastics may have a negative impact on the reproductive system of Cyprinus carpio var. by inhibiting gonadal development, affecting the gonad and brain structures, and altering the levels of steroid hormones and the expression of HPG axis-related genes. This work provides new insights into the toxicity of microplastics in aquatic organisms by revealing that PVC microplastics are a potential threat against the reproduction of fish populations.
Collapse
Affiliation(s)
- Xinya Liu
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Chaonan Liang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Jiaiq Fan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Miao Zhou
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|
15
|
Bird AD, Frost ER, Bagheri-Fam S, Croft BM, Ryan JM, Zhao L, Koopman P, Harley VR. Somatic FGFR2 is Required for Germ Cell Maintenance in the Mouse Ovary. Endocrinology 2023; 164:7036407. [PMID: 36786658 DOI: 10.1210/endocr/bqad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.
Collapse
Affiliation(s)
- Anthony D Bird
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, 3010, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
| | - Emily R Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Brittany M Croft
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Janelle M Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Vincent R Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
16
|
Estermann MA, Major AT, Smith CA. DMRT1-mediated regulation of TOX3 modulates expansion of the gonadal steroidogenic cell lineage in the chicken embryo. Development 2023; 150:287047. [PMID: 36794750 PMCID: PMC10108705 DOI: 10.1242/dev.201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
During gonadal sex determination, the supporting cell lineage differentiates into Sertoli cells in males and pre-granulosa cells in females. Recently, single cell RNA-seq data have indicated that chicken steroidogenic cells are derived from differentiated supporting cells. This differentiation process is achieved by a sequential upregulation of steroidogenic genes and downregulation of supporting cell markers. The exact mechanism regulating this differentiation process remains unknown. We have identified TOX3 as a previously unreported transcription factor expressed in embryonic Sertoli cells of the chicken testis. TOX3 knockdown in males resulted in increased CYP17A1-positive Leydig cells. TOX3 overexpression in male and female gonads resulted in a significant decline in CYP17A1-positive steroidogenic cells. In ovo knockdown of the testis determinant DMRT1 in male gonads resulted in a downregulation of TOX3 expression. Conversely, DMRT1 overexpression caused an increase in TOX3 expression. Taken together, these data indicate that DMRT1-mediated regulation of TOX3 modulates expansion of the steroidogenic lineage, either directly, via cell lineage allocation, or indirectly, via signaling from the supporting to steroidogenic cell populations.
Collapse
Affiliation(s)
- Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Zhao L, Thomson E, Ng ET, Longmuss E, Svingen T, Bagheri-Fam S, Quinn A, Harley VR, Harrison LC, Pelosi E, Koopman P. Functional Analysis of Mmd2 and Related PAQR Genes During Sex Determination in Mice. Sex Dev 2023; 16:270-282. [PMID: 35306493 DOI: 10.1159/000522668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Sex determination in eutherian mammals is controlled by the Y-linked gene Sry, which drives the formation of testes in male embryos. Despite extensive study, the genetic steps linking Sry action and male sex determination remain largely unknown. Here, we focused on Mmd2, a gene that encodes a member of the progestin and adipoQ receptor (PAQR) family. Mmd2 is expressed during the sex-determining period in XY but not XX gonads, suggesting a specific role in testis development. METHODS We used CRISPR to generate mouse strains deficient in Mmd2 and its 2 closely related PAQR family members, Mmd and Paqr8, which are also expressed during testis development. Following characterization of Mmd2 expression in the developing testis, we studied sex determination in embryos from single knockout as well as Mmd2;Mmd and Mmd2;Paqr8 double knockout lines using quantitative RT-PCR and immunofluorescence. RESULTS Analysis of knockout mice deficient in Sox9 and Nr5a1 revealed that Mmd2 operates downstream of these known sex-determining genes. However, fetal testis development progressed normally in Mmd2-null embryos. To determine if other genes might have compensated for the loss of Mmd2, we analyzed Paqr8 and Mmd-null embryos and confirmed that in both knockout lines, sex determination occurred normally. Finally, we generated Mmd2;Mmd and Mmd2;Paqr8 double-null embryos and again observed normal testis development. DISCUSSION These results may reflect functional redundancy among PAQR factors, or their dispensability in gonadal development. Our findings highlight the difficulties involved in identifying genes with a functional role in sex determination and gonadal development through expression screening and loss-of-function analyses of individual candidate genes and may help to explain the paucity of genes in which variations have been found to cause human disorders/differences of sex development.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ella Thomson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Ee T Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Enya Longmuss
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Alexander Quinn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Emanuele Pelosi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Leathers TA, Rogers CD. Nonsteroidal anti-inflammatory drugs and implications for the cyclooxygenase pathway in embryonic development. Am J Physiol Cell Physiol 2023; 324:C532-C539. [PMID: 36622071 PMCID: PMC9925163 DOI: 10.1152/ajpcell.00430.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of analgesics that inhibit the activity of cyclooxygenase isoenzymes, which drive tissue inflammation pathways. Caution should be exercised when taking these drugs during pregnancy as they increase the risk of developmental defects. Due to the high rates of NSAID use by individuals, possibilities for in utero exposure to NSAIDs are high, and it is vital that we define the potential risks these drugs pose during embryonic development. In this review, we characterize the identified roles of the cyclooxygenase signaling pathway components throughout pregnancy and discuss the effects of cyclooxygenase pathway perturbation on developmental outcomes.
Collapse
Affiliation(s)
- Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, California
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, California
| |
Collapse
|
19
|
Gonen N, Eozenou C, Mitter R, Elzaiat M, Stévant I, Aviram R, Bernardo AS, Chervova A, Wankanit S, Frachon E, Commère PH, Brailly-Tabard S, Valon L, Barrio Cano L, Levayer R, Mazen I, Gobaa S, Smith JC, McElreavey K, Lovell-Badge R, Bashamboo A. In vitro cellular reprogramming to model gonad development and its disorders. SCIENCE ADVANCES 2023; 9:eabn9793. [PMID: 36598988 PMCID: PMC9812383 DOI: 10.1126/sciadv.abn9793] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023]
Abstract
During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Eozenou
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Richard Mitter
- Bioinformatics Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maëva Elzaiat
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Isabelle Stévant
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rona Aviram
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Almira Chervova
- Department of Stem Cell and Developmental Biology, Institut Pasteur, Paris 75724, France
| | - Somboon Wankanit
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Emmanuel Frachon
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - Pierre-Henri Commère
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Sylvie Brailly-Tabard
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Molecular Genetics, Pharmacogenetics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Léo Valon
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Laura Barrio Cano
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - James C. Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | | | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| |
Collapse
|
20
|
Ogawa Y, Terao M, Tsuji-Hosokawa A, Tsuchiya I, Hasegawa M, Takada S. SOX9 and SRY binding sites on mouse mXYSRa/Enh13 enhancer redundantly regulate Sox9 expression to varying degrees. Hum Mol Genet 2023; 32:55-64. [PMID: 35921234 DOI: 10.1093/hmg/ddac184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Sox9 plays an essential role in mammalian testis formation. It has been reported that gene expression in the testes is regulated by enhancers. Among them, mXYSRa/Enh13-which is located at far upstream of the transcription start site-plays a critical role, wherein its deletion causes complete male-to-female sex reversal in mice. It has been proposed that the binding sites (BSs) of SOX9 and SRY, the latter of which is the sex determining gene on the Y chromosome, are associated with mXYSRa/Enh13. They function as an enhancer, whereby the sequences are evolutionarily conserved and in vivo binding of SOX9 and SRY to mXYSRa/Enh13 has been demonstrated previously. However, their precise in vivo functions have not been examined to date. To this end, this study generated mice with substitutions on the SOX9 and SRY BSs to reveal their in vivo functions. Homozygous mutants of SOX9 and SRY BS were indistinguishable from XY males, whereas double mutants had small testes, suggesting that these functions are redundant and that there is another functional sequence on mXYSRa/Enh13, since mXYSRa/Enh13 deletion mice are XY females. In addition, the majority of hemizygous mice with substitutions in SOX9 BS and SRY BS were female and male, respectively, suggesting that SOX9 BS contributes more to SRY BS for mXYSRa/Enh13 to function. The additive effect of SOX9 and SRY via these BSs was verified using an in vitro assay. In conclusion, SOX9 BS and SRY BS function redundantly in vivo, and at least one more functional sequence should exist in mXYSRa/Enh13.
Collapse
Affiliation(s)
- Yuya Ogawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Atsumi Tsuji-Hosokawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Iku Tsuchiya
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Midori Hasegawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Rovatsos M, Galoyan E, Spangenberg V, Vassilieva A, Kratochvíl L. XX
/
XY
sex chromosomes in a blind lizard (Dibamidae): Towards understanding the evolution of sex determination in squamates. J Evol Biol 2022; 35:1791-1796. [DOI: 10.1111/jeb.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| | - Eduard Galoyan
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
| | - Victor Spangenberg
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
- Vavilov Institute of General Genetics Russian Academy of Sciences Moscow Russia
- Moscow State Regional University Mytishchi Russia
| | - Anna Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| |
Collapse
|
22
|
Brown EA, Eikenbary SR, Landis WG. Bayesian network-based risk assessment of synthetic biology: Simulating CRISPR-Cas9 gene drive dynamics in invasive rodent management. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:2835-2846. [PMID: 35568962 DOI: 10.1111/risa.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene drive technology has been proposed to control invasive rodent populations as an alternative to rodenticides. However, this approach has not undergone risk assessment that meets criteria established by Gene Drives on the Horizon, a 2016 report by the National Academies of Sciences, Engineering, and Medicine. To conduct a risk assessment of gene drives, we employed the Bayesian network-relative risk model to calculate the risk of mouse eradication on Southeast Farallon Island using a CRISPR-Cas9 homing gene drive construct. We modified and implemented the R-based model "MGDrivE" to simulate and compare 60 management strategies for gene drive rodent management. These scenarios spanned four gene drive mouse release schemes, three gene drive homing rates, three levels of supplemental rodenticide dose, and two timings of rodenticide application relative to gene drive release. Simulation results showed that applying a supplemental rodenticide simultaneously with gene drive mouse deployment resulted in faster eradication of the island mouse population. Gene drive homing rate had the highest influence on the overall probability of successful eradication, as increased gene drive accuracy reduces the likelihood of mice developing resistance to the CRISPR-Cas9 homing mechanism.
Collapse
Affiliation(s)
- Ethan A Brown
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| | - Steven R Eikenbary
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| | - Wayne G Landis
- Institute of Environmental Toxicology and Chemistry, College of the Environment, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
23
|
Molecular cloning and expression patterns of a sex-biased transcriptional factor Foxl2 in the giant freshwater prawn (Macrobrachium rosenbergii). Mol Biol Rep 2022; 50:3581-3591. [PMID: 36422756 DOI: 10.1007/s11033-022-07526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUD Macrobrachium rosenbergii is an economically important species that is widely cultivated in some Asian nations. Foxl2 is a transcriptional regulator of ovarian differentiation and development. The aim of this study was to study the bioinformatics features and expression patterns of M. rosenbergii Foxl2 (MrFoxl2). METHODS In this study, all experimental animals were mature M. rosenbergii (9-12 cm) individuals. The foxl2 gene was identified and characterized in the genome of M. rosenbergii using molecular cloning, bioinformatic analysis, in situ hybridization, and quantitative analysis. RESULTS The identified cDNA encoded a putative 489-amino-acid MrFoxl2 protein. Bioinformatics analysis revealed a low identity of MrFoxl2 to other crustacean orthologues. The closest phylogenetic relationship was to Foxl2 of Eriocheir sinensis. The result of in situ hybridization demonstrated that transcripts of MrFoxl2 in M. rosenbergii were identified in spermatocytes, oocytes, and secretory epithelial cells of the vas deferens. The result of q-PCR suggested that a high expression of MrFoxl2 was identified in the testis, vas deferens, and ovaries. During ovarian development, MrFoxl2 expression was the highest in stage I. CONCLUSION Our findings suggest that MrFoxl2 may play a role in gonadal development in both female and male M. rosenbergii.
Collapse
|
24
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
25
|
Sreenivasan R, Gonen N, Sinclair A. SOX Genes and Their Role in Disorders of Sex Development. Sex Dev 2022; 16:80-91. [PMID: 35760052 DOI: 10.1159/000524453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Andrew Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
27
|
Lei L, Chen C, Zhu J, Wang Y, Liu X, Liu H, Geng L, Su J, Li W, Zhu X. Transcriptome analysis reveals key genes and pathways related to sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100986. [PMID: 35447559 DOI: 10.1016/j.cbd.2022.100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Most vertebrates exhibit sexual dimorphisms in size, colour, behaviour, physiology and many others. The Chinese soft-shelled turtle (Pelodiscus sinensis) male individuals reach a larger size than females which produce significant economic implications in aquaculture. However, the mechanisms of sex determination and plastic patterns of sex differentiation in P. sinensis remain unclear. Here, comparative transcriptome analysis on male and female embryonic gonads prior to gonad formation and stages mediated gonadal differentiation of P. sinensis were performed to characterize the potential sex-related genes and their molecular pathways in P. sinensis. A total of 6369 differentially expressed genes (DEGs) were identified from day 9 and day 16 and assigned to 626 GO pathways and 161 KEGG signalling pathways, including ovarian steroidogenesis pathway, steroid hormone biosynthesis pathways, and the GnRH signalling pathway (P < 0.05). Moreover, protein interaction network analyses revealed that Akr1c3, Sult2b1, Sts, Cyp3a, Cyp1b1, Sox30 and Lhx9 might be key candidate genes for sex differentiation in P. sinensis. These data provide a genomic rationale for the sex differentiation of P. sinensis and enrich the candidate gene pool for sex differentiation.
Collapse
Affiliation(s)
- Luo Lei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Lulu Geng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China
| | - Junyu Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| | - Xinping Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| |
Collapse
|
28
|
Zhu J, Lei L, Chen C, Wang Y, Liu X, Geng L, Li R, Chen H, Hong X, Yu L, Wei C, Li W, Zhu X. Whole-Transcriptome Analysis Identifies Gender Dimorphic Expressions of Mrnas and Non-Coding Rnas in Chinese Soft-Shell Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11060834. [PMID: 35741355 PMCID: PMC9219891 DOI: 10.3390/biology11060834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 04/14/2023]
Abstract
In aquaculture, the Chinese soft-shelled turtle (Pelodiscus sinensis) is an economically important species with remarkable gender dimorphism in its growth patterns. However, the underlying molecular mechanisms of this phenomenon have not been elucidated well. Here, we conducted a whole-transcriptome analysis of the female and male gonads of P. sinensis. Overall, 7833 DE mRNAs, 619 DE lncRNAs, 231 DE circRNAs, and 520 DE miRNAs were identified. Some "star genes" associated with sex differentiation containing dmrt1, sox9, and foxl2 were identified. Additionally, some potential genes linked to sex differentiation, such as bmp2, ran, and sox3, were also isolated in P. sinensis. Functional analysis showed that the DE miRNAs and DE ncRNAs were enriched in the pathways related to sex differentiation, including ovarian steroidogenesis, the hippo signaling pathway, and the calcium signaling pathway. Remarkably, a lncRNA/circRNA-miRNA-mRNA interaction network was constructed, containing the key genes associated with sex differentiation, including fgf9, foxl3, and dmrta2. Collectively, we constructed a gender dimorphism profile of the female and male gonads of P. sinensis, profoundly contributing to the exploration of the major genes and potential ncRNAs involved in the sex differentiation of P. sinensis. More importantly, we highlighted the potential functions of ncRNAs for gene regulation during sex differentiation in P. sinensis as well as in other turtles.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Luo Lei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lulu Geng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Ruiyang Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- Correspondence: (W.L.); (X.Z.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.Z.); (L.L.); (C.C.); (Y.W.); (X.L.); (L.G.); (R.L.); (H.C.); (X.H.); (L.Y.); (C.W.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence: (W.L.); (X.Z.)
| |
Collapse
|
29
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
30
|
Ross EM, Sanjana H, Nguyen LT, Cheng Y, Moore SS, Hayes BJ. Extensive Variation in Gene Expression is Revealed in 13 Fertility-Related Genes Using RNA-Seq, ISO-Seq, and CAGE-Seq From Brahman Cattle. Front Genet 2022; 13:784663. [PMID: 35401673 PMCID: PMC8990236 DOI: 10.3389/fgene.2022.784663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fertility is a key driver of economic profitability in cattle production. A number of studies have identified genes associated with fertility using genome wide association studies and differential gene expression analysis; however, the genes themselves are poorly characterized in cattle. Here, we selected 13 genes from the literature which have previously been shown to have strong evidence for an association with fertility in Brahman cattle (Bos taurus indicus) or closely related breeds. We examine the expression variation of the 13 genes that are associated with cattle fertility using RNA-seq, CAGE-seq, and ISO-seq data from 11 different tissue samples from an adult Brahman cow and a Brahman fetus. Tissues examined include blood, liver, lung, kidney, muscle, spleen, ovary, and uterus from the cow and liver and lung from the fetus. The analysis revealed several novel isoforms, including seven from SERPINA7. The use of three expression characterization methodologies (5′ cap selected ISO-seq, CAGE-seq, and RNA-seq) allowed the identification of isoforms that varied in their length of 5′ and 3′ untranslated regions, variation otherwise undetectable (collapsed as degraded RNA) in generic isoform identification pipelines. The combinations of different sequencing technologies allowed us to overcome the limitations of relatively low sequence depth in the ISO-seq data. The lower sequence depth of the ISO-seq data was also reflected in the lack of observed expression of some genes that were observed in the CAGE-seq and RNA-seq data from the same tissue. We identified allele specific expression that was tissue-specific in AR, IGF1, SOX9, STAT3, and TAF9B. Finally, we characterized an exon of TAF9B as partially nested within the neighboring gene phosphoglycerate kinase 1. As this study only examined two animals, even more transcriptional variation may be present in a genetically diverse population. This analysis reveals the large amount of transcriptional variation within mammalian fertility genes and illuminates the fact that the transcriptional landscape cannot be fully characterized using a single technology alone.
Collapse
Affiliation(s)
- Elizabeth M. Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Elizabeth M. Ross,
| | - Hari Sanjana
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Loan T. Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - YuanYuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stephen S. Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J. Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
31
|
Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. iScience 2022; 25:103786. [PMID: 35146397 PMCID: PMC8819394 DOI: 10.1016/j.isci.2022.103786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Because epigenetics is a critical component for gene expression, the hypothesis was tested that DNA methylation alterations are dynamic and continually change throughout gametogenesis to generate the mature sperm. Developmental alterations and stage-specific DNA methylation during gametogenesis from primordial germ cells (PGCs) to mature sperm are investigated. Individual developmental stage germ cells were isolated and analyzed for differential DNA methylation regions (DMRs). The number of DMRs was highest in the first three comparisons with mature PGCs, prospermatogonia, and spermatogonia. The most statistically significant DMRs were present at all stages of development and had variations involving both increases or decreases in DNA methylation. DMR-associated genes were identified and correlated with gene functional categories, pathways, and cellular processes. Observations identified a dynamic cascade of epigenetic changes during development that is dramatic during the early developmental stages. Complex epigenetic alterations are required to regulate genome biology and gene expression during gametogenesis. A dynamic cascade of epigenetic change throughout gametogenesis from PGC to sperm Most dramatic epigenetic alterations in PGC and spermatogenic stem cell stages Different DNA methylation regions between and within stages were identified Complex epigenetic alterations required for gene expression during gametogenesis
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
32
|
Windley SP, Mayère C, McGovern AE, Harvey NL, Nef S, Schwarz Q, Kumar S, Wilhelm D. Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death Dis 2022; 13:75. [PMID: 35075134 PMCID: PMC8786929 DOI: 10.1038/s41419-022-04519-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and β-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.
Collapse
Affiliation(s)
- Simon P Windley
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Alice E McGovern
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
33
|
Hui HB, Xiao L, Sun W, Zhou YJ, Zhang HY, Ge CT. Sox9 is indispensable for testis differentiation in the red-eared slider turtle, a reptile with temperature-dependent sex determination. Zool Res 2021; 42:721-725. [PMID: 34581032 PMCID: PMC8645876 DOI: 10.24272/j.issn.2095-8137.2021.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hang-Bo Hui
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Ling Xiao
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Sun
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Ying-Jie Zhou
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Hai-Yan Zhang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Chu-Tian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China. E-mail:
| |
Collapse
|
34
|
Migale R, Neumann M, Lovell-Badge R. Long-Range Regulation of Key Sex Determination Genes. Sex Dev 2021; 15:360-380. [PMID: 34753143 DOI: 10.1159/000519891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.
Collapse
|
35
|
Poulat F. Non-Coding Genome, Transcription Factors, and Sex Determination. Sex Dev 2021; 15:295-307. [PMID: 34727549 DOI: 10.1159/000519725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Collapse
Affiliation(s)
- Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Luo H, Li X, Tian GG, Li D, Hou C, Ding X, Hou L, Lyu Q, Yang Y, Cooney AJ, Xie W, Xiong J, Wang H, Zhao X, Wu J. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. J Adv Res 2021; 33:81-98. [PMID: 34603780 PMCID: PMC8463929 DOI: 10.1016/j.jare.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Fate determination of germline stem cells remains poorly understood at the chromatin structure level. Objectives Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors. Methods The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs. The defined factors were screened with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into induced germline stem cells (iGSCs) using high throughput chromosome conformation. Results We demonstrate successful production of offspring from oocytes transdifferentiated from mouse spermatogonial stem cells (SSCs). Furthermore, we demonstrate direct induction of germline stem cells (iGSCs) differentiated into functional oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf in SSCs after screening with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into iGSCs, which was highly similar to female germline stem cells. We observed that although topologically associating domains were stable during SSC conversion, chromatin interactions changed in a striking manner, altering 35% of inactive and active chromosomal compartments throughout the genome. Conclusion We demonstrate successful offspring production of ovarian organoids derived from SSCs by defined factors with chromatin reorganization. These findings have important implications in various areas including mammalian gametogenesis, genetic and epigenetic reprogramming, biotechnology, and medicine.
Collapse
Affiliation(s)
- Huacheng Luo
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Changliang Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xinbao Ding
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Lin Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Qifeng Lyu
- Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University Schoolof Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunze Yang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenhai Xie
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ji Xiong
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hu Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao TongUniversity, Shanghai 200240, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
37
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
38
|
Bird AD, Croft BM, Harada M, Tang L, Zhao L, Ming Z, Bagheri-Fam S, Koopman P, Wang Z, Akita K, Harley VR. Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. Hum Mol Genet 2021; 29:2148-2161. [PMID: 32452519 DOI: 10.1093/hmg/ddaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.
Collapse
Affiliation(s)
- Anthony D Bird
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Brittany M Croft
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenhua Ming
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
39
|
Lindeman RE, Murphy MW, Agrimson KS, Gewiss R, Bardwell V, Gearhart M, Zarkower D. The conserved sex regulator DMRT1 recruits SOX9 in sexual cell fate reprogramming. Nucleic Acids Res 2021; 49:6144-6164. [PMID: 34096593 PMCID: PMC8216462 DOI: 10.1093/nar/gkab448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.
Collapse
Affiliation(s)
- Robin E Lindeman
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark W Murphy
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kellie S Agrimson
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rachel L Gewiss
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vivian J Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Cheng Y, Lai F, Wang X, Shang D, Zou J, Luo M, Xia X, Cheng H, Zhou R. Srag Regulates Autophagy via Integrating into a Preexisting Autophagy Pathway in Testis. Mol Biol Evol 2021; 38:128-141. [PMID: 32722765 PMCID: PMC7782868 DOI: 10.1093/molbev/msaa195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spermatogenesis is an essential process for producing sperm cells. Reproductive strategy is successfully evolved for a species to adapt to a certain ecological system. However, roles of newly evolved genes in testis autophagy remain unclear. In this study, we found that a newly evolved gene srag (Sox9-regulated autophagy gene) plays an important role in promoting autophagy in testis in the lineage of the teleost Monopterus albus. The gene integrated into an interaction network through a two-way strategy of evolution, via Sox9-binding in its promoter and interaction with Becn1 in the coding region. Its promoter region evolved a cis element for binding of Sox9, a transcription factor for male sex determination. Both in vitro and in vivo analyses demonstrated that transcription factor Sox9 could bind to and activate the srag promoter. Its coding region acquired ability to interact with key autophagy initiation factor Becn1 via the conserved C-terminal, indicating that srag integrated into preexisting autophagy network. Moreover, we determined that Srag enhanced autophagy by interacting with Becn1. Notably, srag transgenic zebrafish revealed that Srag exerted the same function by enhancing autophagy through the Srag–Becn1 pathway. Thus, the new gene srag regulated autophagy in testis by integrated into preexisting autophagy network.
Collapse
Affiliation(s)
- Yibin Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Juan Zou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Majing Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xizhong Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Sox9a, not sox9b is required for normal cartilage development in zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum Reprod 2021; 35:1099-1119. [PMID: 32412604 DOI: 10.1093/humrep/deaa041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Univ Poitiers, STIM, CNRS ERL7003, Poitiers Cedex 9, CNRS ERL7003, France
| | - Millissia Ben Maamar
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Coiffec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Vincent Lavoué
- Service Gynécologie et Obstétrique, CHU Rennes, F-35000 Rennes, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
43
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
44
|
Radovic Pletikosic SM, Starovlah IM, Miljkovic D, Bajic DM, Capo I, Nef S, Kostic TS, Andric SA. Deficiency in insulin-like growth factors signalling in mouse Leydig cells increase conversion of testosterone to estradiol because of feminization. Acta Physiol (Oxf) 2021; 231:e13563. [PMID: 32975906 DOI: 10.1111/apha.13563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
AIM A growing body of evidence pointed correlation between insulin-resistance, testosterone level and infertility, but there is scarce information about mechanisms. The aim of this study was to identify the possible mechanism linking the insulin-resistance with testosterone-producing-Leydig-cells functionality. METHODS We applied in vivo and in vitro approaches. The in vivo model of functional genomics is represented by INSR/IGF1R-deficient-testosterone-producing Leydig cells obtained from the prepubertal (P21) and adult (P80) male mice with insulin + IGF1-receptors deletion in steroidogenic cells (Insr/Igf1r-DKO). The in vitro model of INSR/IGF1R-deficient-cell was mimicked by blockade of insulin/IGF1-receptors on the primary culture of P21 and P80 Leydig cells. RESULTS Leydig-cell-specific-insulin-resistance induce the development of estrogenic characteristics of progenitor Leydig cells in prepubertal mice and mature Leydig cells in adult mice, followed with a dramatic reduction of androgen phenotype. Level of androgens in serum, testes and Leydig cells decrease as a consequence of the dramatic reduction of steroidogenic capacity and activity as well as all functional markers of Leydig cell. Oppositely, the markers for female-steroidogenic-cell differentiation and function increase. The physiological significances are the higher level of testosterone-to-estradiol-conversion in double-knock-out-mice of both ages and few spermatozoa in adults. Intriguingly, the transcription of pro-male sexual differentiation markers Sry/Sox9 increased in P21-Leydig-cells, questioning the current view about the antagonistic genetic programs underlying gonadal sex determination. CONCLUSION The results provide new molecular mechanisms leading to the development of the female phenotype in Leydig cells from Insr/Igf1r-DKO mice and could help to better understand the correlation between insulin resistance, testosterone and male (in)fertility.
Collapse
Affiliation(s)
- Sava M. Radovic Pletikosic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Isidora M. Starovlah
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Dejan Miljkovic
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Dragana M. Bajic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Ivan Capo
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Serge Nef
- Department of Genetic Medicine and Development Medical Faculty University of Geneva Geneva Switzerland
| | - Tatjana S. Kostic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Silvana A. Andric
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
45
|
|
46
|
Jiang J, Zhang C, Yuan X, Li J, Zhang M, Shi X, Jin K, Zhang Y, Zuo Q, Chen G, Li B. Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene 2021; 780:145521. [PMID: 33631236 DOI: 10.1016/j.gene.2021.145521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
SPINDLIN1-Z (SPIN1Z), a member of the Spin/Ssty(Y-linked spermiogenesis specific transcript) protein family, participates in the early embryonic development process. Our previous RNA-seq analysis indicates that the level of Spin1z was abundantly expressed in male embryonic stem cells (ESCs) and primitive germ cells (PGCs), we speculate that Spin1z may play an important role in chicken male differentiation. Therefore, the loss- and gain-of-function experiments provide solid evidence that Spin1z is both necessary and sufficient to initiate male development in chicken. Furthermore, chromatin immunoprecipitation (ChIP) assay and the dual-luciferase assay was performed to further confirm that Spin1z contributed to chicken male differentiation by inhibiting the Tcf4 transcription. Our findings provide a novel insight into the molecular mechanism for chicken male differentiation.
Collapse
Affiliation(s)
- Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiancheng Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
47
|
Human Umbilical Cord: Information Mine in Sex-Specific Medicine. Life (Basel) 2021; 11:life11010052. [PMID: 33451112 PMCID: PMC7828611 DOI: 10.3390/life11010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of the sex and of the donor. The sex of donors in biological research must be known because variations in cells and cellular components can be used as endpoints, biomarkers and/or targets of pharmacological studies. This selective review focuses on the current findings regarding sex differences observed in the umbilical cord, a widely used source of research samples, both in the blood and in the circulating cells, as well as in the different cellular models obtainable from it. Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the sex variable is still often forgotten in experimental models, we suggest that it should be mandatory to adopt sex-oriented research, because only awareness of these issues can lead to innovative research.
Collapse
|
48
|
Wan H, Liao J, Zhang Z, Zeng X, Liang K, Wang Y. Molecular cloning, characterization, and expression analysis of a sex-biased transcriptional factor sox9 gene of mud crab Scylla paramamosain. Gene 2021; 774:145423. [PMID: 33434625 DOI: 10.1016/j.gene.2021.145423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
Sox9 gene, a crucial member of the Sox gene family, is present in various organisms and involved in many physiological processes, especially in sex determination and gonad development. In this study, we reported a sox9 gene (designated as Spsox9) from Scylla paramamosain through analyzing published gonad transcriptome data. Meanwhile, the accuracy was validated by PCR technology, and the 3' sequences were cloned with 3' RACE technology. The full-length cDNA of Spsox9 is 2843 bp, consisting of a 243 bp 5' UTR, an 1124 bp 3' UTR, and a 1476 bp ORF encoding 491 amino acids. Furthermore, to better understand its conservation among crustacean species, the sox9 gene ortholog was identified in several other crustaceans species with their published transcriptome data, respectively. All of the Sox9 proteins identified in the current study had the common feature of Sox proteins (HMG domain) and were highly conserved among analyzed crustacean species. In all examined tissues, the Spsox9 was mainly expressed in the gonad (testis and ovary), eyestalk, and cerebral ganglion. During embryo development, Spsox9 was highly expressed in 5 pairs of appendages, 7 pairs of appendages, and eye-pigment formation stage. During ovary development, the expression level of Spsox9 remained stable in the first 4 stages (O1-O4) and decreased in the tertiary vitellogenesis (O5) stage. During testis development, the expression level of Spsox9 was highest in the spermatid stage (T2) and was significantly different from that in the spermatocyte stage (T1) and mature sperm stage (T3) (p < 0.05). In addition, Spsox9 exhibited a sex-biased expression pattern in T1 and O1. These present results indicated that the Spsox9 gene might play crucial roles in the gonad and embryo development of mud crab.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Jiaqian Liao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Keying Liang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China.
| |
Collapse
|
49
|
Ushijima K, Ogawa Y, Terao M, Asakura Y, Muroya K, Hayashi M, Ishii T, Hasegawa T, Sekido R, Fukami M, Takada S, Narumi S. Identification of the first promoter-specific gain-of-function SOX9 missense variant (p.E50K) in a patient with 46,XX ovotesticular disorder of sex development. Am J Med Genet A 2021; 185:1067-1075. [PMID: 33399274 DOI: 10.1002/ajmg.a.62063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 01/03/2023]
Abstract
SOX9, a transcription factor, is expressed in the undifferentiated XX and XY gonads. SRY induces significant upregulation of SOX9 expression in XY gonads. Loss-of-function SOX9 variants cause testicular dysgenesis in 46,XY patients, while duplication of the total gene or the upstream regulatory region results in testicular development in 46,XX patients. However, gain-of-function (GoF) SOX9 variants have not been reported previously. We report the case of a 16-year-old female patient with a 46,XX karyotype who had masculinized external genitalia and unilateral ovotestis. Next-generation sequencing-based genetic screening for disorders of sex development led to the identification of a novel SOX9 variant (p.Glu50Lys), transmitted from the phenotypically normal father. Expression analysis showed that E50K-SOX9 enhanced transactivation of the luciferase reporter containing the testis enhancer sequence core element compared with that containing the wildtype-SOX9. This GoF activity was not observed in the luciferase reporter containing Amh, the gene for anti-Müllerian hormone. We genetically engineered female mice (Sox9E50K/E50K ), and they showed no abnormalities in the external genitalia or ovaries. In conclusion, a novel SOX9 variant with a promoter-specific GoF activity was identified in vitro; however, the disease phenotype was not recapitulated by the mouse model. At present, the association between the GoF SOX9 variant and the ovotestis phenotype remains unclear. Future studies are needed to verify the possible association.
Collapse
Affiliation(s)
- Kikumi Ushijima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuya Ogawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yumi Asakura
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama city, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama city, Japan
| | - Mie Hayashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Ryohei Sekido
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Cannarella R, Salemi M, Condorelli RA, Cimino L, Giurato G, Marchese G, Cordella A, Romano C, La Vignera S, Calogero AE. SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian J Androl 2021; 23:157-162. [PMID: 33109779 PMCID: PMC7991811 DOI: 10.4103/aja.aja_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Angela Cordella
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Corrado Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|